Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (616)

Search Parameters:
Keywords = Li-ion battery electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2351 KiB  
Article
Facile SEI Improvement in the Artificial Graphite/LFP Li-Ion System: Via NaPF6 and KPF6 Electrolyte Additives
by Sepehr Rahbariasl and Yverick Rangom
Energies 2025, 18(15), 4058; https://doi.org/10.3390/en18154058 - 31 Jul 2025
Viewed by 346
Abstract
In this work, graphite anodes and lithium iron phosphate (LFP) cathodes are used to examine the effects of sodium hexafluorophosphate (NaPF6) and potassium hexafluorophosphate (KPF6) electrolyte additives on the formation of the solid electrolyte interphase and the performance of [...] Read more.
In this work, graphite anodes and lithium iron phosphate (LFP) cathodes are used to examine the effects of sodium hexafluorophosphate (NaPF6) and potassium hexafluorophosphate (KPF6) electrolyte additives on the formation of the solid electrolyte interphase and the performance of lithium-ion batteries in both half-cell and full-cell designs. The objective is to assess whether these additives may increase cycle performance, decrease irreversible capacity loss, and improve interfacial stability. Compared to the control electrolyte (1.22 M Lithium hexafluorophosphate (LiPF6)), cells with NaPF6 and KPF6 additives produced less SEI products, which decreased irreversible capacity loss and enhanced initial coulombic efficiency. Following the formation of the solid electrolyte interphase, the specific capacity of the control cell was 607 mA·h/g, with 177 mA·h/g irreversible capacity loss. In contrast, irreversible capacity loss was reduced by 38.98% and 37.85% in cells containing KPF6 and NaPF6 additives, respectively. In full cell cycling, a considerable improvement in capacity retention was achieved by adding NaPF6 and KPF6. The electrolyte, including NaPF6, maintained 67.39% greater capacity than the LiPF6 baseline after 20 cycles, whereas the electrolyte with KPF6 demonstrated a 30.43% improvement, indicating the positive impacts of these additions. X-ray photoelectron spectroscopy verified that sodium (Na+) and potassium (K+) ions were present in the SEI of samples containing NaPF6 and KPF6. While K+ did not intercalate in LFP, cyclic voltammetry confirmed that Na+ intercalated into LFP with negligible impact on the energy storage of full cells. These findings demonstrate that NaPF6 and KPF6 are suitable additions for enhancing lithium-ion battery performance in the popular artificial graphite/LFP system. Full article
(This article belongs to the Special Issue Research on Electrolytes Used in Energy Storage Systems)
Show Figures

Figure 1

12 pages, 1828 KiB  
Article
Preparation of Comb-Shaped Polyether with PDMS and PEG Side Chains and Its Application in Polymer Electrolytes
by Tomoya Enoki, Ryuta Kosono, Nurul Amira Shazwani Zainuddin, Takahiro Uno and Masataka Kubo
Molecules 2025, 30(15), 3201; https://doi.org/10.3390/molecules30153201 - 30 Jul 2025
Viewed by 281
Abstract
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization [...] Read more.
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization of PEO at room temperature by cross-linking or introducing a branched structure are currently being investigated. In this study, we synthesized new comb-type ion-conducting polyethers with two different side chains such as polydimethylsiloxane (PDMS) and polyethylene glycol monomethyl ether (mPEG) segments as flexible and ion-conducting segments, respectively. The introduction of the PDMS segment was found to prevent a decrease in ionic conductivity in the low-temperature region, but led to an ionic conductivity decrease in the high temperature region. On the other hand, the introduction of mPEG segments improved ionic conductivity in the high-temperature region. The introduction of mPEG segments with longer chains resulted in a significant decrease in ionic conductivity in the low-temperature region. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices—2nd Edition)
Show Figures

Figure 1

17 pages, 4099 KiB  
Article
Tetramethylene Sulfone (TMS) as an Electrolyte Additive for High-Power Lithium-Ion Batteries
by Wenting Liu, Gangxin Chen, Ningfeng Wang, Xianzhong Sun, Chen Li, Yanan Xu, Xiaohu Zhang, Xiong Zhang and Kai Wang
Batteries 2025, 11(7), 270; https://doi.org/10.3390/batteries11070270 - 17 Jul 2025
Viewed by 383
Abstract
High-power lithium-ion batteries impose stringent requirements on output power. Tetramethylene sulfone (TMS), serving as a novel electrolyte additive, effectively enhances the stability of electrolytes under high-voltage conditions due to its high flash point and high dielectric constant, thereby boosting the output performance of [...] Read more.
High-power lithium-ion batteries impose stringent requirements on output power. Tetramethylene sulfone (TMS), serving as a novel electrolyte additive, effectively enhances the stability of electrolytes under high-voltage conditions due to its high flash point and high dielectric constant, thereby boosting the output performance of lithium-ion batteries. In this work, we selected lithium hexafluorophosphate (LiPF6) as the lithium salt, using a solvent carrier consisting of a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). TMS was added as an additive to create a novel high-power electrolyte system. We prepared five electrolytes with different TMS concentrations and conducted in-depth investigations into their impacts on the performance of lithium-ion batteries. The findings indicate that the electrolytes with TMS ratios of 2 wt% and 5 wt% demonstrated good synergistic cathode–anode stability in the NCM//soft carbon system, and the electrolyte with a 5 wt% TMS ratio demonstrated the most significant improvement in the overall performance of the full battery. Full article
Show Figures

Figure 1

15 pages, 4059 KiB  
Article
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
by Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette and Marc Dubois
Batteries 2025, 11(7), 268; https://doi.org/10.3390/batteries11070268 - 16 Jul 2025
Viewed by 297
Abstract
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3 [...] Read more.
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3B2(XO4)3 are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li+ ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO2 present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li6,4Al0,2La3Zr2O12 composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. Full article
Show Figures

Figure 1

15 pages, 4358 KiB  
Article
Nickel-Rich Cathodes for Solid-State Lithium Batteries: Comparative Study Between PVA and PIB Binders
by José M. Pinheiro, Beatriz Moura Gomes, Manuela C. Baptista and M. Helena Braga
Molecules 2025, 30(14), 2974; https://doi.org/10.3390/molecules30142974 - 15 Jul 2025
Viewed by 403
Abstract
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn [...] Read more.
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn0.05Co0.05O2, NMC955, the sulfide-based electrolyte Li6PS5Cl, and alternative binders—polyvinyl alcohol (PVA) and polyisobutylene (PIB)—dispersed in toluene, a non-polar solvent compatible with the electrolyte. After fabrication, the cathodes were characterized using SEM/EDX, sheet resistance, and Hall effect measurements. Electrochemical tests were additionally performed in all-solid-state battery half-cells comprising the synthesized cathodes, lithium metal anodes, and Li6PS5Cl as the separator and electrolyte. The results show that both PIB and PVA formulations yielded conductive cathodes with stable microstructures and uniform particle distribution. Electrochemical characterization exposed that the PVA-based cathode outperformed the PIB-based counterpart, achieving the theoretical capacity of 192 mAh·g−1 even at 1C, whereas the PIB cathode reached a maximum capacity of 145 mAh.g−1 at C/40. Post-mortem analysis confirmed the structural integrity of the cathodes. These findings demonstrate the viability of NMC955 as a high-capacity cathode material compatible with solid-state systems. Full article
Show Figures

Figure 1

18 pages, 4231 KiB  
Article
Effect Mechanism of Phosphorus-Containing Flame Retardants with Different Phosphorus Valence States on the Safety and Electrochemical Performance of Lithium-Ion Batteries
by Peng Xi, Fengling Sun, Xiaoyu Tang, Xiaoping Fan, Guangpei Cong, Ziyang Lu and Qiming Zhuo
Processes 2025, 13(7), 2248; https://doi.org/10.3390/pr13072248 - 14 Jul 2025
Viewed by 320
Abstract
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional [...] Read more.
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional electrolytes is an effective method to improve battery safety. In this paper, trimethyl phosphate (TMP) and trimethyl phosphite (TMPi) were used as research objects, and the flame-retardant test and differential scanning calorimetry (DSC) of the electrolytes configured by them were first carried out. The self-extinguishing time of the electrolyte with 5% TMP and TMPi is significantly reduced, achieving a flame-retardant effect. Secondly, the electrochemical performance of LiFePO4|Li half-cells after adding different volume ratios of TMP and TMPi was studied. Compared with TMPi5, the peak potential difference between the oxidation peak and the reduction peak of the LiFePO4|Li half-cell with TMP5 added is reduced, the battery polarization is reduced, the discharge specific capacity after 300 cycles is large, the capacity retention rate is as high as 99.6%, the discharge specific capacity is larger at different current rates, and the electrode resistance is smaller. TMPi5 causes the discharge-specific capacity to attenuate, which is more obvious at high current rates. LiFePO4|Li half-cells with 5% volume ratio of flame retardant have the best electrochemical performance. Finally, the influence mechanism of the phosphorus valence state on battery safety and electrochemical performance was compared and studied. After 300 cycles, the surface of the LiFePO4 electrode with 5% TMP added had a smoother and more uniform CEI film and higher phosphorus (P) and fluorine (F) content, which was beneficial to the improvement of electrochemical performance. The cross-section of the LiFePO4 electrode showed slight collapse and cracks, which slowed down the attenuation of battery capacity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 2734 KiB  
Article
Fabrication and Performance Study of 3D-Printed Ceramic-in-Gel Polymer Electrolytes
by Xiubing Yao, Wendong Qin, Qiankun Hun, Naiyao Mao, Junming Li, Xinghua Liang, Ying Long and Yifeng Guo
Gels 2025, 11(7), 534; https://doi.org/10.3390/gels11070534 - 10 Jul 2025
Viewed by 268
Abstract
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at [...] Read more.
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at room temperature. The innovative application of 3D printing in the field of electrochemistry, particularly in solid-state electrolytes, endows energy storage devices with attractive characteristics. In this study, ceramic-in-gel polymer electrolytes (GPEs) based on PVDF-HFP/PAN@LLZTO were fabricated using a direct ink writing (DIW) 3D printing technique. Under the optimal printing conditions (printing speed of 40 mm/s and fill density of 70%), the printed electrolyte exhibited a uniform and dense sponge-like porous structure, achieving a high ionic conductivity of 5.77 × 10−4 S·cm−1, which effectively facilitated lithium-ion transport. A structural analysis indicated that the LLZTO fillers were uniformly dispersed within the polymer matrix, significantly enhancing the electrochemical stability of the electrolyte. When applied in a LiFePO4|GPEs|Li cell configuration, the electrolyte delivered excellent electrochemical performance, with high initial discharge capacities of 168 mAh·g−1 at 0.1 C and 166 mAh·g−1 at 0.2 C, and retained 92.8% of its capacity after 100 cycles at 0.2 C. This work demonstrates the great potential of 3D printing technology in fabricating high-performance GPEs. It provides a novel strategy for the structural design and industrial scalability of lithium-ion batteries. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

117 pages, 10736 KiB  
Review
Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries
by Alain Mauger and Christian M. Julien
Batteries 2025, 11(7), 254; https://doi.org/10.3390/batteries11070254 - 4 Jul 2025
Viewed by 970
Abstract
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x [...] Read more.
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x ≥ 0.6, have emerged as key cathode materials in lithium-ion batteries due to their high operating voltage and superior energy density. These materials, characterized by low cobalt content, offer a promising path toward sustainable and cost-effective energy storage solutions. However, their electrochemical performance remains below theoretical expectations, primarily due to challenges related to structural instability, limited thermal safety, and suboptimal cycle life. Intensive research efforts have been devoted to addressing these issues, resulting in substantial performance improvements and enabling the development of next-generation lithium-ion batteries with higher nickel content and reduced cobalt dependency. In this review, we present recent advances in material design and engineering strategies to overcome the problems limiting their electrochemical performance (cation mixing, phase stability, oxygen release, microcracks during cycling). These strategies include synthesis methods to optimize the morphology (size of the particles, core–shell and gradient structures), surface modifications of the Ni-rich particles, and doping. A detailed comparison between these strategies and the synergetic effects of their combination is presented. We also highlight the synergistic role of compatible lithium salts and electrolytes in achieving state-of-the-art nickel-rich lithium-ion batteries. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

12 pages, 2634 KiB  
Article
Enhancing the Cycle Life of Silicon Oxide–Based Lithium-Ion Batteries via a Nonflammable Fluorinated Ester–Based Electrolyte
by Kihun An, Yen Hai Thi Tran, Dong Guk Kang and Seung-Wan Song
Batteries 2025, 11(7), 250; https://doi.org/10.3390/batteries11070250 - 30 Jun 2025
Viewed by 731
Abstract
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel [...] Read more.
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel (Ni ≥ 80%) oxide cathodes for high-energy-density LIBs and their operation beyond 4.2 V have been pursued, which requires the anodic stability of the electrolyte. Herein, we report a nonflammable multi-functional fluorinated ester–based liquid electrolyte that stabilizes the interfaces and suppresses the swelling of highly loaded 5 wt% SiO–graphite anode and LiNi0.88Co0.08Mn0.04O2 cathode simultaneously in a 3.5 mAh cm−2 full cell, and improves cycle life and battery safety. Surface characterization results reveal that the interfacial stabilization of both the anode and cathode by a robust and uniform solid electrolyte interphase (SEI) layer, enriched with fluorinated ester-derived inorganics, enables 80% capacity retention of the full cell after 250 cycles, even under aggressive conditions of 4.35 V, 1 C and 45 °C. This new electrolyte formulation presents a new opportunity to advance SiO-based high-energy density LIBs for their long operation and safety. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

19 pages, 3826 KiB  
Article
Highly Conductive PEO/PAN-Based SN-Containing Electrospun Membranes as Solid Polymer Electrolytes
by Anna Maria Kirchberger, Patrick Walke, Janio Venturini, Leo van Wüllen and Tom Nilges
Membranes 2025, 15(7), 196; https://doi.org/10.3390/membranes15070196 - 30 Jun 2025
Viewed by 596
Abstract
Solid polymer electrolytes (SPEs) have garnered significant attention due to their potential in all-solid-state batteries (ASSBs). However, adoption remains constrained by challenges such as low thermal stability and limited ionic conductivity. Here, we report on an electrospun (PAN/PEO)- conductive salt (LiBF4) [...] Read more.
Solid polymer electrolytes (SPEs) have garnered significant attention due to their potential in all-solid-state batteries (ASSBs). However, adoption remains constrained by challenges such as low thermal stability and limited ionic conductivity. Here, we report on an electrospun (PAN/PEO)- conductive salt (LiBF4) system, where the influence of varying polyacrylonitrile (PAN) and polyethylene oxide (PEO) ratios, along with different plasticizer concentrations, is evaluated. Notably, the 50:50 PAN/PEO sample exhibited the highest ionic conductivity, reaching 1∙10−2 S/cm at 55 °C. This system also balanced conductivity and processability. Succinonitrile (SN) significantly influenced the morphology and conductivity. Samples with increased SN content showed enhanced capacity in symmetrical cells, achieving ~140 mAs/cm2 for an 18:9:1 polymer (PAN/PEO):SN:conductive salt (LiBF4) composition. The enhanced lithium-ion conductivity of the electrospun blend is attributed to the deliberate use of an unmixable PAN–PEO system. Their immiscibility creates well-defined interfacial regions within fibers, acting as efficient lithium-ion pathways. These findings support electrospun polymer blends as promising candidates for high-performance SPEs for ASSB development. Full article
(This article belongs to the Special Issue Ion Conducting Membranes and Energy Storage)
Show Figures

Figure 1

15 pages, 4353 KiB  
Article
Synthesis and Electrochemical Properties of the Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials for High-Voltage Lithium-Ion Batteries
by So Young Choi, Jong Hun Sung, Fuead Hasan, Sangram Keshari Mohanty, Madhusudana Koratikere Srinivasa and Hyun Deog Yoo
Energies 2025, 18(13), 3387; https://doi.org/10.3390/en18133387 - 27 Jun 2025
Viewed by 575
Abstract
High-voltage spinel (LiNi0.5Mn1.5O4; LNMO) has been a prospective cathode material that may exploit the maximal voltage of 5 V for lithium-ion batteries. However, the practical application has been hindered by the severe electrochemical instability of the Ni [...] Read more.
High-voltage spinel (LiNi0.5Mn1.5O4; LNMO) has been a prospective cathode material that may exploit the maximal voltage of 5 V for lithium-ion batteries. However, the practical application has been hindered by the severe electrochemical instability of the Ni2+/Ni4+ redox couple at such a high voltage. Herein, we coated lithium phosphate (Li3PO4) on the surface of the LNMO by a wet-coating method to improve the electrochemical stability. The coating layer provided an effective cathode–electrolyte interphase, which prevented the excessive decomposition of the electrolyte on the surface of LNMO cathode. The Li3PO4-coated LNMO exhibited enhanced rate capability in accordance with the lowered solid-electrolyte interphase (SEI) and charge-transfer resistance values from electrochemical impedance spectroscopy. Full article
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 637
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
by Seungjin Lee, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim and Joonhyeon Jeon
Polymers 2025, 17(13), 1775; https://doi.org/10.3390/polym17131775 - 26 Jun 2025
Viewed by 460
Abstract
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable [...] Read more.
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable to polymer-based batteries even at 25 °C. The proposed cross-linked polymer network backbone of the h-SICGPE, as a semisolid-state thin film type, has the homogeneous honeycomb structure incorporating anion receptor(s) inside each of its hexagonal closed cells and is obtained by cross-linking between trimethylolpropane tris(3-mercaptopropionate) and poly(ethylene glycol) diacrylate in a newly synthesized anion–receptor solution. The excellent structural capability of the h-SICGPE incorporating Li+/TFSI can enhance ionic conductivity and electrochemical stability by suppressing crystallinity and expanding free volume. Further, the anion receptor in its free volume helps to effectively increase the lithium-ion transference number by immobilizing counter-anions. Experimental results demonstrate dramatically superior performance at 25 °C, such as ionic conductivity (2.46 mS cm−1), oxidative stability (4.9 V vs. Li/Li+), coulombic efficiency (97.65%), and capacity retention (88.3%). These results confirm the developed h-SICGPE as a promising polymer electrolyte for high-performance polymer-based lithium batteries operable at 25 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Probing Solid-State Interface Kinetics via Alternating Current Electrophoretic Deposition: LiFePO4 Li-Metal Batteries
by Su Jeong Lee and Byoungnam Park
Appl. Sci. 2025, 15(13), 7120; https://doi.org/10.3390/app15137120 - 24 Jun 2025
Viewed by 337
Abstract
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4) [...] Read more.
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) as the solid-state electrolyte. We demonstrate that optimal sintering improves the LATP–LFP interfacial contact, leading to higher lithium diffusivity (~10−9 cm2∙s−1) and diffusion-controlled kinetics (b ≈ 0.5), which directly translate to better rate capability. Structural and electrochemical analyses—including X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and rate capability tests—demonstrate that the cell with LATP sintered at 900 °C delivers the highest Li-ion diffusivity (~10−9 cm2∙s−1), near-ideal diffusion-controlled behavior (b-values ~0.5), and superior rate capability. In contrast, excessive sintering at 1000 °C led to reduced diffusivity (~10−10 cm2∙s−1). The liquid electrolyte system showed higher b-values (~0.58), indicating the inclusion of surface capacitive behavior. The correlation between b-values, diffusivity, and morphology underscores the critical role of interface engineering and electrolyte processing in determining the performance of solid-state batteries. This study establishes AC-EPD as a viable and scalable method for fabricating additive-free LFP cathodes and offers new insights into the structure–property relationships governing the interfacial transport in ASSBs. Full article
Show Figures

Figure 1

29 pages, 7261 KiB  
Review
Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies
by Zhiyong Lu, Liangmin Ning, Xiangnan Zhu and Hao Yu
Materials 2025, 18(13), 2987; https://doi.org/10.3390/ma18132987 - 24 Jun 2025
Viewed by 746
Abstract
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental [...] Read more.
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental risks (heavy metal pollution, electrolyte toxicity). This paper systematically reviews pyrometallurgical and hydrometallurgical recovery technologies, identifying bottlenecks: high energy/lithium loss in pyrometallurgy, and corrosion/cost/solvent regeneration issues in hydrometallurgy. To address these, an integrated recycling process is proposed: low-temperature physical separation (liquid nitrogen embrittlement grinding + froth flotation) for cathode–anode separation, mild roasting to convert lithium into water-soluble compounds for efficient metal oxide separation, stepwise alkaline precipitation for high-purity lithium salts, and co-precipitation synthesis of spherical hydroxide precursors followed by segmented sintering to regenerate LiNi1/3Co1/3Mn1/3O2 cathodes with morphology/electrochemical performance comparable to virgin materials. This low-temperature, precision-controlled methodology effectively addresses the energy-intensive, pollutive, and inefficient limitations inherent in conventional recycling processes. By offering an engineered solution for sustainable large-scale recycling and high-value regeneration of spent ternary lithium ion batteries (LIBs), this approach proves pivotal in advancing circular economy development within the renewable energy sector. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop