Synthesis and Electrochemical Properties of the Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials for High-Voltage Lithium-Ion Batteries
Abstract
1. Introduction
2. Methods and Materials
2.1. The Synthesis of LiNi0.5Mn1.5O4 Cathode Materials
2.2. The Synthesis of Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials
2.3. Material Characterization
2.4. Electrochemical Performance
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Sui, J.S.; Chen, J.; Lu, Y.C. LiNi0.5Mn1.5O4 microrod with ultrahigh Mn3+ content: A high performance cathode material for lithium ion battery. Electrochim. Acta 2019, 305, 433–442. [Google Scholar] [CrossRef]
- Nisar, U.; Amin, R.; Essehli, R.; Shakoor, R.A.; Kahraman, R.; Kim, D.K.; Khaleel, M.A.; Belharouak, I. Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4 cathode for lithium ion batteries. J. Power Sources 2018, 396, 774–781. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, X.; Sushko, P.V.; Sushko, M.L.; Kovarik, L.; Feng, J.; Deng, Z.; Zheng, J.; Graff, G.L.; Nie, Z.; et al. High-Performance LiNi0.5Mn1.5O4 Spinel Controlled by Mn3+ Concentration and Site Disorder. Adv. Mater. 2012, 24, 2109–2116. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Zhang, J.; Xie, H.; Song, X.; Liu, G.; Battaglia, V.; Xun, S.; Wang, R. High performance LiNi0.5Mn1.5O4 cathode material with a bi-functional coating for lithium ion batteries. RSC Adv. 2016, 6, 19245–19251. [Google Scholar] [CrossRef]
- Yubuchi, S.; Ito, Y.; Matsuyama, T.; Hayashi, A.; Tatsumisago, M. 5V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. Solid State Ion. 2016, 285, 79–82. [Google Scholar] [CrossRef]
- Nasajpour-Esfahani, N.; Garmestani, H.; Bagheritabar, M.; Jasim, D.J.; Toghraie, D.; Dadkhah, S.; Firoozeh, H. Comprehensive review of lithium-ion battery materials and development challenges. Renew. Sustain. Energy Rev. 2024, 203, 114783. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, N.; Lang, Y.; Sun, K. Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Electrochim. Acta 2011, 56, 4058–4064. [Google Scholar] [CrossRef]
- Sha, O.; Wang, S.; Qiao, Z.; Yuan, W.; Tang, Z.; Xu, Q.; Su, Y. Synthesis of spinel LiNi0.5Mn1.5O4 cathode material with excellent cycle stability using urea-based sol–gel method. Mater. Lett. 2012, 89, 251–253. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Y.; Zhang, S.; Tang, P.; Xiao, X.; Ma, M.; Zhang, H.; Yin, Y.; Wang, D.; Yang, S. Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer. ACS Omega 2019, 4, 185–194. [Google Scholar] [CrossRef]
- Feng, S.; Kong, X.; Sun, H.; Wang, B.; Luo, T.; Liu, G. Effect of Zr doping on LiNi0.5Mn1.5O4 with ordered or disordered structures. J. Alloys Compd. 2018, 749, 1009–1018. [Google Scholar] [CrossRef]
- Wang, J.; Lin, W.; Wu, B.; Zhao, J. Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Electrochim. Acta 2014, 145, 245–253. [Google Scholar] [CrossRef]
- Santhanam, R.; Rambabu, B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 2010, 195, 5442–5451. [Google Scholar] [CrossRef]
- Chang, Q.; Wei, A.; Li, W.; Bai, X.; Zhang, L.; He, R.; Liu, Z. Structural and electrochemical characteristics of Al2O3-modified LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Ceram. Int. 2019, 45, 5100–5110. [Google Scholar] [CrossRef]
- Chae, J.S.; Yoon, S.-B.; Yoon, W.-S.; Kang, Y.-M.; Park, S.-M.; Lee, J.-W.; Roh, K.C. Enhanced high-temperature cycling of Li2O–2B2O3-coated spinel-structured LiNi0.5Mn1.5O4 cathode material for application to lithium-ion batteries. J. Alloys Compd. 2014, 601, 217–222. [Google Scholar] [CrossRef]
- Deng, Y.; Mou, J.; He, L.; Xie, F.; Zheng, Q.; Xu, C.; Lin, D. A core–shell structured LiNi0.5Mn1.5O4@LiCoO2 cathode material with superior rate capability and cycling performance. Dalton Trans. 2018, 47, 367–375. [Google Scholar] [CrossRef]
- Shang, Y.; Lin, X.; Lu, X.; Huang, T.; Yu, A. Nano-TiO2(B) coated LiMn2O4 as cathode materials for lithium-ion batteries at elevated temperatures. Electrochim. Acta 2015, 156, 121–126. [Google Scholar] [CrossRef]
- Sun, Y.K.; Hong, K.J.; Prakash, J.; Amine, K. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures. Electrochem. Commun. 2002, 4, 344–348. [Google Scholar] [CrossRef]
- Kim, H.; Byun, D.; Chang, W.; Jung, H.-G.; Choi, W. A nano-LiNbO3 coating layer and diffusion-induced surface control towards high-performance 5 V spinel cathodes for rechargeable batteries. J. Mater. Chem. 2017, 5, 25077–25089. [Google Scholar] [CrossRef]
- Sahan, H.; Goktepe, H.; Patat, S.; Ulgen, A. Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ion. 2010, 181, 1437–1444. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, J.; Tang, Z.; He, W.; Zhang, J. Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim. Acta 2007, 52, 3870–3875. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, D.H.; Oh, D.Y.; Lee, H.; Kim, J.H.; Lee, J.H.; Jung, Y.S. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J. Power Sources 2015, 274, 1254–1262. [Google Scholar] [CrossRef]
- Hong, D.; Guo, Y.; Wang, H.; Zhou, J.; Fang, H.-T. Mechanism for improving the cycle performance of LiNi0.5Mn1.5O4 by RuO2 surface modification and increasing discharge cut-off potentials. J. Mater. Chem. 2015, 3, 15457–15465. [Google Scholar] [CrossRef]
- Gao, X.-W.; Deng, Y.-F.; Wexler, D.; Chen, G.-H.; Chou, S.-L.; Liu, H.-K.; Shi, Z.-C.; Wang, J.-Z. Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J. Mater. Chem. A 2015, 3, 404–411. [Google Scholar] [CrossRef]
- Yi, T.-F.; Li, Y.-M.; Li, X.-Y.; Pan, J.-J.; Zhang, Q.; Zhu, Y.-R. Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Sci. Bull. 2017, 62, 1004–1010. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Lipkin, M.S.; Shchegolkov, A.V. Preparation of WO3 Films on Titanium and Graphite Foil for Fuel Cell and Supercapacitor Applications by Electrochemical (Cathodic) Deposition Method. Russ. J. Gen. Chem. 2022, 92, 1161–1167. [Google Scholar] [CrossRef]
- Liu, M.-H.; Huang, H.-T.; Lin, C.-M.; Chen, J.-M.; Liao, S.-C. Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries. Electrochim. Acta 2014, 120, 133–139. [Google Scholar] [CrossRef]
- Lin, M.; Wang, S.H.; Gong, Z.L.; Huang, X.K.; Yang, Y. A Strategy to Improve Cyclic Performance of LiNi0.5Mn1.5O4 in a Wide Voltage Region by Ti-Doping. J. Electrochem. Soc. 2013, 160, A3036–A3040. [Google Scholar] [CrossRef]
- Zhong, G.B.; Wang, Y.Y.; Zhang, Z.C.; Chen, C.H. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochim. Acta 2011, 56, 6554–6561. [Google Scholar] [CrossRef]
- Wang, H.; Tan, T.A.; Yang, P.; Lai, M.O.; Lu, L. High-Rate Performances of the Ru-Doped Spinel LiNi0.5Mn1.5O4: Effects of Doping and Particle Size. J. Phys. Chem. C 2011, 115, 6102–6110. [Google Scholar] [CrossRef]
- Mao, J.; Dai, K.; Xuan, M.; Shao, G.; Qiao, R.; Yang, W.; Battaglia, V.S.; Liu, G. Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material. ACS Appl. Mater. Interfaces 2016, 8, 9116–9124. [Google Scholar] [CrossRef]
- Kim, D.-J.; Ko, H.S.; Lee, J.-W. Lithium silicate–lithium phosphate (xLi4SiO4−(1−x)Li3PO4) coating on lithium nickel manganese oxide (LiNi0.7Mn0.3O2) with a layered structure. Solid State Ion. 2015, 278, 239–244. [Google Scholar] [CrossRef]
- Sung, J.H.; Kim, T.W.; Kang, H.K.; Choi, S.Y.; Hasan, F.; Mohanty, S.K.; Kim, J.; Srinivasa, M.K.; Shin, H.C.; Yoo, H.D. Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries. Korean J. Chem. Eng. 2021, 38, 1059–1065. [Google Scholar] [CrossRef]
- Abebe, E.B.; Yang, C.-C.; Wu, S.-H.; Chien, W.-C.; Li, Y.-J.J. Surface modification with Li3PO4 enhances the electrochemical performance of LiNi0.9Co0.05Mn0.05O2 cathode materials for Li-Ion batteries. J. Alloys Compd. 2023, 947, 169455. [Google Scholar] [CrossRef]
- Chen, T.; Yan, W.; Yu, D.; Ma, S.; Ma, L.; Huang, Q.; Li, N. Surface Modification of Micro-Silicon Anode for High-performance Lithium-Ion Batteries. J. Phys. Conf. Ser. 2023, 2563, 012017. [Google Scholar] [CrossRef]
- Jiao, C.; Wang, M.; Huang, B.; Zhang, M.; Xu, G.; Liu, Y.; Zhao, Y.; Hu, X. Surface modification single crystal Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode materials for Li-ion batteries. J. Alloys Compd. 2023, 937, 168389. [Google Scholar] [CrossRef]
- Lee, J.Y.; Noh, S.; Seong, J.Y.; Lee, S.; Park, Y.J. Suppressing Unfavorable Interfacial Reactions Using Polyanionic Oxides as Efficient Buffer Layers: Low-Cost Li3PO4 Coatings for Sulfide-Electrolyte-Based All-Solid-State Batteries. ACS Appl. Mater. Interfaces 2023, 15, 12998–13011. [Google Scholar] [CrossRef]
- Li, Y.; Zan, M.; Chen, P.; Huang, Y.; Xu, X.; Zhang, C.; Cai, Z.; Yu, X.; Li, H. Facile Solid-State Synthesis to In Situ Generate a Composite Coating Layer Composed of Spinel-Structural Compounds and Li3PO4 for Stable Cycling of LiCoO2 at 4.6 V. ACS Appl. Mater. Interfaces 2023, 15, 51262–51273. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, Y.; Li, X.; Luo, J.; Deng, S.; Zhao, Y.; Sun, Y.; Wu, D.; Hu, Y.; Li, W.; et al. A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Nat. Commun. 2023, 14, 146. [Google Scholar] [CrossRef]
- Liu, X.; Weng, Q.; Liu, T.; Tang, Z.; Tang, H. A Li3PO4 coating strategy to enhance the Li-ion transport properties of Li2ZnTi3O8 anode material for Lithium-ion Battery. Electrochim. Acta 2023, 447, 142151. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, W.; Zhao, G.; Liu, Q.; Duan, L.; Wang, S.; An, Q.; Wang, H.; Yang, Y.; Zhang, C.; et al. LiNi0.9Co0.09Mo0.01O2 Cathode with Li3PO4 Coating and Ti Doping for Next-Generation Lithium-Ion Batteries. ACS Energy Lett. 2023, 8, 1629–1638. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Cheng, J.; Guo, M.; Li, X.; Wang, C.; Sun, L.; Yan, J. Surface modification with lithium-ion conductor Li3PO4 to enhance the electrochemical performance of lithium-rich layered Li1.2Ni0.2Mn0.6O2. Ionics 2023, 29, 2141–2152. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Zhao, L.; Wu, A.; Li, A.; Dong, X.; Huang, H. AlPO4-Li3PO4 dual shell for enhancing interfacial stability of Co-free Li-rich Mn-based cathode. Electrochim. Acta 2023, 462, 142664. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, M.; Gao, L.; Gu, L.; Chen, M.; Han, G.; Yang, T.; Chen, J.; Qi, D.; Wang, P.; et al. Engineering the Li-ion flux and interfacial chemistry toward a stable Li metal anode via a simple separator coating strategy. New J. Chem. 2023, 47, 7986–7994. [Google Scholar] [CrossRef]
- Sung, J.H.; Kim, T.; Kim, S.; Hasan, F.; Mohanty, S.K.; Srinivasa, M.K.; Reddy, S.C.; Yoo, H.D. Li3PO4-Coated Graphite Anode for Thermo-Electrochemically Stable Lithium-Ion Batteries. Energies 2023, 16, 6141. [Google Scholar] [CrossRef]
- Dutta, J.; Ghosh, S.; Martha, S.K. Transforming Residual Lithium Compounds on the LiNi0.8Mn0.1Co0.1O2 Surface into a Li-Mn-P-O-Based Composite Coating for Multifaceted Improvements. ACS Appl. Mater. Interfaces 2024, 16, 19720–19729. [Google Scholar] [CrossRef]
- Huang, K.; Xie, T.; Yang, H.; Zhou, J.; Lan, T.; Ong, S.; Jiang, H.; Zeng, Y.; Guo, H.; Zhang, Y. Plasma-assisted sputter Li3PO4 coating on NCM955 cathodes enhancing high-temperature cycling performances. J. Alloys Compd. 2024, 976, 173232. [Google Scholar] [CrossRef]
- Kim, J.; Ku, M.; Kim, S.; Yang, H.; Lee, D.; Lee, H.; Kim, Y.-B. Interdiffusion suppression at the cathode-electrolyte interface of all-solid-state-batteries by Li3PO4 conformal coating. J. Am. Ceram. Soc. 2024, 107, 3134–3145. [Google Scholar] [CrossRef]
- Li, Z.; Yi, H.; Li, X.; Gao, P.; Zhu, Y. Enhancing the Cycling and Rate Performance of Ni-Rich Cathodes for Lithium-Ion Batteries by Bulk-Phase Engineering and Surface Reconstruction. ACS Appl. Mater. Interfaces 2024, 16, 28537–28549. [Google Scholar] [CrossRef]
- Shen, L.; Gu, Y.; Xu, T.; Zhou, Q.; Peng, P.; Chen, Y.; Du, F.; Zheng, J. Dual modification of phosphate toward improving electrochemical performance of LiNiO2 cathode materials. J. Colloid Interface Sci. 2024, 662, 505–515. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Y.; Huang, Y.; Zhou, S.; Xie, H.; Jin, H.; Ji, H. Li3PO4-Enriched SEI on Graphite Anode Boosts Li+ De-Solvation Enabling Fast-Charging and Low-Temperature Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202402301. [Google Scholar] [CrossRef]
- Xu, M.; Sheng, B.; Cheng, Y.; Lu, J.; Chen, M.; Wang, P.; Liu, B.; Chen, J.; Han, X.; Wang, M.-S.; et al. One-step calcination synthesis of interface-coherent crystallized and surface-passivated LiNi0.5Mn1.5O4 for high-voltage lithium-ion battery. Nano Res. 2024, 17, 4192–4202. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, J.-L.; Yi, Z.-C.; Liu, C.-J.; Miao, C.; Xin, Y.; Nie, S.-Q. Dual modification of LiNi0.83Co0.11Mn0.06O2 cathode materials by K+ doping and Li3PO4 coating for lithium ions batteries. Rare Met. 2024, 43, 3007–3018. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Z.; Lai, J.; Lv, T.; Lin, T.; Pan, H.; Feng, J.; Wang, Q.; Han, S.; Chen, R.; et al. Highly Efficient Spatially-Temporally Synchronized Construction of Robust Li3PO4-rich Solid-Electrolyte Interphases in Aqueous Li-ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202317549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, X.; Hao, Y.; Zuo, J.; Duan, R.; Li, J.; Cao, G.; Wang, J.; Wang, J.; Li, M.; et al. Oxygen-Vacancy-Assisted Dual Functional Surface Coatings Suppressing Irreversible Phase Transition of Li-Rich Layered Oxide Cathodes. Adv. Funct. Mater. 2025, 35, 2400670. [Google Scholar] [CrossRef]
- Miyashiro, H.; Seki, S.; Kobayashi, Y.; Ohno, Y.; Mita, Y.; Usami, A. All-solid-state lithium polymer secondary battery with LiNi0.5Mn1.5O4 by mixing of Li3PO4. Electrochem. Commun. 2005, 7, 1083–1086. [Google Scholar] [CrossRef]
- Chong, J.; Xun, S.; Zhang, J.; Song, X.; Xie, H.; Battaglia, V.; Wang, R. Li3PO4-Coated LiNi0.5Mn1.5O4: A Stable High-Voltage Cathode Material for Lithium-Ion Batteries. Chem. Eur. J. 2014, 20, 7479–7485. [Google Scholar] [CrossRef]
- Konishi, H.; Suzuki, K.; Taminato, S.; Kim, K.; Zheng, Y.; Kim, S.; Lim, J.; Hirayama, M.; Son, J.-Y.; Cui, Y.; et al. Effect of surface Li3PO4 coating on LiNi0.5Mn1.5O4 epitaxial thin film electrodes synthesized by pulsed laser deposition. J. Power Sources 2014, 269, 293–298. [Google Scholar] [CrossRef]
- Hallot, M.; Caja-Munoz, B.; Leviel, C.; Lebedev, O.I.; Retoux, R.; Avila, J.; Roussel, P.; Asensio, M.C.; Lethien, C. Atomic Layer Deposition of a Nanometer-Thick Li3PO4 Protective Layer on LiNi0.5Mn1.5O4 Films: Dream or Reality for Long-Term Cycling? ACS Appl. Mater. Interfaces 2021, 13, 15761–15773. [Google Scholar] [CrossRef]
- Mereacre, V.; Bohn, N.; Stueble, P.; Pfaffmann, L.; Binder, J.R. Instantaneous Surface Li3PO4 Coating and Al-Ti Doping and Their Effect on the Performance of LiNi0.5Mn1.5O4 Cathode Materials. ACS Appl. Energy Mater. 2021, 4, 4271–4276. [Google Scholar] [CrossRef]
- Wu, Y.; Ben, L.; Zhan, Y.; Yu, H.; Qi, W.; Zhao, W.; Huang, X. Binding Li3PO4 to Spinel LiNi0.5Mn1.5O4 via a Surface Co-Containing Bridging Layer to Improve the Electrochemical Performance. Energy Technol. 2021, 9, 2100147. [Google Scholar] [CrossRef]
- Shapira, A.; Tiurin, O.; Solomatin, N.; Auinat, M.; Meitav, A.; Ein-Eli, Y. Robust AlF3 Atomic Layer Deposition Protective Coating on LiMn1.5Ni0.5O4 Particles: An Advanced Li-Ion Battery Cathode Material Powder. ACS Appl. Energy Mater. 2018, 1, 6809–6823. [Google Scholar] [CrossRef]
- Hallot, M.; Roussel, P.; Lethien, C. Sputtered LiNi0.5Mn1.5O4 Thin Films for Lithium-Ion Microbatteries. ACS Appl. Energy Mater. 2021, 4, 3101–3109. [Google Scholar] [CrossRef]
- Xia, H.; Meng, Y.S.; Lu, L.; Ceder, G. Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4−δ Thin-Film Electrodes Prepared by Pulsed Laser Deposition. J. Electrochem. Soc. 2007, 154, A737. [Google Scholar] [CrossRef]
- Xia, H.; Tang, S.B.; Lu, L.; Meng, Y.S.; Ceder, G. The influence of preparation conditions on electrochemical properties of LiNi0.5Mn1.5O4 thin film electrodes by PLD. Electrochim. Acta 2007, 52, 2822–2828. [Google Scholar] [CrossRef]
- Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. Study of the Cathode-Electrolyte Interface of LiMn1.5Ni0.5O4 Synthesized by a Sol-Gel Method for Li-Ion Batteries. J. Electrochem. Soc. 2010, 157, A528. [Google Scholar] [CrossRef]
- Kunduracı, M.; Amatucci, G. The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes. Electrochim. Acta 2008, 53, 4193–4199. [Google Scholar] [CrossRef]
- Song, M.Y.; Lee, R. Synthesis by sol–gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery. J. Power Sources 2002, 111, 97–103. [Google Scholar] [CrossRef]
- Mokhtar, N.; Idris, N.H. Comparison on Electrochemical Performances of LiNi0.5Mn1.5O4 Cathode Materials Synthesized Using Different Precursors. Mater. Today 2016, 3, S129–S135. [Google Scholar] [CrossRef]
- Hao, Y.-J.; Lai, Q.-Y.; Liu, D.-Q.; Xu, Z.-U.; Ji, X.-Y. Synthesis by citric acid sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Mater. Chem. Phys. 2005, 94, 382–387. [Google Scholar] [CrossRef]
- Lee, Y.S.; Sun, Y.K.; Ota, S.; Miyashita, T.; Yoshio, M. Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process. Electrochem. Commun. 2002, 4, 989–994. [Google Scholar] [CrossRef]
- Song, H.G.; Kim, J.Y.; Kim, K.T.; Park, Y.J. Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials. J. Power Sources 2011, 196, 6847–6855. [Google Scholar] [CrossRef]
- Chen, S.; He, T.; Su, Y.; Lu, Y.; Bao, L.; Chen, L.; Zhang, Q.; Wang, J.; Chen, R.; Wu, F. Ni-Rich LiNi0.8Co0.1Mn0.1O2 Oxide Coated by Dual-Conductive Layers as High Performance Cathode Material for Lithium-Ion Batteries. ACS App. Mater. Interfaces 2017, 9, 29732–29743. [Google Scholar] [CrossRef]
- Bläubaum, L.; Röder, F.; Nowak, C.; Chan, H.S.; Kwade, A.; Krewer, U. Impact of Particle Size Distribution on Performance of Lithium-Ion Batteries. ChemElectroChem 2020, 7, 4755–4766. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, J.; Sun, K.; Wang, Z. Balancing particle properties for practical lithium-ion batteries. Particuology 2022, 61, 18–29. [Google Scholar] [CrossRef]
- Jang, J.; Chen, Y.-T.; Deysher, G.; Cheng, D.; Ham, S.-Y.; Cronk, A.; Ridley, P.; Yang, H.; Sayahpour, B.; Han, B.; et al. Enabling a Co-Free, High-Voltage LiNi0.5Mn1.5O4 Cathode in All-Solid-State Batteries with a Halide Electrolyte. ACS Energy Lett. 2022, 7, 2531–2539. [Google Scholar] [CrossRef]
- Mou, M.; Patel, A.; Mallick, S.; Thapaliya, B.P.; Paranthaman, M.P.; Mugumya, J.H.; Rasche, M.L.; Gupta, R.B.; Saleh, S.; Kothe, S.; et al. Scalable Advanced Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials from a Slug Flow Continuous Process. ACS Omega 2022, 7, 42408–42417. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, J.; Li, Y.; Cao, G.; Chen, Y.; Zhang, D.; Tan, Z.; Yang, J.; Zheng, J.; Li, H. Role of Al on the electrochemical performances of quaternary nickel-rich cathode LiNi0.8Co0.1Mn0.1−xAlxO2 (0 ≤ x ≤ 0.06) for lithium-ion batteries. J. Electroanal. Chem. 2021, 888, 115200. [Google Scholar] [CrossRef]
- Jo, C.-H.; Cho, D.-H.; Noh, H.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479. [Google Scholar] [CrossRef]
- Wu, H.M.; Belharouak, I.; Abouimrane, A.; Sun, Y.K.; Amine, K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sources 2010, 195, 2909–2913. [Google Scholar] [CrossRef]
Sample | a (Å) | b (Å) | c (Å) | S | Rwp (%) |
---|---|---|---|---|---|
bare-LNMO | 8.1834 | 8.1834 | 8.1834 | 1.2978 | 3.99 |
LP1-LNMO | 8.1813 | 8.1813 | 8.1813 | 1.2950 | 3.98 |
LP2-LNMO | 8.1803 | 8.1803 | 8.1803 | 1.1701 | 3.66 |
Rsol (Ω) | Rfilm (Ω) | Rct (Ω) | |
---|---|---|---|
Bare LNMO | 2.41 ± 0.06 | 90 ± 1 | 390 ± 30 |
LP1-LNMO | 2.50 | 11.8 ± 0.6 | 8.5 ± 0.6 |
LP2-LNMO | 1.90 ± 0.05 | 67 ± 6 | 18 ± 6 |
Rsol (Ω) | Rfilm (Ω) | Rct (Ω) | |
---|---|---|---|
Bare LNMO | 3.31 | 2232 | 12,000 ± 8000 |
LP1-LNMO | 6.6 ± 0.2 | 13 ± 6 | 2890 ± 20 |
LP2-LNMO | 6.4 ± 0.2 | 550 ± 40 | 2440 ± 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.Y.; Sung, J.H.; Hasan, F.; Mohanty, S.K.; Srinivasa, M.K.; Yoo, H.D. Synthesis and Electrochemical Properties of the Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials for High-Voltage Lithium-Ion Batteries. Energies 2025, 18, 3387. https://doi.org/10.3390/en18133387
Choi SY, Sung JH, Hasan F, Mohanty SK, Srinivasa MK, Yoo HD. Synthesis and Electrochemical Properties of the Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials for High-Voltage Lithium-Ion Batteries. Energies. 2025; 18(13):3387. https://doi.org/10.3390/en18133387
Chicago/Turabian StyleChoi, So Young, Jong Hun Sung, Fuead Hasan, Sangram Keshari Mohanty, Madhusudana Koratikere Srinivasa, and Hyun Deog Yoo. 2025. "Synthesis and Electrochemical Properties of the Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials for High-Voltage Lithium-Ion Batteries" Energies 18, no. 13: 3387. https://doi.org/10.3390/en18133387
APA StyleChoi, S. Y., Sung, J. H., Hasan, F., Mohanty, S. K., Srinivasa, M. K., & Yoo, H. D. (2025). Synthesis and Electrochemical Properties of the Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials for High-Voltage Lithium-Ion Batteries. Energies, 18(13), 3387. https://doi.org/10.3390/en18133387