Ion Conducting Membranes and Energy Storage

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Applications for Energy".

Deadline for manuscript submissions: 10 October 2025 | Viewed by 1594

Special Issue Editor


E-Mail Website
Guest Editor
Department of Engineering, University of Cambridge, Cambridge CB3 0FS, UK
Interests: ion conducting membranes; energy storage; 2D materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Ion-conducting membranes are essential for energy-storage technologies. Understanding ion transport and creating artificial ion-selective channels are current topics of interest in scientific research. In application, membranes with both high ion conductivity and selectivity have been pursued for a long time. Ion transport in membranes not only influences the polarisation of batteries but has also been found to influence the electrochemical processes of electrodes. For example, the influence of the membrane's charge on the morphology of metal deposition in metal-based batteries, like alkaline zinc–iron flow batteries and reversible lithium metal batteries, is significant.

In this Special Issue, authors are invited to submit original articles and reviews on battery membrane structure design. Contributions may concern (i) novel membrane-structure design methods, (ii) insights into the relationship between ion transport and membrane structure, (iii) and insights into the relationship between the electrochemical process of batteries and membrane structure.

Dr. Qing Dai
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • membrane structure design
  • ion transport
  • batteries

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2222 KB  
Article
Hydration Fingerprints: A Reproducible Protocol for Accurate Water Uptake in Anion-Exchange Membranes
by Sandra Elisabeth Temmel, Daniel Ölschläger and Ralf Wörner
Membranes 2025, 15(9), 257; https://doi.org/10.3390/membranes15090257 - 28 Aug 2025
Viewed by 469
Abstract
Anion-exchange membranes (AEMs) not only enable the fabrication of catalyst-coated membranes without precious metals but are also projected to achieve a technology-readiness level (TRL) suitable for industrial deployment before the end of this decade. Accurate and reproducible water uptake data are essential for [...] Read more.
Anion-exchange membranes (AEMs) not only enable the fabrication of catalyst-coated membranes without precious metals but are also projected to achieve a technology-readiness level (TRL) suitable for industrial deployment before the end of this decade. Accurate and reproducible water uptake data are essential for guiding AEM design, yet conventional gravimetric methods—relying on manual blotting and loosely defined drying steps—can introduce variabilities exceeding 20%. Here, we present a standardized protocol that transforms water uptake measurements from rough estimates into precise, comparable “hydration fingerprints.” By replacing manual wiping with a calibrated pressure-blotting rig (0.44 N cm−2 for 10 s twice) and verifying both dry and wet states via ATR-FTIR spectroscopy, we dramatically reduce scatter and align our FAAM-PK-75 (Fumatech, Bietigheim, Germany) results with published benchmarks in DI water, aqueous KOH (0.1–9 M), various alcohols, and controlled humidity (39–96% RH). These uptake profiles reveal how OH screening, thermal densification at 60 °C, and PEEK reinforcement govern equilibrium hydration. A low-cost salt-bath method for vapor-phase sorption further distinguishes reinforced from unreinforced architectures. Extending the workflow to additional commercial and custom membranes confirms its broad applicability. Ultimately, this work establishes a new benchmark for AEM hydration testing and provides a predictive toolkit for correlating water content with conductivity, dimensional stability, and membrane–ink interactions during catalyst-coated membrane fabrication. Full article
(This article belongs to the Special Issue Ion Conducting Membranes and Energy Storage)
Show Figures

Figure 1

19 pages, 3826 KB  
Article
Highly Conductive PEO/PAN-Based SN-Containing Electrospun Membranes as Solid Polymer Electrolytes
by Anna Maria Kirchberger, Patrick Walke, Janio Venturini, Leo van Wüllen and Tom Nilges
Membranes 2025, 15(7), 196; https://doi.org/10.3390/membranes15070196 - 30 Jun 2025
Viewed by 800
Abstract
Solid polymer electrolytes (SPEs) have garnered significant attention due to their potential in all-solid-state batteries (ASSBs). However, adoption remains constrained by challenges such as low thermal stability and limited ionic conductivity. Here, we report on an electrospun (PAN/PEO)- conductive salt (LiBF4) [...] Read more.
Solid polymer electrolytes (SPEs) have garnered significant attention due to their potential in all-solid-state batteries (ASSBs). However, adoption remains constrained by challenges such as low thermal stability and limited ionic conductivity. Here, we report on an electrospun (PAN/PEO)- conductive salt (LiBF4) system, where the influence of varying polyacrylonitrile (PAN) and polyethylene oxide (PEO) ratios, along with different plasticizer concentrations, is evaluated. Notably, the 50:50 PAN/PEO sample exhibited the highest ionic conductivity, reaching 1∙10−2 S/cm at 55 °C. This system also balanced conductivity and processability. Succinonitrile (SN) significantly influenced the morphology and conductivity. Samples with increased SN content showed enhanced capacity in symmetrical cells, achieving ~140 mAs/cm2 for an 18:9:1 polymer (PAN/PEO):SN:conductive salt (LiBF4) composition. The enhanced lithium-ion conductivity of the electrospun blend is attributed to the deliberate use of an unmixable PAN–PEO system. Their immiscibility creates well-defined interfacial regions within fibers, acting as efficient lithium-ion pathways. These findings support electrospun polymer blends as promising candidates for high-performance SPEs for ASSB development. Full article
(This article belongs to the Special Issue Ion Conducting Membranes and Energy Storage)
Show Figures

Figure 1

Back to TopTop