Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (869)

Search Parameters:
Keywords = Lhasa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 67029 KB  
Article
An Integrated Analysis of WRKY Genes in Autotetraploid Bupleurum chinense: Evolution, Stress Response, and Impact on Saikosaponin Biosynthesis
by Chuanxin Mo, Wenshuai Chen, Zhen Wei, Yuchan Li, Xueling Wang, Mingyue Yan, Jun Zhao, Zeru Yu, Chao Xin, Ma Yu and Hua Chen
Horticulturae 2026, 12(1), 102; https://doi.org/10.3390/horticulturae12010102 - 18 Jan 2026
Viewed by 158
Abstract
WRKY transcription factors play critical roles in plant growth, development, metabolism, and stress responses. In this study, we performed the first genome-wide characterization of the WRKY gene family in Bupleurum chinense, using a T2T-level assembly of the autotetraploid genome. A total of [...] Read more.
WRKY transcription factors play critical roles in plant growth, development, metabolism, and stress responses. In this study, we performed the first genome-wide characterization of the WRKY gene family in Bupleurum chinense, using a T2T-level assembly of the autotetraploid genome. A total of 303 BcWRKY genes were identified and found to be unevenly distributed across four subgenomes. Phylogenetic and structural analyses revealed that segmental duplications after polyploidization drove lineage-specific expansion of the family. Meta-transcriptome analysis demonstrated that BcWRKY genes exhibited tissue-specific expression patterns and dynamic responses to stress, suggesting functional diversification. Under drought, waterlogging, methyl jasmonate, and ABA treatments, the contents of saikosaponins A and D significantly increased. This increase was accompanied by transcriptional activation of multiple BcWRKY genes. Correlation analysis between ten BcWRKYs and ten saikosaponins biosynthetic associated genes (BcBASs, BcCYPs, and BcUGTs) identified BcWRKY22, BcWRKY33, and BcWRKY46 as potential regulators of saikosaponin metabolism under stress conditions. Our study provided a comprehensive framework for understanding BcWRKY gene evolution and secondary metabolic regulation in polyploid medicinal plants. It also offered candidate genes for breeding B. chinense cultivars with high saikosaponin content. Full article
Show Figures

Figure 1

36 pages, 8618 KB  
Article
A Model Integrating Theory and Simulation to Establish the Link Between Outdoor Microclimate and Building Heating Load in High-Altitude Cold Regions
by Jiaqin Han, Xing Li and Yingzi Zhang
Buildings 2026, 16(2), 404; https://doi.org/10.3390/buildings16020404 - 18 Jan 2026
Viewed by 37
Abstract
The heating load of residential buildings is closely related to the local microclimate. However, there is a lack of quantitative indicators for assessing the impact of the outdoor microclimate on building heating loads in Lhasa residential buildings. This study established an analytical relationship [...] Read more.
The heating load of residential buildings is closely related to the local microclimate. However, there is a lack of quantitative indicators for assessing the impact of the outdoor microclimate on building heating loads in Lhasa residential buildings. This study established an analytical relationship between surface temperature and building heating load through theoretical derivation. Simulations of the outdoor microclimate and building surface temperatures were conducted using Phoenics2019 and Ladybug1.8.0 tools. Statistical models were developed to correlate outdoor microclimate parameters with the surface temperatures of both transparent and opaque building envelopes. Ultimately, these individual models were integrated to form a comprehensive framework for directly calculating heating loads from microclimate data. The model validation results indicate that the Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) is 12.87%, which meets the ASHRAE Guideline 14 international standard requirement of ≤30% for hourly data. The Normalized Mean Bias Error (NMBE) is –9.76%, also satisfying the ASHRAE Guideline 14 criterion of ±10% for hourly data. These results suggest that the model exhibits a minor underestimation, which is acceptable from an engineering perspective. The proposed model can provide a quantitative reference to a certain extent for the comprehensive evaluation of outdoor microclimate environmental performance in residential buildings in Lhasa. Full article
(This article belongs to the Special Issue Building Energy Performance and Simulations)
Show Figures

Figure 1

14 pages, 3584 KB  
Article
Transcriptome Data Reveals Hypoxic Adaptability on Embryonic Cardiac Development in Tibetan Chickens
by Xuejiao Chen, Hailu Fan, Hao Zhang, Da Peng and Bo Zhang
Agriculture 2026, 16(2), 244; https://doi.org/10.3390/agriculture16020244 - 18 Jan 2026
Viewed by 117
Abstract
The Tibetan chicken (TC) is a small indigenous breed native to the Qinghai–Tibet Plateau in China, exhibiting remarkable adaptation to the plateau’s extreme high-altitude environment. Its strong hypoxia tolerance is reflected in the ability to maintain normal embryonic cardiac structure and function during [...] Read more.
The Tibetan chicken (TC) is a small indigenous breed native to the Qinghai–Tibet Plateau in China, exhibiting remarkable adaptation to the plateau’s extreme high-altitude environment. Its strong hypoxia tolerance is reflected in the ability to maintain normal embryonic cardiac structure and function during hypoxic incubation or high-altitude incubation. This study performed transcriptome sequencing of embryonic heart tissues from TC and White Leghorn (WL) incubated for 9, 11, and 16 days in Lhasa (altitude of 3650 m). A total of 1788 differentially expressed genes (DEGs) were identified through inter-breed comparison. Some DEGs were enriched in signaling pathways related to angiogenesis, apelin signaling, and myocardial contraction. Through integrating temporal expression analysis and weighted gene co-expression network analysis (WGCNA), we identified six key candidate DEGs (CREB3L2, MYH7B, CREB1, LOXL2, MICAL2, and AKAP13) that are involved in hypoxic response, myocardial structural remodeling, and regulation of signaling pathways. These genes likely represent core components of the molecular network underlying hypoxic adaptation in TC embryos. Overall, our findings provide a molecular basis for understanding the genetic mechanisms of hypoxic adaptation during embryonic cardiac development in chickens. Full article
(This article belongs to the Special Issue Genetic Resource Evaluation and Germplasm Innovation of Poultry)
Show Figures

Figure 1

13 pages, 652 KB  
Article
Right Here and Right Now: A Study on the Creative Practice of Site-Specific Improvisatory Dance Performance in Lhasa
by Lin Zhu
Arts 2026, 15(1), 20; https://doi.org/10.3390/arts15010020 - 17 Jan 2026
Viewed by 92
Abstract
This study focuses on the site-specific improvisatory dance performance Deconstruction and Reconstruction of the Path of Life, a self-directed and self-performed work in Lhasa’ s sacred space dominated by a huge Buddha statue. It aims to explore how site-specific context and altitude [...] Read more.
This study focuses on the site-specific improvisatory dance performance Deconstruction and Reconstruction of the Path of Life, a self-directed and self-performed work in Lhasa’ s sacred space dominated by a huge Buddha statue. It aims to explore how site-specific context and altitude sickness shape performance, and how freedom and meaning are created within limitations. Using auto-ethnography including video documentation, creative journals and reflective observation, this research examines interactions with spatial elements (Xuan paper, Buddha feet, stairs, flowers) and physiological responses to low oxygen. Main findings include that altitude-induced breath difficulty, chest oppression, and movement imbalance became generative forces: breathing rhythm changes (steady-rapid-steady) symbolized life’s struggles, while a “pain-movement-meaning” chain fostered new bodily senses, framing pain as a gateway to spirituality. Rather than treating the space as a static backdrop, this study explores how the material and cultural characteristics of the location actively lead to dance movement choices and choreographic logic under extreme physiological condition. Full article
(This article belongs to the Section Musical Arts and Theatre)
Show Figures

Figure 1

21 pages, 5977 KB  
Article
Prediction of Potential Suitable Habitats of Cupressus duclouxiana Under Climate Change Based on Biomod2 Ensemble Models
by Jialin Li, Yi Huang, Yunxi Pan, Cong Zhao, Yulian Yang and Jingtian Yang
Biology 2026, 15(2), 165; https://doi.org/10.3390/biology15020165 - 16 Jan 2026
Viewed by 88
Abstract
Cupressus duclouxiana is an ecologically and economically important conifer endemic to southwestern China (e.g., central Yunnan and southern Sichuan), yet its potential distribution under future climate change remains insufficiently understood. In this study, we employed an ensemble species distribution modeling framework implemented in [...] Read more.
Cupressus duclouxiana is an ecologically and economically important conifer endemic to southwestern China (e.g., central Yunnan and southern Sichuan), yet its potential distribution under future climate change remains insufficiently understood. In this study, we employed an ensemble species distribution modeling framework implemented in biomod2 to predict the current and future suitable habitats of C. duclouxiana across China. A total of 154 occurrence records and 17 key environmental variables were used to construct ensemble models integrating twelve algorithms. The ensemble model showed high predictive performance (TSS = 0.99, Kappa = 0.98). Temperature-related variables dominated habitat suitability, with the minimum temperature of the coldest month identified as the primary limiting factor, accounting for 44.1%. Under current climatic conditions, suitable habitats are mainly concentrated in southwestern China, particularly in Sichuan, Yunnan, and Xizang (Tibet). Future projections under three Shared Socioeconomic Pathways (SSP1-2.6, SSP3-7.0, SSP5-8.5) consistently indicate habitat expansion by the late 21st century, accompanied by pronounced northward and northwestward range shifts. The largest expansion is projected under the SSP3-7.0 scenario, highlighting the sensitivity of C. duclouxiana to intermediate warming trajectories. Overall, climate warming is expected to increase habitat availability while reshaping the spatial distribution of C. duclouxiana across China. These findings provide scientific support for climate-adaptive afforestation planning and conservation management, and offer broader insights into the responses of subtropical coniferous species to future climate change. Full article
(This article belongs to the Section Ecology)
16 pages, 2586 KB  
Article
Copper-Induced Thyroid Disruption and Oxidative Stress in Schizopygopsis younghusbandi Larvae
by Liqiao Zhong, Chi Zhang, Fei Liu, Haitao Gao, Dengyan Di, Fan Yao, Baoshan Ma, Mingdian Liu and Xinbin Duan
Antioxidants 2026, 15(1), 112; https://doi.org/10.3390/antiox15010112 - 15 Jan 2026
Viewed by 137
Abstract
In recent years, heavy metal emissions in Lhasa have been increasing, which has an impact on the local water environment. The negative effects of copper (Cu2+) on aquatic ecosystems have attracted much attention, as even low concentrations of Cu2+ can [...] Read more.
In recent years, heavy metal emissions in Lhasa have been increasing, which has an impact on the local water environment. The negative effects of copper (Cu2+) on aquatic ecosystems have attracted much attention, as even low concentrations of Cu2+ can exert toxic effects on aquatic organisms. However, the impact of Cu2+ on native fish species from the Lhasa River remains poorly understood. In this study, Schizopygopsis younghusbandi (S. younghusbandi) larvae were exposed to Cu2+ at concentrations of 0. 5, 5, 50, and 500 μg/L for 7 or 14 days to evaluate its toxic effects on thyroid function and the antioxidant system. The results indicate that whole-body total thyroxine (T4) and triiodothyronine (T3) levels were significantly decreased following Cu2+ exposure. This decrease was accompanied by a marked increase in dio1 and dio2 gene expression and decreased expression of thyroid hormone synthesis genes (nis, tg, ttf1 and pax8) after exposure to Cu2+. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) and the content of lipid peroxidation were increased, while the content of glutathione (GSH) was decreased. In addition, the survival rates and body lengths of S. younghusbandi larvae were significantly reduced following 7- and 14-day Cu2+ exposure. The Integrated Assessment of Biomarker Response (IBR) analysis further revealed dose- and time-dependent effects of Cu2+ on the larvae. In conclusion, the findings demonstrate that Cu2+ exposure induced disruption of thyroid endocrine and antioxidant systems and caused developmental toxicity in S. younghusbandi larvae. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Environmental Toxicity—2nd Edition)
Show Figures

Figure 1

14 pages, 1255 KB  
Article
Age-Specific Composition and Predicted Function of Gut Microbiota in Plateau Pikas (Ochotona curzoniae)
by Hui Han, Yongbing Yang, Xiaojia Zhu, Migmar Wangdwei and Le Yang
Biology 2026, 15(2), 144; https://doi.org/10.3390/biology15020144 - 14 Jan 2026
Viewed by 115
Abstract
Gut microbes play a crucial role in regulating physiological processes such as host energy metabolism, nutrient absorption, and environmental adaptation. The predicted functions of gut microbes can be influenced by many factors, both extrinsic and intrinsic to the hosts. The plateau pika is [...] Read more.
Gut microbes play a crucial role in regulating physiological processes such as host energy metabolism, nutrient absorption, and environmental adaptation. The predicted functions of gut microbes can be influenced by many factors, both extrinsic and intrinsic to the hosts. The plateau pika is a key species in the alpine ecosystem of the Qinghai–Tibet Plateau. Previous research on the plateau pika primarily examined how extrinsic factors affected its gut microbiota. However, studies on intrinsic factors are scarce. Here, we used live-trapping to capture plateau pikas and collect cecum contents. Using metagenomic sequencing of cecum content samples, we characterized and compared the gut microbial composition and predicted function of plateau pika in adult (n = 9) and juvenile (n = 9) populations. The results indicated that Bacillota and Bacteroidete were the major bacterial phyla. The core gut microbial genera were the same, but the relative abundance of Oscillospira in juveniles was significantly lower than that in adults. The changes in the proportion of cellulose-degradation-related bacterial communities in juveniles suggest that they tend to choose low-fiber diets. In this study, we found no significant differences in the gut microbial composition and diversity, KEGG level 1 metabolic pathways, or CAZy class level between adult and juvenile plateau pikas. In total, the composition and predicted functions of cecal microorganisms in juvenile and adult male plateau pikas were not different. Regarding KEGG level 2 metabolic pathways, the juvenile group had a higher relative abundance of metabolic pathways for cofactors and vitamins, terpenoids, and polyketides, whereas the adult group had a higher relative abundance of energy metabolism. However, the resulting differences remain unclear. Therefore, future research should validate the above findings on a broader spatio-temporal scale and conduct cross-species comparisons to construct a microbial ecological framework for the health management of plateau wild animals. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

14 pages, 3177 KB  
Article
Seasonal Elevational Migration Shapes Temperate Bird Community in the Gyirong Valley, Central Himalayas
by Huaiming Jin, Shuqing Zhao, Zhifeng Ding, Yongbing Yang, Gang Song, Shuaishuai Huang, Ruojin Liu, Shengling Zhou, Le Yang and Yonghong Zhou
Biology 2026, 15(2), 138; https://doi.org/10.3390/biology15020138 - 13 Jan 2026
Viewed by 251
Abstract
Understanding the mechanisms underlying seasonal community dynamics is important for predicting biodiversity responses to environmental fluctuations, enhancing ecological forecasting, and informing conservation strategies. In this study, we use standard transect and mist netting methods investigated seasonal altitudinal migration patterns of montane bird species [...] Read more.
Understanding the mechanisms underlying seasonal community dynamics is important for predicting biodiversity responses to environmental fluctuations, enhancing ecological forecasting, and informing conservation strategies. In this study, we use standard transect and mist netting methods investigated seasonal altitudinal migration patterns of montane bird species in the Gyirong Valley, Central Himalayas. Our results showed four distinct altitudinal migration patterns among montane bird species: no shift, downslope shift, upslope shift, and contraction to mid-elevation zones. Species with smaller body weight and higher ratios of wing length, tail length, and tarsus length to body weight tended to migrate to lower elevations. Insectivorous birds exhibited a collective downslope shift, while omnivorous birds showed a wider range of migratory responses to seasonal variation. Migratory behavior was found to dynamically modulate the association between phenotypic traits and habitat preferences. During the breeding season, species (70.44%) and functional turnover (80.02%) dominated, while in the non-breeding season, nestedness significantly contributed to species (49.37%) and functional diversity (38.09%). In addition, migration can disrupt the direct influence of environmental variables on biodiversity patterns, providing important insights for montane biodiversity conservation under climate change. Our results highlight the critical need to safeguard low-elevation winter habitats and create dynamic protected areas to aid bird conservation amidst climate change. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

14 pages, 1725 KB  
Article
Physics-Based Complementarity Index and Wind–Solar Generation Complementarity Analysis in China
by Chuandong Wu, Changyong Deng, Lihua Tang, Yuda Liu, Youyi Xie and Hongwei Zheng
Sustainability 2026, 18(2), 772; https://doi.org/10.3390/su18020772 - 12 Jan 2026
Viewed by 221
Abstract
Supply–demand balance in wind–solar dominant energy transition is challenged by the volatility of wind–solar power. Complementarity of wind–solar power has been introduced to suppress this volatility. Although multiple indices have been developed to quantify complementarity, a quantitative index with explicit physical meaning remains [...] Read more.
Supply–demand balance in wind–solar dominant energy transition is challenged by the volatility of wind–solar power. Complementarity of wind–solar power has been introduced to suppress this volatility. Although multiple indices have been developed to quantify complementarity, a quantitative index with explicit physical meaning remains lacking. Additionally, complementarity’s temporal stability, which is imperative for wind–solar site selection, is unclear. In this study, these knowledge gaps are closed through developing a Daily Complementarity Index of wind–solar generation (DCI) and a nuanced national assessment of complementarity in China. The results of the comparison of our index with existing indices and site validation confirm the reasonability of the DCI and its improvements in interpretability. The average DCI of China ranges from 0.06 to 0.88, with a pronounced low-DCI zone across the Sichuan Basin and Chongqing municipality, and a high–DCI zone along the Three-North Shelterbelt. Temporally, the complementarity of wind–solar power in China follows a slight increase trend (3.96 × 10−5 year−1), with evident seasonal characteristics, in which the highest and lowest are 0.37 and 0.17, respectively. This study introduces an effective tool for quantifying complementarity, and these findings can offer valuable reference for China’s renewable energy transition. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 3143 KB  
Article
Aldehyde Dehydrogenase in Sesquiterpenoid Hormone Pathway of Slugs Can Be Potential Target for Slug Control
by Haiyao Ma, Yingying Liu, Zesheng Hao, Bo Pang, Zhongping Jiang and Zhenpeng Kai
Agriculture 2026, 16(2), 173; https://doi.org/10.3390/agriculture16020173 - 9 Jan 2026
Viewed by 189
Abstract
Slugs are significant agricultural pests and act as vectors for zoonotic parasites. However, current molluscicide options are limited and associated with substantial environmental risks. This study investigates the role of aldehyde dehydrogenase (ALDH) in the biosynthesis of farnesoic acid (FA), a key intermediate [...] Read more.
Slugs are significant agricultural pests and act as vectors for zoonotic parasites. However, current molluscicide options are limited and associated with substantial environmental risks. This study investigates the role of aldehyde dehydrogenase (ALDH) in the biosynthesis of farnesoic acid (FA), a key intermediate in the sesquiterpenoid hormone pathway, in two slug species: Philomycus bilineatus and Laevicaulis alte. Transcriptomic analysis revealed that both species possess conserved sesquiterpenoid biosynthetic pathways, yet they exhibit distinct levels of ALDH gene expression and differences in FA content. RNA interference (RNAi)-mediated gene silencing was employed to validate the potential of these candidate genes as targets for molluscicide development. Structural modeling of ALDH proteins using AlphaFold2 demonstrated notable divergence in the architecture of their active sites, suggesting species-specific enzymatic properties. Citral, a known inhibitor of ALDH, significantly reduced FA production in vivo and exhibited contact toxicity against both slug species. The lethal concentration 50 (LC50) values were determined to be 378.2 g/L for P. bilineatus and 85.2 g/L for L. alte, respectively. Molecular docking analyses indicated that citral binds within the conserved substrate-binding tunnel of ALDH, potentially inhibiting the oxidation of farnesal. These findings establish ALDH as a critical enzymatic target for disrupting endogenous hormone biosynthesis in slugs and support the development of novel, eco-friendly molluscicides targeting the sesquiterpenoid pathway. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 2039 KB  
Article
Integrated Transcriptomic and Proteomic Analysis of the Stress Response Mechanisms of Micractinium from the Tibetan Plateau Under Leather Wastewater Exposure
by Haoyu Wang, Bo Fang, Geng Xu, Kejie Li, Fangjing Xiao, Qiangying Zhang, Duo Bu and Xiaomei Cui
Biology 2026, 15(2), 123; https://doi.org/10.3390/biology15020123 - 9 Jan 2026
Viewed by 189
Abstract
In this study, a strain of green microalga adapted to the extreme environmental conditions of the Tibetan Plateau was isolated from the Lalu Wetland. The isolate was identified and tentatively designated as Micractinium sp. LL-1. Following the inoculation of strain LL-1 into tannery [...] Read more.
In this study, a strain of green microalga adapted to the extreme environmental conditions of the Tibetan Plateau was isolated from the Lalu Wetland. The isolate was identified and tentatively designated as Micractinium sp. LL-1. Following the inoculation of strain LL-1 into tannery wastewater, the ammonia nitrogen concentration was rapidly reduced, achieving a removal efficiency of 98.7%. The maximum accumulated biomass reached 1641.68 mg/L and 1461.28 mg/L. Integrated transcriptomic and label-free quantitative proteomic approaches were employed to systematically investigate the molecular response mechanisms of LL-1 under tannery wastewater stress. Transcriptomic analysis revealed that differentially expressed genes were enriched in pathways related to cell proliferation, morphogenesis, intracellular transport, protein synthesis, photosynthesis, and redox processes. Proteomic analysis indicated that LL-1 enhances cellular and enzymatic activities, strengthens regulatory capacity, modulates key metabolic pathways, and upregulates stress-responsive proteins. Under tannery wastewater stress, LL-1 exhibits dynamic adaptation involving signal perception and metabolic reconfiguration through the coordinated regulation of multiple pathways. Specifically, ribosomal translation and nucleic acid binding regulate biosynthetic capacity; the redistribution of energy metabolism boosts photosynthetic carbon fixation and ATP generation; and membrane transport coupled with antioxidant mechanisms mitigates stress-induced damage. Collectively, this study provides theoretical insights into microalgal adaptation to complex wastewater environments and offers potential targets for strain improvement and wastewater valorization. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

21 pages, 12613 KB  
Article
The Evolution and Impact of Glacier and Ice-Rock Avalanches in the Tibetan Plateau with Sentinel-2 Time-Series Images
by Duo Chu, Linshan Liu and Zhaofeng Wang
GeoHazards 2026, 7(1), 10; https://doi.org/10.3390/geohazards7010010 - 9 Jan 2026
Viewed by 292
Abstract
Catastrophic mass flows originating from the high mountain cryosphere often cause cascading hazards. With increasing human activities in the alpine region and the sensitivity of the cryosphere to climate warming, cryospheric hazards are becoming more frequent in the mountain regions. Monitoring the evolution [...] Read more.
Catastrophic mass flows originating from the high mountain cryosphere often cause cascading hazards. With increasing human activities in the alpine region and the sensitivity of the cryosphere to climate warming, cryospheric hazards are becoming more frequent in the mountain regions. Monitoring the evolution and impact of the glaciers and ice-rock avalanches and hazard consequences in the mountain regions is crucial to understand nature and drivers of mass flow process in order to prevent and mitigate potential hazard risks. In this study, the glacier and ice-rock avalanches that occurred in the Tibetan Plateau (TP) were investigated based on the Sentinel-2 satellite data and in situ observations, and the main driving forces and impacts on the regional environment, landscape, and geomorphological conditions were also analyzed. The results showed that the avalanche deposit of Arutso glacier No. 53 completely melted away in 2 years, while the deposit of Arutso glacier No. 50 melted in 7 years. Four large-scale ice-rock avalanches in the Sedongpu basin not only had significant impacts on the river flow, landscape, and geomorphologic shape in the basin, but also caused serious disasters in the region and beyond. These glacier and ice-rock avalanches were caused by temperature anomaly, heavy precipitation, climate warming, and seismic activity, etc., which act on the specific glacier properties in the high mountain regions. The study highlights scientific advances should support and benefit the remote and vulnerable mountain communities to make mountain regions safer. Full article
Show Figures

Figure 1

13 pages, 1779 KB  
Article
Climate Change and Biotic Interactions Will Change the Distributions of Ungulates on the Qinghai–Tibet Plateau
by Tong Zhang, Yikai Wang, Fu Shu, Yonglei Lv, Zijun Tang, Feng Liu, Zhiguo Li, Yuan Wang, Guangwei Tang, Guanglong Wang, Nanfei Wu, Keji Guo and Xumao Zhao
Animals 2026, 16(2), 183; https://doi.org/10.3390/ani16020183 - 8 Jan 2026
Viewed by 319
Abstract
Species interactions are crucial for understanding how species will respond to future climate change. Incorporating interspecific relationships into mammalian distribution prediction models will significantly impact model outcomes, especially those for animals on the Qinghai–Tibet Plateau (QTP). Thus, we incorporated interspecific relationships into species [...] Read more.
Species interactions are crucial for understanding how species will respond to future climate change. Incorporating interspecific relationships into mammalian distribution prediction models will significantly impact model outcomes, especially those for animals on the Qinghai–Tibet Plateau (QTP). Thus, we incorporated interspecific relationships into species distribution models to assess and predict the future distributions of five ungulates, including the Red deer (Cervus elaphus), the Kiang (Equus kiang), the Tibetan gazelle (Procapra picticaudata), the Tibetan antelope (Pantholops hodgsonii), and the Bharal (Pseudois nayaur). We found that (1) the suitable habitats of these five ungulates were all predicted to increase between the present and 2050; (2) the suitable distribution areas of four of these ungulates were predicted to be smaller when interspecific relationships were incorporated into the models, with the exception of the Red deer, whose suitable habitat was estimated to be larger; and (3) the centroids of suitable habitat for the five ungulates were predicted to shift to the southern part of the QTP by 2050. Our results demonstrated that interspecific relationships could influence predictions of species distributions, and thus incorporating interspecific relationships will facilitate better assessments and predictions of the future distributions of species. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

24 pages, 8121 KB  
Article
Geochemical Characteristics and Geological Significance of Late Cretaceous to Paleocene Intermediate–Acidic Intrusive Rocks in the Qiuwo Area, Southern Margin of the Lhasa Terrane, China
by Min Jia, Fuwei Xie, Yibin Lin, Shuyuan Chen, Yang Yang and Jiancuo Luosang
Minerals 2026, 16(1), 63; https://doi.org/10.3390/min16010063 - 7 Jan 2026
Viewed by 196
Abstract
The Late Cretaceous to Paleocene magmatic evolution along the southern margin of the Lhasa Terrane records a critical transition from oceanic subduction to continental collision, yet its western segment remains underexplored. This study presents integrated petrographic, zircon U–Pb geochronological, zircon Hf isotopic, whole-rock [...] Read more.
The Late Cretaceous to Paleocene magmatic evolution along the southern margin of the Lhasa Terrane records a critical transition from oceanic subduction to continental collision, yet its western segment remains underexplored. This study presents integrated petrographic, zircon U–Pb geochronological, zircon Hf isotopic, whole-rock geochemical, and Sr–Nd isotopic data for three distinct phases of intermediate to felsic intrusions from the Qiuwo area in the western segment of the southern Lhasa terrane. The results reveal three distinct magmatic pulses: an early granodiorite emplaced at 89.9 ± 0.75 Ma, followed by a diorite crystallizing at 68.6 ± 0.56 Ma, and a late-stage granodiorite forming at 56.75 ± 0.43 Ma. All three rock units are metaluminous to weakly peraluminous (A/CNK < 1.1), sodic (Na2O > 3.2 wt.%), and dominated by amphibole, with zircon saturation temperatures of 737–786 °C, consistent with I-type granitoid affinity. All units are metaluminous (A/CNK = 0.92–1.00), calc-alkaline to high-K calc-alkaline, and enriched in LILE (K, Th, Rb) while depleted in HFSE (Nb, Ta, P, Ti), with moderate ΣREE (81–130 ppm), elevated (La/Yb)N (9.3–15.8), and negative Eu anomalies (δEu = 0.70–0.89). The early granodiorite is Na-rich (Na2O/K2O = 1.6), whereas the Paleocene granodiorite shows elevated K2O (3.2 wt.%) and reduced Na2O/K2O (~1.0), reflecting progressive crustal thickening and increasing magmatic differentiation. Zr and Hf are relatively enriched, and Sr/Y ratios decrease from 39 to 21, consistent with evolving magmatic conditions from deeper crustal melting in the Late Cretaceous to shallower, more evolved sources in the Paleocene. Zircon Hf isotopes reveal consistently positive εHf(t) values (+10.4 to +4.9), indicating derivation from juvenile basaltic lower crust. Sr–Nd isotopic data further demonstrate a systematic evolution: εNd(t) decreases from +2.7 to −0.1, while (87Sr/86Sr)i increases from 0.7044 to 0.7055, reflecting progressive incorporation of ancient crustal components into the magma source from the early Late Cretaceous to the Paleocene. These findings indicate that the Qiuwo intrusions formed by partial melting of a juvenile basaltic lower crust, with increasing crustal contamination during ascent and emplacement. The temporal progression of magmatism—spanning the waning stages of Neo-Tethyan subduction to the initial India–Eurasia collision (~55 Ma)—supports a model in which slab breakoff and lithospheric delamination triggered decompression melting of the lower crust, while assimilation of older crustal materials intensified as the continental collision progressed. This work provides key geochemical evidence for the transition from arc to post-collisional magmatism in the western Gangdese belt and refines the timing and mechanism of crustal growth in southern Tibet. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 976 KB  
Article
Anti-Poverty Programmes and Livelihood Sustainability: Comparative Evidence from Herder Households in Northern Tibet, China
by Huixia Zou, Chunsheng Wu, Shaowei Li, Wei Sun and Chengqun Yu
Agriculture 2026, 16(1), 110; https://doi.org/10.3390/agriculture16010110 - 31 Dec 2025
Viewed by 258
Abstract
Anti-Poverty Programmes (APPs) are closely linked to rural livelihoods, yet comparative evidence on how participants and non-participants differ in livelihood-capital composition and income-generation patterns remains limited in ecologically fragile pastoral regions. This study draws on a cross-sectional household survey conducted in Northern Tibet [...] Read more.
Anti-Poverty Programmes (APPs) are closely linked to rural livelihoods, yet comparative evidence on how participants and non-participants differ in livelihood-capital composition and income-generation patterns remains limited in ecologically fragile pastoral regions. This study draws on a cross-sectional household survey conducted in Northern Tibet in July 2020, covering 696 households—including 225 APP participants and 471 non-participants. Using the Sustainable Livelihoods Framework and the entropy weight method, we construct multidimensional livelihood-capital indices (human, social, natural, physical, and financial capital) and compare the two groups. We further apply Ordinary Least Squares (OLS) regressions to examine factors associated with per capita net income. The results reveal substantial heterogeneity in livelihood capital and income across both groups. APP participants exhibit higher human-capital scores, largely driven by a higher share of skills training, whereas they show disadvantages in physical and financial capital relative to non-participants. Natural capital shows no statistically significant difference between the two groups under the local grassland contracting regime. Significant differences are observed and identified in certain dimensions of social capital. Regression results suggest that income is positively associated with skills training, contracted grassland endowment, and fixed assets, with skills training showing the strongest association. For participants, herd size and labour capacity are not statistically significant correlates of income; for non-participants, larger herds and greater labour capacity are associated with lower income. Taken together, the findings indicate that APP participation is associated with stronger capability-related capital (notably training) alongside persistent constraints in productive assets and financial capacity. Policy implications include improving the relevance and quality of training, strengthening cooperative governance and market linkages, and designing complementary packages that connect skills, inclusive finance, and productive asset accumulation. Given the cross-sectional design and administratively targeted certification of programme participation, the results should be interpreted as context-specific associations rather than strict causal effects. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

Back to TopTop