Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,157)

Search Parameters:
Keywords = Landsat-8/9

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 37457 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 - 1 Aug 2025
Viewed by 237
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 117
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

26 pages, 9940 KiB  
Article
Assessing Model Trade-Offs in Agricultural Remote Sensing: A Review of Machine Learning and Deep Learning Approaches Using Almond Crop Mapping
by Mashoukur Rahaman, Jane Southworth, Yixin Wen and David Keellings
Remote Sens. 2025, 17(15), 2670; https://doi.org/10.3390/rs17152670 - 1 Aug 2025
Viewed by 118
Abstract
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse [...] Read more.
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse agricultural contexts. Building on this foundation, we apply both model types to the specific case of almond crop field identification in California’s Central Valley using Landsat data. DL models, including U-Net, MANet, and DeepLabv3+, achieve high accuracy rates of 97.3% to 97.5%, yet our findings demonstrate that conventional ML models—such as Decision Tree, K-Nearest Neighbor, and Random Forest—can reach comparable accuracies of 96.6% to 96.8%. Importantly, the ML models were developed using data from a single year, while DL models required extensive training data spanning 2008 to 2022. Our results highlight that traditional ML models offer robust classification performance with substantially lower computational demands, making them especially valuable in resource-constrained settings. This paper underscores the need for a balanced approach in model selection—one that weighs accuracy alongside efficiency. The findings contribute actionable insights for agricultural land cover mapping and inform ongoing model development in the geospatial sciences. Full article
Show Figures

Figure 1

21 pages, 23129 KiB  
Article
Validation of Global Moderate-Resolution FAPAR Products over Boreal Forests in North America Using Harmonized Landsat and Sentinel-2 Data
by Yinghui Zhang, Hongliang Fang, Zhongwen Hu, Yao Wang, Sijia Li and Guofeng Wu
Remote Sens. 2025, 17(15), 2658; https://doi.org/10.3390/rs17152658 - 1 Aug 2025
Viewed by 99
Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the [...] Read more.
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the reliability of FAPAR-based applications. This study validated five global FAPAR products, MOD15A2H, MYD15A2H, VNP15A2H, GEOV2, and GEOV3, over four boreal forest sites in North America. Qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) of each product were analyzed. Time series high-resolution reference FAPAR maps were developed using the Harmonized Landsat and Sentinel-2 dataset. The reference FAPAR maps revealed a strong agreement with the in situ FAPAR from AmeriFlux (correlation coefficient (R) = 0.91; root mean square error (RMSE) = 0.06). The results revealed that global FAPAR products show similar uncertainties (RMSE: 0.16 ± 0.04) and moderate agreement with the reference FAPAR (R = 0.75 ± 0.10). On average, 34.47 ± 6.91% of the FAPAR data met the goal requirements of the Global Climate Observing System (GCOS), while 54.41 ± 6.89% met the threshold requirements of the GCOS. Deciduous forests perform better than evergreen forests, and the products tend to underestimate the reference data, especially for the beginning and end of growing seasons in evergreen forests. There are no obvious quality differences at different QQFs, and the relative QQI can be used to filter high-quality values. To enhance the regional applicability of global FAPAR products, further algorithm improvements and expanded validation efforts are essential. Full article
Show Figures

Figure 1

26 pages, 4899 KiB  
Article
SDDGRNets: Level–Level Semantically Decomposed Dynamic Graph Reasoning Network for Remote Sensing Semantic Change Detection
by Zhuli Xie, Gang Wan, Yunxia Yin, Guangde Sun and Dongdong Bu
Remote Sens. 2025, 17(15), 2641; https://doi.org/10.3390/rs17152641 - 30 Jul 2025
Viewed by 293
Abstract
Semantic change detection technology based on remote sensing data holds significant importance for urban and rural planning decisions and the monitoring of ground objects. However, simple convolutional networks are limited by the receptive field, cannot fully capture detailed semantic information, and cannot effectively [...] Read more.
Semantic change detection technology based on remote sensing data holds significant importance for urban and rural planning decisions and the monitoring of ground objects. However, simple convolutional networks are limited by the receptive field, cannot fully capture detailed semantic information, and cannot effectively perceive subtle changes and constrain edge information. Therefore, a dynamic graph reasoning network with layer-by-layer semantic decomposition for semantic change detection in remote sensing data is developed in response to these limitations. This network aims to understand and perceive subtle changes in the semantic content of remote sensing data from the image pixel level. On the one hand, low-level semantic information and cross-scale spatial local feature details are obtained by dividing subspaces and decomposing convolutional layers with significant kernel expansion. Semantic selection aggregation is used to enhance the characterization of global and contextual semantics. Meanwhile, the initial multi-scale local spatial semantics are screened and re-aggregated to improve the characterization of significant features. On the other hand, at the encoding stage, the weight-sharing approach is employed to align the positions of ground objects in the change area and generate more comprehensive encoding information. Meanwhile, the dynamic graph reasoning module is used to decode the encoded semantics layer by layer to investigate the hidden associations between pixels in the neighborhood. In addition, the edge constraint module is used to constrain boundary pixels and reduce semantic ambiguity. The weighted loss function supervises and optimizes each module separately to enable the network to acquire the optimal feature representation. Finally, experimental results on three open-source datasets, such as SECOND, HIUSD, and Landsat-SCD, show that the proposed method achieves good performance, with an SCD score reaching 35.65%, 98.33%, and 67.29%, respectively. Full article
Show Figures

Graphical abstract

36 pages, 9354 KiB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 152
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

24 pages, 10342 KiB  
Article
Land-Use Evolution and Driving Forces in Urban Fringe Archaeological Sites: A Case Study of the Western Han Imperial Mausoleums
by Huihui Liu, Boxiang Zhao, Junmin Liu and Yingning Shen
Land 2025, 14(8), 1554; https://doi.org/10.3390/land14081554 - 29 Jul 2025
Viewed by 331
Abstract
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images [...] Read more.
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images from 1992, 2002, 2012, and 2022, this study applied supervised classification, land-use transfer matrices, and dynamic-degree analysis to trace three decades of land-use change. From 1992 to 2022, built-up land expanded by 29.85 percentage points, largely replacing farmland, which shrank by 35.64 percentage points and became fragmented. Forest cover gained a modest 5.78 percentage points and migrated eastward toward the mausoleums. Overall, urban growth followed a “spread–integrate–connect” pattern along major roads. This study interprets these trends through five interrelated drivers, including policy, planning, economy, population, and heritage protection, and proposes an integrated management model. The model links archaeological pre-assessment with land-use compatibility zoning and active community participation. Together, these measures offer a practical roadmap for balancing conservation and sustainable land management at imperial burial complexes and similar urban fringe heritage sites. Full article
Show Figures

Figure 1

21 pages, 2976 KiB  
Article
Assessing Woodland Change in Tanzania’s Eastern Arc Mountains Using Landsat Thematic Mapper Mixed Approaches
by Filemon Eliamini, Richard Mbatu and M. Duane Nellis
Land 2025, 14(8), 1546; https://doi.org/10.3390/land14081546 - 28 Jul 2025
Viewed by 280
Abstract
Tanzania’s Eastern Arc Mountains, a hotspot for biodiversity, are seriously threatened by deforestation and the loss of woodland cover. The loss of woodland cover has been associated with decreased access and availability of woodfuel for nearby communities, which may have detrimental effects on [...] Read more.
Tanzania’s Eastern Arc Mountains, a hotspot for biodiversity, are seriously threatened by deforestation and the loss of woodland cover. The loss of woodland cover has been associated with decreased access and availability of woodfuel for nearby communities, which may have detrimental effects on household energy security and livelihoods. This study, which employs geospatial techniques, looks at woodland change in the Eastern Arc Mountains region between 2001 and 2020 to prioritize areas that need more sustainable land use practices. We employed a “mixed methods” remote sensing approach linked to Landsat thematic mapper data to assess woodland change. The results showed that the Same District experienced a considerable loss of woodland, making up 37.4% of the total area lost between 2001 and 2020. These results suggest that access to woodfuel may become more difficult for the residents of Same District. Full article
Show Figures

Figure 1

20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 - 28 Jul 2025
Viewed by 411
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

25 pages, 8105 KiB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 325
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

19 pages, 13565 KiB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 245
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

22 pages, 5097 KiB  
Article
Application of Landsat High Spatial Resolution Phenological Synthesized Data in Mountainous Land Cover Classification
by Zhengzheng Hu, Fei Xiao, Yun Du, Zhou Wang, Jiahuan Luo, Qi Feng and Miaomiao Chen
Remote Sens. 2025, 17(15), 2603; https://doi.org/10.3390/rs17152603 - 27 Jul 2025
Viewed by 273
Abstract
Classifying land cover in mountainous areas has always been challenging due to the high diversity of ecosystems and the complexity of the spectral–temporal–spatial relationships caused by the rugged terrain. This paper introduces multi-year synthesized phenology data to improve land cover classification in these [...] Read more.
Classifying land cover in mountainous areas has always been challenging due to the high diversity of ecosystems and the complexity of the spectral–temporal–spatial relationships caused by the rugged terrain. This paper introduces multi-year synthesized phenology data to improve land cover classification in these regions. Using the Shennongjia Forestry District in Hubei Province, China, as a case study, we investigate how incorporating multi-year synthesized phenology data enhances the accuracy of land cover classification with single-temporal and multi-temporal remote sensing imagery, as well as how it aids in identifying different vegetation types in shaded areas of the mountains. The research results indicate that incorporating multi-year synthesized phenology data significantly improves the accuracy of land cover classification for single summer imagery, single autumn imagery, multi-temporal summer–autumn imagery, and mountain shadow areas. The Kappa coefficient (Kappa) increased by 1.57% to 9.93%, while overall accuracy (OA) improved by 1.4% to 8.75%. Notably, the improvement in classification accuracy was most pronounced for single summer imagery. Furthermore, the results demonstrate that, in the absence of terrain data, multi-year synthesized phenology data provide even greater enhancements in land cover classification accuracy using remote sensing imagery. Full article
(This article belongs to the Special Issue Remote Sensing for Vegetation Phenology in a Changing Environment)
Show Figures

Figure 1

29 pages, 9060 KiB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 167
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

Back to TopTop