sustainability-logo

Journal Browser

Journal Browser

Advanced Studies in Sustainable Urban Planning and Urban Development

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Urban and Rural Development".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 3947

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Human-Environment Studies, Kyushu University, Fukuoka 819-0395, Japan
Interests: urban research in Asia; urban commercial research; urban space research; urban landscape research; urban analysis

E-Mail Website
Guest Editor
Faculty of Human-Environment Studies, Kyushu University, Fukuoka 819-0395, Japan
Interests: urban expansion; urban sprawl; urban governance

E-Mail Website
Guest Editor
School of Architecture, Tianjin University, Tianjin 300072, China
Interests: urban sensing technology and social space research; community governance research and infrastructure planning; urban walking systems and public space health

Special Issue Information

Dear Colleagues,

Sustainable urban planning is vital in addressing rapid urbanization, climate change, and resource depletion. As cities grow, challenges related to infrastructure, transportation, and environmental impact increase. Effective planning integrates architecture, environmental science, and public policy to create resilient, resource-efficient, and livable cities. Key research areas include green infrastructure, low-carbon urban design, smart city technologies, and circular economy strategies. By leveraging digital transformation and participatory governance, sustainable urban development enhances quality of life while reducing environmental impact. Advancing this field is crucial for building resilient urban ecosystems and ensuring long-term sustainability. The Special Issue on "Advanced Studies in Sustainable Urban Planning and Development" aligns with Sustainability by addressing urban resilience, low-carbon development, smart cities, and green infrastructure. It explores interdisciplinary approaches to sustainable urban growth, supporting the journal’s mission to advance environmental, social, and economic sustainability.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but not limited to) the following:  

  • Sustainable urban planning; 
  • Smart cities; 
  • Green infrastructure; 
  • Digital transformation; 
  • Sustainable mobility; 
  • Low-carbon and energy-efficient urban development; 
  • Policy and governance for sustainable cities. 

We look forward to receiving your contributions. 

Prof. Dr. Shichen Zhao
Dr. Prasanna Divigalipitiya
Dr. Xiaoyan Mi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable urban
  • smart cities
  • green infrastructure
  • low-carbon development
  • energy-efficient architecture
  • environmental policy
  • participatory urban governance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 3991 KB  
Article
Spatiotemporal Analysis, Driving Force, and Simulation of Urban Expansion Along the Ethio–Djibouti Trade Corridor: The Cases of Dire Dawa City, Eastern Ethiopia
by Abduselam Mohamed Ebrahim, Abenezer Wakuma Kitila, Tegegn Sishaw Emiru and Solomon Asfaw Beza
Sustainability 2025, 17(17), 7760; https://doi.org/10.3390/su17177760 - 28 Aug 2025
Viewed by 361
Abstract
Urbanization has emerged as one of the most significant global challenges and opportunities of the 21st century, driven by a complex interplay of dynamic processes. In Ethiopia, cities have undergone rapid expansion in recent decades, largely due to state-led economic reforms and infrastructure [...] Read more.
Urbanization has emerged as one of the most significant global challenges and opportunities of the 21st century, driven by a complex interplay of dynamic processes. In Ethiopia, cities have undergone rapid expansion in recent decades, largely due to state-led economic reforms and infrastructure development. This study aims to investigate the spatiotemporal dynamics, driving forces, and future projections of urban expansion along the Ethio–Djibouti trade corridor, with a focus on Dire Dawa City in eastern Ethiopia. Landsat imagery from 1993, 2003, 2013, and 2023 was utilized to detect land use and land cover (LULC) changes and analyze urban growth patterns. Additionally, maps illustrating the city’s demographic, economic, and topographic characteristics were developed to identify the key driving factors behind land conversion and urban expansion. The spatial matrix and landscape expansion index were employed to examine the spatial patterns of urban growth. Furthermore, the study applied the Multi-Layer Perceptron–Markov Chain (MLP–MC) model to simulate future LULC changes and urban expansion. The results indicate that the built-up area in Dire Dawa has increased significantly over the past three decades, growing from 6.21 km2 in 1993 to 21.54 km2 in 2023. This urban growth is predominantly characterized by edge expansion, reflecting a pattern of unidirectional, unsustainable development that has consumed large areas of agricultural land. The analysis shows that socioeconomic development and population growth have had a greater influence on LULC conversion and urban expansion than physical factors. Based on these identified drivers, the study projected land conversion and simulated urban expansion for the years 2043 and 2064. The findings underscore the urgent need for context-sensitive urban growth strategies that harmonize local realities with national development policies and the Sustainable Development Goals. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

24 pages, 9685 KB  
Article
Urban Planning Policies and Architectural Design for Sustainable Food Security: A Case Study of Smart Cities in Indonesia
by Rafi Haikal, Thoriqi Firdaus, Herdis Herdiansyah and Rizqi Shafira Chairunnisa
Sustainability 2025, 17(16), 7546; https://doi.org/10.3390/su17167546 - 21 Aug 2025
Viewed by 581
Abstract
The urgent need for sustainable food systems in Indonesia is hindered by urban planning policies that are disconnected from food security priorities. Smart city planning policies in Indonesia have been subject to numerous misconceptions compared to successful implementations in developed countries. This study [...] Read more.
The urgent need for sustainable food systems in Indonesia is hindered by urban planning policies that are disconnected from food security priorities. Smart city planning policies in Indonesia have been subject to numerous misconceptions compared to successful implementations in developed countries. This study examines the relationship between urban planning policies and architectural design in fostering sustainable food systems, employing a mixed-methods approach that combines multiple linear regression analysis with a sample of 75 smart cities, correlation analysis, and case studies from six representative cities that demonstrate best practices. Key findings reveal that food security is significantly undermined by the Gross Regional Domestic Product (GRDP), indicating distributional inequalities, high food expenditure, and a lack of clean water, while access to electricity improves resilience. Case study analysis showed that Semarang is the city with the highest readiness level (97%), followed by Makassar (91%), which employs a Holistic Benchmark approach, Jakarta (91%), which follows a Technological—fragmented approach, Samarinda (86%) and Medan (79%), which are in a Developing Transition phase, and Surabaya (66%), which utilizes a Community and Local Initiatives approach. Each city adopted a different approach, which means the national strategy for developing Smart Cities will also differ; however, they must prioritize equitable infrastructure and architectural innovation, such as urban farming integration and a water–energy–food nexus system. Smart cities extend beyond technological innovations, encompassing integrated urban planning policies and architectural practices that foster sustainable food systems through infrastructure management and environmental sustainability. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

21 pages, 9316 KB  
Article
The Spatial Differentiation Characteristics of the Residential Environment Quality in Northern Chinese Cities: Based on a New Evaluation Framework
by Feng Ge, Jiayu Liu, Laigen Jia, Gaixiang Chen, Changshun Wang, Yuetian Wang, Hongguang Chen and Fanhao Meng
Sustainability 2025, 17(16), 7473; https://doi.org/10.3390/su17167473 - 19 Aug 2025
Viewed by 411
Abstract
Addressing the need to optimize human settlement quality in arid and semi-arid regions under rapid urbanization, this study innovatively constructs an evaluation framework integrating greenness, thermal conditions, impervious surfaces, water bodies, and air transparency. Focusing on 12 prefecture-level cities in Inner Mongolia, Northern [...] Read more.
Addressing the need to optimize human settlement quality in arid and semi-arid regions under rapid urbanization, this study innovatively constructs an evaluation framework integrating greenness, thermal conditions, impervious surfaces, water bodies, and air transparency. Focusing on 12 prefecture-level cities in Inner Mongolia, Northern China, it systematically reveals the spatial differentiation characteristics and driving mechanisms of human settlement quality. Findings indicate the following: (1) Regional human settlement quality exhibits a spindle-shaped structure dominated by the medium grade (Excellent: 18.13%, High: 23.34%, Medium: 46.48%, Low: 12.04%), with Ulanqab City having the highest proportion of Excellent areas (25.26%) and Ordos City the lowest proportion of Low-grade areas (6.20%), reflecting a critical transition period for regional quality enhancement. (2) Spatial patterns show pronounced east-west gradients and functional differentiation: western arid zones display significant blue-green space advantages but face high-temperature stress and rigid water constraints, eastern humid zones benefit from superior ecological foundations with weaker heat island effects, the core Hetao Plain experiences strong heat island effects due to high impervious surface density, while industrial cities confront prominent air pollution pressures. Consequently, implementing differentiated strategies—strengthening ecological protection/restoration in High/Low-grade zones and optimizing regulation to drive upgrades in Medium-grade zones—is essential for achieving three sustainable pathways: compact development, blue-green space optimization, and industrial upgrading, providing vital decision-making support for enhancing human settlement quality and promoting sustainable development in ecologically fragile cities across northern China. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

25 pages, 2807 KB  
Article
Drivers of Population Dynamics in High-Altitude Counties of Sichuan Province, China
by Xiangyu Dong, Mengge Du and Shichen Zhao
Sustainability 2025, 17(15), 7051; https://doi.org/10.3390/su17157051 - 4 Aug 2025
Viewed by 597
Abstract
The population dynamics of high-altitude mountainous areas are shaped by a complex interplay of socioeconomic and environmental drivers. Despite their significance, such regions have received limited scholarly attention. This research identifies and examines the principal determinants of population changes in the high-altitude mountainous [...] Read more.
The population dynamics of high-altitude mountainous areas are shaped by a complex interplay of socioeconomic and environmental drivers. Despite their significance, such regions have received limited scholarly attention. This research identifies and examines the principal determinants of population changes in the high-altitude mountainous zones of Sichuan Province, China. Utilizing a robust quantitative framework, we introduce the Sustainable Population Migration Index (SPMI) to systematically analyze the migration potential over two decades. The findings indicate healthcare accessibility as the most significant determinant influencing resident and rural population changes, while economic factors notably impact urban populations. The SPMI reveals a pronounced deterioration in migration attractiveness, decreasing by 0.27 units on average from 2010 to 2020. Furthermore, a fixed-effects panel regression confirmed the predictive capability of SPMI regarding population trends, emphasizing its value for demographic forecasting. We also develop a Digital Twin-based Simulation and Decision-support Platform (DTSDP) to visualize policy impacts effectively. Scenario simulations suggest that targeted enhancements in healthcare and infrastructure could significantly alleviate demographic pressures. This research contributes critical insights for sustainable regional development strategies and provides an effective tool for informed policymaking. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

27 pages, 956 KB  
Article
Boosting Sustainable Urban Development: How Smart Cities Improve Emergency Management—Evidence from 275 Chinese Cities
by Ming Guo and Yang Zhou
Sustainability 2025, 17(15), 6851; https://doi.org/10.3390/su17156851 - 28 Jul 2025
Viewed by 726
Abstract
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their [...] Read more.
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their causal impact and underlying mechanisms remains limited, particularly in developing economies. Drawing on panel data from 275 Chinese prefecture-level cities over the period 2006–2021 and using China’s smart city pilot policy as a quasi-natural experiment, this study applies a multi-period difference-in-differences (DID) approach to rigorously assess the effects of smart city construction on emergency management capabilities. Results reveal that smart city construction produced a statistically significant improvement in emergency management capabilities, which remained robust after conducting multiple sensitivity checks and controlling for potential confounding policies. The benefits exhibit notable heterogeneity: emergency management capability improvements are most pronounced in central China and in cities at the extremes of population size—megacities (>10 million residents) and small cities (<1 million residents)—while effects remain marginal in medium-sized and eastern cities. Crucially, mechanism analysis reveals that digital technology application fully mediates 86.7% of the total effect, whereas factor allocation efficiency exerts only a direct, non-mediating influence. These findings suggest that smart cities primarily enhance emergency management capabilities through digital enablers, with effectiveness contingent upon regional infrastructure development and urban scale. Policy priorities should therefore emphasize investments in digital infrastructure, interagency data integration, and targeted capacity-building strategies tailored to central and western regions as well as smaller cities. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

20 pages, 9605 KB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 - 28 Jul 2025
Viewed by 714
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

Back to TopTop