Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,147)

Search Parameters:
Keywords = Land use/cover change

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9090 KiB  
Article
Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae)
by Huafeng Liu, Shuangyi Wang, Yunchun Li, Shuangmei Ding, Aimin Shi, Ding Yang and Zhonghua Wei
Insects 2025, 16(8), 802; https://doi.org/10.3390/insects16080802 (registering DOI) - 2 Aug 2025
Abstract
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats [...] Read more.
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats using climatic factors, global land use type, and global vegetation from different periods, in combination with the maximum entropy (MaxEnt) model. The results indicate that the annual mean temperature (Bio01), mean temperature of the coldest quarter (Bio11), precipitation of the coldest quarter (Bio19), and isothermality (Bio03) are the four most important climate variables determining the distribution of T. picta. Under the current climate conditions, the highly suitable areas are primarily located in southern Europe, covering an area of 2.22 × 106 km2. Under future climate scenarios, the suitable habitat for T. picta is expected to expand and shift towards higher latitudes. In the 2050s, the SSP5-8.5 scenario has the largest suitable area compared to other scenarios, while the SSP2-4.5 scenario has the largest suitable area in the 2090s. In addition, the centroids of the total suitable areas are expected to shift toward higher latitudes under future climate conditions. The results of this study provide valuable data for the monitoring, control, and management of this pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

20 pages, 4874 KiB  
Article
Influence of Vegetation Cover and Soil Properties on Water Infiltration: A Study in High-Andean Ecosystems of Peru
by Azucena Chávez-Collantes, Danny Jarlis Vásquez Lozano, Leslie Diana Velarde-Apaza, Juan-Pablo Cuevas, Richard Solórzano and Ricardo Flores-Marquez
Water 2025, 17(15), 2280; https://doi.org/10.3390/w17152280 - 31 Jul 2025
Viewed by 81
Abstract
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and [...] Read more.
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and soil properties on water infiltration in a high-Andean environment. A double-ring infiltrometer, the Water Drop Penetration Time (WDPT, s) method, and laboratory physicochemical characterization were employed. Soils under forest cover exhibited significantly higher quasi-steady infiltration rates (is, 0.248 ± 0.028 cm·min−1) compared to grazing areas (0.051 ± 0.016 cm·min−1) and agricultural lands (0.032 ± 0.013 cm·min−1). Soil organic matter content was positively correlated with is. The modified Kostiakov infiltration model provided the best overall fit, while the Horton model better described infiltration rates approaching is. Sand and clay fractions, along with K+, Ca2+, and Mg2+, were particularly significant during the soil’s wet stages. In drier stages, increased Na+ concentrations and decreased silt content were associated with higher water repellency. Based on WDPT, agricultural soils exhibited persistent hydrophilic behavior even after drying (median [IQR] from 0.61 [0.38] s to 1.24 [0.46] s), whereas forest (from 2.84 [3.73] s to 3.53 [24.17] s) and grazing soils (from 4.37 [1.95] s to 19.83 [109.33] s) transitioned to weakly or moderately hydrophobic patterns. These findings demonstrate that native Andean forest soils exhibit a higher infiltration capacity than soils under anthropogenic management (agriculture and grazing), highlighting the need to conserve and restore native vegetation cover to strengthen water resilience and mitigate the impacts of land-use change. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 234
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
by Yu Guo, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan and Mei Zeng
Remote Sens. 2025, 17(15), 2634; https://doi.org/10.3390/rs17152634 - 29 Jul 2025
Viewed by 134
Abstract
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation [...] Read more.
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation dynamics in arid Northwestern China during 2000 to 2020, using the annual peak fractional vegetation cover (FVC) as the primary indicator. The Sen’s slope estimator with the Mann–Kendall test and the coefficient of variation were employed to assess the spatiotemporal variations in FVC, while the Pearson correlation, geographic detector model and random forest model were applied to identify the dominant driving factors for FVC. The results indicated that (1) overall vegetation cover was low (averaged peak FVC = 0.191), showing a spatial pattern of higher values in the northwest and lower values in the southeast; high FVC values were primarily observed in mountainous areas and river corridors; (2) the annual peak FVC increased significantly at a rate of 0.0508 yr−1, with 33.72% of the region showing significant improvements and 5.49% degradation; (3) the spatial pattern of FVC was shaped by the distribution of land use types (59.46%), while the temporal dynamics of FVC were driven by land use changes (16.37%) and the land use intensity (37.56%); (4) both the spatial pattern and the temporal dynamics were limited by the environmental conditions. These findings highlight the critical role of anthropogenic activities in shaping the spatiotemporal variations in FVC, particularly emphasizing the distinct contributions of changes in land use types and land use intensity. This study could provide a scientific basis for sustainable land management and restoration strategies in arid regions facing global changes. Full article
Show Figures

Figure 1

36 pages, 9354 KiB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 129
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
by Lucy Deba Enomah, Joni Downs, Michael Acheampong, Qiuyan Yu and Shirley Tanyi
Remote Sens. 2025, 17(15), 2631; https://doi.org/10.3390/rs17152631 - 29 Jul 2025
Viewed by 241
Abstract
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its [...] Read more.
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its implications for food security and livelihood. This study seeks to identify and quantify recent LULC changes in Limbe, Cameroon, and to measure rates of conversion between agricultural, forest, and urban lands between 1986 and 2020 using remote sensing and GIS. Also, there is a deficiency of research employing these data to evaluate the efficiency of LULC satellite data and a lack of awareness by local stakeholders regarding the impact on LULC change. The changes were identified in four classes utilizing maximum supervised classification in ENVI and ArcGIS environments. The classification result reveals that the 2020 image has the highest overall accuracy of 94.6 while the 2002 image has an overall accuracy of 89.2%. The overall gain for agriculture was approximately 4.6 km2, urban had an overall gain of nearly 12.7 km2, while the overall loss for forest was −16.9 km2 during this period. Much of the land area previously occupied by forest is declining as pressures for urban areas and new settlements increase. This study’s findings have significant policy implications for sustainable land use and food security. It also provides a spatial method for monitoring LULC variations that can be used as a framework by stakeholders who are interested in environmentally conscious development and sustainable land use practices. Full article
Show Figures

Figure 1

24 pages, 10342 KiB  
Article
Land-Use Evolution and Driving Forces in Urban Fringe Archaeological Sites: A Case Study of the Western Han Imperial Mausoleums
by Huihui Liu, Boxiang Zhao, Junmin Liu and Yingning Shen
Land 2025, 14(8), 1554; https://doi.org/10.3390/land14081554 - 29 Jul 2025
Viewed by 306
Abstract
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images [...] Read more.
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images from 1992, 2002, 2012, and 2022, this study applied supervised classification, land-use transfer matrices, and dynamic-degree analysis to trace three decades of land-use change. From 1992 to 2022, built-up land expanded by 29.85 percentage points, largely replacing farmland, which shrank by 35.64 percentage points and became fragmented. Forest cover gained a modest 5.78 percentage points and migrated eastward toward the mausoleums. Overall, urban growth followed a “spread–integrate–connect” pattern along major roads. This study interprets these trends through five interrelated drivers, including policy, planning, economy, population, and heritage protection, and proposes an integrated management model. The model links archaeological pre-assessment with land-use compatibility zoning and active community participation. Together, these measures offer a practical roadmap for balancing conservation and sustainable land management at imperial burial complexes and similar urban fringe heritage sites. Full article
Show Figures

Figure 1

21 pages, 948 KiB  
Article
Examining the Impacts of Land Resources and Youth Education on Agricultural Livelihood in Battambang Province
by Dyna Chin, Sanara Hor, Soksan Seng, Sophak Pok, Lyhour Hin, Chaneng Yin, Sotheavy Kin, Nuch Sek, Sopharith Nou, Sokhieng Chhe, Thapkonin Chhoengsan, Pengkheang Mol, Chetha Chea, Sambath Eun, Linna Long and Hitoshi Shinjo
Sustainability 2025, 17(15), 6866; https://doi.org/10.3390/su17156866 - 28 Jul 2025
Viewed by 280
Abstract
Since the end of the Civil War, Cambodia has pursued economic development to enhance livelihoods, particularly in rural areas, where land is a critical resource. Previous studies have indicated that the country has changed land use and land cover. However, they have not [...] Read more.
Since the end of the Civil War, Cambodia has pursued economic development to enhance livelihoods, particularly in rural areas, where land is a critical resource. Previous studies have indicated that the country has changed land use and land cover. However, they have not explained how these changes can improve the livelihoods of local communities, thereby mitigating their negative impacts through an asset-based approach. Battambang Province, in the northwestern region, was the battleground until political integration in 1996. Since then, the province has been home to immigrants exploring the lands for livelihood. Thus, this study aims to examine agricultural livelihoods in the villages of Dei Kraham and Ou Toek Thla, located west of Battambang Town. These were selected because of their common characteristics. Adopting a quantitative approach and a sustainable livelihood framework, this study employed stratified random sampling to select 123 families for interviews across three population subgroups: old settlers, new settlers, and young settlers. In situ information was collected using structured questionnaires and analyzed using Kruskal–Wallis tests to assess the livelihood assets underlying the physical, natural, human, financial, and social capital. The statistical analysis results reveal no significant differences (p-value = 0.079) in livelihood assets between the strata at the village level. Meanwhile, significant differences were observed in physical, human, and financial capital between old and young settlers when examining the subgroups (p-value 0.000). The extent of the land resources held by old settlers was associated with household income and livelihoods related to agriculture. Based on livelihood asset scores, nearly half of the new settlers (0.49–0.5) and a quarter of the young settlers (0.47) are vulnerable groups requiring support. The youth will soon face an uncertain future if they do not prioritize education. Full article
Show Figures

Figure 1

20 pages, 4109 KiB  
Review
Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways
by Oluwafemi E. Adeyeri
Water 2025, 17(15), 2247; https://doi.org/10.3390/w17152247 - 28 Jul 2025
Viewed by 265
Abstract
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 [...] Read more.
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins. Full article
Show Figures

Figure 1

18 pages, 2980 KiB  
Article
Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022)
by Shuang Zhu, Fang Li, Yue Yang, Tong Ma and Jianhua Chen
Atmosphere 2025, 16(8), 911; https://doi.org/10.3390/atmos16080911 - 28 Jul 2025
Viewed by 126
Abstract
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin [...] Read more.
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin Prefecture (2001–2022) and applied the WEQ model to analyze temporal and spatial variations in total suspended particulate (TSP), PM10, and PM2.5 emissions and their driving factors. The region exhibited high emission factors for TSP, PM10, and PM2.5, averaging 55.46 t km−2 a−1, 27.73 t km−2 a−1, and 4.14 t km−2 a−1, respectively, with pronounced spatial heterogeneity and the highest values observed in Yuli, Qiemo, and Ruoqiang. The annual average emissions of TSP, PM10, and PM2.5 were 3.23 × 107 t, 1.61 × 107 t, and 2.41 × 106 t, respectively. Bare land was the dominant source, contributing 72.55% of TSP emissions. Both total emissions and emission factors showed an overall upward trend, reaching their lowest point around 2012, followed by significant increases in most counties during 2012–2022. Annual precipitation, wind speed, and temperature were identified as the primary climatic drivers of soil dust emissions across all counties, and their influences exhibited pronounced spatial heterogeneity in Bazhou. In Ruoqiang, Bohu, Korla, and Qiemo, dust emissions are mainly limited by precipitation, although dry conditions and sparse vegetation can amplify the role of wind. In Heshuo, Hejing, and Yanqi, stable vegetation helps to lessen wind’s impact. In Yuli, wind speed and temperature are the main drivers, whereas in Luntai, precipitation and temperature are both important constraints. These findings highlight the need to consider emission intensity, land use, or surface condition changes, and the potential benefits of increasing vegetation cover in severely desertified areas when formulating regional dust mitigation strategies. Full article
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 215
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

21 pages, 2976 KiB  
Article
Assessing Woodland Change in Tanzania’s Eastern Arc Mountains Using Landsat Thematic Mapper Mixed Approaches
by Filemon Eliamini, Richard Mbatu and M. Duane Nellis
Land 2025, 14(8), 1546; https://doi.org/10.3390/land14081546 - 28 Jul 2025
Viewed by 257
Abstract
Tanzania’s Eastern Arc Mountains, a hotspot for biodiversity, are seriously threatened by deforestation and the loss of woodland cover. The loss of woodland cover has been associated with decreased access and availability of woodfuel for nearby communities, which may have detrimental effects on [...] Read more.
Tanzania’s Eastern Arc Mountains, a hotspot for biodiversity, are seriously threatened by deforestation and the loss of woodland cover. The loss of woodland cover has been associated with decreased access and availability of woodfuel for nearby communities, which may have detrimental effects on household energy security and livelihoods. This study, which employs geospatial techniques, looks at woodland change in the Eastern Arc Mountains region between 2001 and 2020 to prioritize areas that need more sustainable land use practices. We employed a “mixed methods” remote sensing approach linked to Landsat thematic mapper data to assess woodland change. The results showed that the Same District experienced a considerable loss of woodland, making up 37.4% of the total area lost between 2001 and 2020. These results suggest that access to woodfuel may become more difficult for the residents of Same District. Full article
Show Figures

Figure 1

19 pages, 2828 KiB  
Review
Microbial Proteins: A Green Approach Towards Zero Hunger
by Ayesha Muazzam, Abdul Samad, AMM Nurul Alam, Young-Hwa Hwang and Seon-Tea Joo
Foods 2025, 14(15), 2636; https://doi.org/10.3390/foods14152636 - 28 Jul 2025
Viewed by 367
Abstract
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are [...] Read more.
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are significant issues raised due to an increasing population. Meat is a vital source of high-quality protein in the human diet, and addressing the sustainability of meat production is essential to ensuring long-term food security. To cover the meat demand of a growing population, meat scientists are working on several meat alternatives. Bacteria, fungi, yeast, and algae have been identified as sources of microbial proteins that are both effective and sustainable, making them suitable for use in the development of meat analogs. Unlike livestock farming, microbial proteins produce less environmental pollution, need less space and water, and contain all the necessary dietary components. This review examines the status and future of microbial proteins in regard to consolidating and stabilizing the global food system. This review explores the production methods, nutritional benefits, environmental impact, regulatory landscape, and consumer perception of microbial protein-based meat analogs. Additionally, this review highlights the importance of microbial proteins by elaborating on the connection between microbial protein-based meat analogs and multiple UN Sustainable Development Goals. Full article
Show Figures

Figure 1

27 pages, 42290 KiB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Viewed by 332
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

Back to TopTop