Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
Abstract
1. Introduction
1.1. Background Literature
1.1.1. Historical Patterns of Land Use Change in Limbe
1.1.2. Contemporary Drivers of Land Use in Limbe
2. Material and Methods
2.1. Study Area
2.2. Image Classification
2.3. Data Collection and Description
2.4. LULC Change Detection Analysis
3. Results
3.1. Classification Accuracy and Results
3.2. Change Detection Analysis
Overall Gain and Loss from 1986 to 2020
3.3. LULC Change Pattern
3.3.1. LULC Change Pattern from 1986 to 2002
3.3.2. LULC Change Patterns from 2002 to 2013
3.3.3. LULC Pattern from 2013 to 2020
4. Discussion
4.1. LULC Pattern from 1986 to 2020
4.2. Implications of Present Land Use Change for Livelihoods and Food Security
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Population Division. World Population Prospects: The 2012 Revision; United Nations: New York, NY, USA, 2012. [Google Scholar]
- Lee, K.N. An Urbanizing World. State of the World 2007: Our Urban Future; W. W. Norton Company: New York, NY, USA, 2007; pp. 3–22. [Google Scholar]
- Benza, M.; Weeks, J.R.; Stow, D.A.; Lopez-Carr, D.; Clarke, K.C. A pattern-based definition of urban context using remote sensing and GIS. Remote Sens. Environ. 2016, 183, 250–264. [Google Scholar] [CrossRef]
- Litsardopoulos, N.; Saridakis, G.; Hand, C. The Effects of Rural and Urban Areas on Time Allocated to Self-Employment: Differences between Men and Women. Sustainability 2020, 12, 7049. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landsc. Urban Plan. 2009, 91, 133–141. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Appl. Geogr. 2010, 30, 70–83. [Google Scholar] [CrossRef]
- Del Mar López, T.; Aide, T.M.; Thomlinson, J.R. Urban expansion and the loss of prime agricultural lands in Puerto Rico. AMBIO A J. Hum. Environ. 2001, 30, 49–54. [Google Scholar] [CrossRef]
- Deng, X. Urbanization and Impacts on Agricultural Land in China. In The Routledge Handbook of Urbanization and Global Environmental Change; Routledge: New York, USA, 2016; pp. 66–73. [Google Scholar]
- Lacerda, L.I.D.A.; da Silveira, J.A.R.; Santos, C.A.G.; da Silva, R.M.; Silva, A.M.; do Nascimento, T.V.M.; Ribeiro, E.L.; de Freitas, P.V.N. Urban forest loss using a GIS-based approach and instruments for integrated urban planning: A case study of João Pessoa, Brazil. J. Geogr. Sci. 2021, 31, 1529–1553. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef]
- Muchelo, R.O. Urban Expansion and Loss of Prime Agricultural Land in Sub-Saharan Africa: A Challenge to Soil Conservation and Food Security. 2017. Available online: https://ses.library.usyd.edu.au/bitstream/handle/2123/18116/Muchelo_RO_thesis_1.pdf?sequence=1 (accessed on 20 October 2021).
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Y. Modeling Urban Expansion and Agricultural Land Conversion in Henan Province, China: An Integration of Land Use and Socioeconomic Data. Sustainability 2016, 8, 920. [Google Scholar] [CrossRef]
- Veach, V.; Moilanen, A.; Di Minin, E. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas. PLoS ONE 2017, 12, e0188397. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Kukkonen, M.O.; Muhammad, M.J.; Käyhkö, N.; Luoto, M. Urban expansion in Zanzibar City, Tanzania: Analyzing quantity, spatial patterns and effects of alternative planning approaches. Land Use Policy 2018, 71, 554–565. [Google Scholar] [CrossRef]
- Jeykumar, R.K.C.; Chandran, S. Impact of urbanization on climate change and geographical analysis of physical land use land cover variation using RS-GIS. Glob. Nest J. 2019, 21, 141–152. [Google Scholar]
- Hou, K.; Wen, J. Quantitative analysis of the relationship between land use and urbanization development in typical arid areas. Environ. Sci. Pollut. Res. 2020, 27, 38758–38768. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Rai, A.; Rai, S.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt. J. Remote Sens. Space Sci. 2020, 23, 133–143. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Zhang, C.; Guo, L.; Zhao, H.; Islam, D.; Liu, Z.; Li, H.; Middleton, G. Modeling urban redevelopment: A novel approach using time-series remote sensing data and machine learning. Geogr. Sustain. 2024, 5, 211–219. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.M.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s national land cover data set for the conterminous United States from Landsat thematic mapper data and ancillary data sources. Photogram. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar]
- Yang, X.; Liu, Z. Using satellite imagery and GIS for land-use and land cover change mapping in an estuarine watershed. Int. J. Remote Sens. 2005, 26, 5275–5296. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis. Remote Sens. Environ. 2013, 133, 251–264. [Google Scholar] [CrossRef]
- Fanan, U.; Dlama, K.I.; Oluseyi, I.O. Urban expansion and vegetal cover loss in and around Nigeria’s Federal Capital City. J. Ecol. Nat. Environ. 2011, 3, 1–10. [Google Scholar]
- Acheampong, M.; Yu, Q.; Enomah, L.D.; Anchang, J.; Eduful, M. Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one–A remote sensing and GIS approach. Land Use Policy 2018, 73, 373–384. [Google Scholar] [CrossRef]
- Oladehinde, G.; Fatusin, A.F.; Ojo, V. Urban Expansion and Loss of Agricultural Land in Osogbo, Osun State Nigeria, using Multi-Temporal Imageries. J. Afr. Real Estate Res. 2019, 4, 139–156. [Google Scholar] [CrossRef]
- Abebe, G.; Getachew, D.; Ewunetu, A. Analysing land use/land cover changes and its dynamics using remote sensing and GIS in Gubalafito district, Northeastern Ethiopia. SN Appl. Sci. 2021, 4, 30. [Google Scholar] [CrossRef]
- Ritu, S.M.; Sarkar, S.K.; Zonaed, H. Prediction of Padma river bank shifting and its consequences on LULC changes. Ecol. Indic. 2023, 156, 111104. [Google Scholar] [CrossRef]
- Selmy, S.A.; Kucher, D.E.; Mozgeris, G.; Moursy, A.R.; Jimenez-Ballesta, R.; Kucher, O.D.; Fadl, M.E.; Mustafa, A.R.A. Detecting, analyzing, and Predicting Land Use/Land Cover (LULC) changes in arid regions using landsat images, CA-Markov Hybrid Model, and GIS techniques. Remote Sens. 2023, 15, 5522. [Google Scholar] [CrossRef]
- Zhu, W.; Jiang, Z.; Cen, L.; Wu, H. Evaluation, simulation, and optimization of land use spatial patterns for high-quality development: A case study of Zhengzhou city, China. J. Geogr. Sci. 2023, 33, 266–288. [Google Scholar] [CrossRef]
- Lou, C.; Al-qaness, M.A.; AL-Alimi, D.; Dahou, A.; Abd Elaziz, M.; Abualigah, L.; Ewees, A.A. Land use/land cover (LULC) classification using hyperspectral images: A review. Geo-Spat. Inf. Sci. 2025, 28, 345–386. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Lin, A.; Fan, H.; Fan, K.; Xie, J.; Luo, W. A review of crowdsourced geographic information for land-use and land-cover mapping: Current progress and challenges. Int. J. Geogr. Inf. Sci. 2024, 38, 2183–2215. [Google Scholar] [CrossRef]
- Al-Dousari, A.E.; Mishra, A.; Singh, S. Land use land cover change detection and urban sprawl prediction for Kuwait metropolitan region, using multi-layer perceptron neural networks (MLPNN). Egypt. J. Remote Sens. Space Sci. 2023, 26, 381–392. [Google Scholar] [CrossRef]
- Aryal, J.; Sitaula, C.; Frery, A.C. Land use and land cover (LULC) performance modeling using machine learning algorithms: A case study of the city of Melbourne Australia. Sci. Rep. 2023, 13, 1351. [Google Scholar] [CrossRef]
- Tesfaye, W.; Elias, E.; Warkineh, B.; Tekalign, M.; Abebe, G. Modeling of land use and land cover changes using google earth engine and machine learning approach: Implications for landscape management. Environ. Syst. Res. 2024, 13, 31. [Google Scholar] [CrossRef]
- Tiafack, O.; Chrétien, N.; Emmanuel, N.N. Development Polarisation in Limbe and Kribi (Littoral Cameroon): Growth Challenges, Lessons from Douala and Options. Curr. Urban Stud. 2014, 2, 361. [Google Scholar] [CrossRef]
- World Bank. Urban Population (% of Total Population)—Cameroon. 2020. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=CM (accessed on 5 October 2021).
- Martin, L.; Hanafi, A.; Mc Grenra, D.; Hurley, J. Republic of the Congo Country Strategic Opportunities Programme. 2019. Available online: https://www.gtai.de/resource/blob/153862/282d1431a8f615691627b464990e6f59/pro201909035039-data.pdf (accessed on 2 October 2021).
- Sally, Z.; Gaskin, S.J.; Folifac, F.; Kometa, S.S. The effect of urbanization on community-managed water supply: Case study of Buea, Cameroon. Community Dev. J. 2014, 49, 524–540. [Google Scholar] [CrossRef]
- Ngoran, S.D.; Xue, X.; Ngoran, B.S. The dynamism between urbanization, coastal water resources and human health: A case study of Douala, Cameroon. J. Econ. Sustain. Dev. 2015, 6, 167–181. [Google Scholar]
- Jaligot, R.; Kemajou, A.; Chenal, J. Cultural ecosystem services provision in response to urbanization in Cameroon. Land Use Policy 2018, 79, 641–649. [Google Scholar] [CrossRef]
- Mbatu, R. Deforestation in the Buea-Limbe and Bertoua regions in southern Cameroon (1984–2000): Modernization, world-systems, and neo-Malthusian outlook. GeoJournal 2010, 75, 443–458. [Google Scholar] [CrossRef]
- Asmare, B.; Neculina, A.; Wubie, A.; Egbe, A.M.; Charleine, D.S.; Ambo, F.B. The impact of land use and land cover change on the stream water quality in Limbe I municipality, Cameroon. Environ. Qual. Manag. 2024, 34, e22254. [Google Scholar] [CrossRef]
- Kajoba, G.M. Land Use and Land Tenure in Africa: Towards an Evolutionary Conceptual Framework; Council for the Development of Social Science Research in Africa: Dakar, Senegal, 2002. [Google Scholar]
- Bjornlund, V.; Bjornlund, H.; Van Rooyen, A.F. Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world—A historical perspective. Int. J. Water Resour. Dev. 2020, 36 (Suppl. 1), S20–S53. [Google Scholar] [CrossRef]
- Nguh, B.S. Land tenure and land use dynamics in Limbe City, Southwest Region of Cameroon. Agric. Sci. Dev. 2013, 2, 14–24. [Google Scholar]
- Njoh, A.J. The land use policy implementation system in Cameroon: Historical/contemporary perspectives and implications for national development. Habitat Int. 1994, 18, 81–98. [Google Scholar] [CrossRef]
- Oyono, P.R. The Narratives of Capitalist Land Accumulation and Recognition in Coastal Cameroon. The Hague. 2013. Available online: https://www.iss.nl/sites/corporate/files/LDPI_WP_29 (accessed on 8 August 2020).
- Njoh, A.J. Planning in Contemporary Africa: The State, Town Planning and Society in Cameroon, 1st ed.; Routledge: England, UK, 2003; pp. 90–97. [Google Scholar] [CrossRef]
- Nkongho, R.N.; Ndjogui, T.E.; Levang, P. History of partnership between agro-industries and oil palm smallholders in Cameroon. OCL 2015, 22, A301. [Google Scholar] [CrossRef]
- Eno, C.O.; Fombe, L.F. Development Implications of Ceded Lands by the Cameroon Development Corporation on Fako Division-Southwest Region of Cameroon from 1960 to 2010. Adv. Soc. Sci. Res. J. 2016, 3, 11. [Google Scholar]
- Dinsi, S.C.; Eyebe, S.A.; Endamana, D. Agri-Business and Logging Investment, Great Ape Conservation and Poverty in Cameroon. 2016. Available online: https://www.povertyandconservation.info/en/pages/cameroon-pclg (accessed on 5 October 2021).
- Makoge, V.; Vaandrager, L.; Maat, H.; Koelen, M. Poverty and health among CDC plantation labourers in Cameroon: Perceptions, challenges and coping strategies. PLoS Neglected Trop. Dis. 2017, 11, e0006100. [Google Scholar] [CrossRef]
- Kofele-Kale, N. Asserting Permanent Sovereignty over Ancestral Lands: The Bakweri Land Litigation against Cameroon. Annu. Surv. Int. Comp. Law 2007, 13, 1. [Google Scholar]
- Awum, D.; Bayie, K.; Fonda, N.L. Mainstreaming Potentials for Sustainable Development in the Limbe Urban Municipality. Yaounde: PAFP. 2001. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.1256&rep=rep1&type=pdf (accessed on 21 August 2020).
- Kimengsi, J.N.; Lambi, J.N.; Gwan, S.A. Reflections on the Role of Plantations in Development: Lessons from the Cameroon Development Corporation (CDC). Reflections, 1. Sustain. Environ. 2016, 1, 1. Available online: www.scholink.org/ojs/index.php/se (accessed on 8 June 2021). [CrossRef]
- Kimengsi, J.N.; Gwan, S.A.; Elinge, L.E. Buea, Cameroon and the Planning Challenges of Peri-Urban Settlements. UGEC Viewpoints 2016. Available online: https://ugecviewpoints.wordpress.com/2016/03/08/buea-cameroon-and-the-planning-challenges-of-peri-urban-settlements/ (accessed on 23 August 2020).
- Anaka, R.E.N. Forest Conservation and Management Practices in Cameroon: Case Study of Bimbia-Bonadikombo Community Forest and Takamanda National Park (Doctoral dissertation, BrandenburgischeTechnische Universität Cottbus-Senftenberg). 2019. Available online: https://core.ac.uk/download/pdf/232185668.pdf (accessed on 28 July 2020).
- Alemagi, D. The oil industry along the Atlantic coast of Cameroon: Assessing impacts and possible solutions. Resour. Policy 2007, 32, 135–145. [Google Scholar] [CrossRef]
- Tata, E.S.; Lambi, C.M. Challenges and opportunities of the Mount Cameroon Forest Region as a national park. J. Int. Wildl. Law Policy 2014, 17, 197–212. [Google Scholar] [CrossRef]
- Enomah, L.D.; Downs, J.; Mbaigoto, N.; Fonda, B.; Umar, M. Flood risk assessment in Limbe (Cameroon) using a GIS weighed sum method. Environ. Dev. Sustain. 2024, 26, 29725–29744. [Google Scholar] [CrossRef]
- BUCREP (Central Bureau of the Census and Population Studies, Cameroon). 2020. Available online: http://www.bucrep.cm/ (accessed on 5 May 2022).
- Ndille, R.; Belle, J.A. Managing the Limbe floods: Considerations for disaster risk reduction in Cameroon. Int. J. Disaster Risk Sci. 2014, 5, 147–156. [Google Scholar] [CrossRef]
- Limbe City Council-Presentation of the city of Limbe 2022. Available online: https://limbe.cm/presentation-of-the-city-of-limbe.html (accessed on 9 August 2022).
- Shinozuka, M.; Mansouri, B. Synthetic aperture radar and remote sensing technologies for structural health monitoring of civil infrastructure systems. In Structural Health Monitoring of Civil Infrastructure Systems; Woodhead Publishing: Sawston, CA, USA, 2009; pp. 113–151. [Google Scholar] [CrossRef]
- Al-Doski, J.; Mansorl, S.B.; Shafri, H.Z.M. Image classification in remote sensing. J. Environ. Earth Sci. 2013, 3, 10. [Google Scholar]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A review on change detection method and accuracy assessment for land use land cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Erbek, F.S.; Özkan, C.; Taberner, M. Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int. J. Remote Sens. 2004, 25, 1733–1748. [Google Scholar] [CrossRef]
- Muavhi, N. Evaluation of effectiveness of supervised classification algorithms in land cover classification using ASTER images-A case study from the Mankweng (Turfloop) Area and its environs, Limpopo Province, South Africa. S. Afr. J. Geomat. 2020, 9, 61–74. [Google Scholar] [CrossRef]
- Buh, G.W. Geographic information systems-based demarcation of risk zones: The case of the Limbe Sub-Division-Cameroon. Jàmbá: J. Disaster Risk Stud. 2009, 2, 54–70. [Google Scholar]
- Crowther, P.; Hartnett, J.; Williams, R.; Pendelbury, S. Developing quality training data for a statistical decision Tree classifier in a spatial environment. In Proceedings of the 4th International Conference on GeoComputation’99, Fredericksburg, VA, USA, 25–28 July 1999; p. 1. [Google Scholar]
- Quantum High-Res vs Mid-Res vs Low-Res: What Type of Satellite Imagery Fits the Bill? 2021. Available online: https://medium.datadriveninvestor.com/high-res-vs-mid-res-vs-low-res-what-type-of-satellite-imagery-fits-the-bill-78cbd45f5d79 (accessed on 6 October 2021).
- Hasmadi, M.; Pakhriazad, H.Z.; Shahrin, M.F. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geogr. Malays. J. Soc. Space 2009, 5, 1–10. [Google Scholar]
- Pistorius, T.; Poona, N. Accuracy assessment of game-based crowdsourced land-use/land cover image classification. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: New York, NY, USA, 2014; pp. 4780–4783. [Google Scholar]
- Ukrainski Pavel. Classification Accuracy Assessment. Confusion Matrix Method. 2016. Available online: http://www.50northspatial.org/classification-accuracy-assessment-confusion-matrix-method/ (accessed on 7 October 2021).
- Tewabe, D.; Fentahun, T. Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environ. Sci. 2020, 6, 1778998. [Google Scholar] [CrossRef]
- Patel, N.; Kaushal, B.K. Improvement of user’s accuracy through classification of principal component images and stacked temporal images. Geo-Spat. Inf. Sci. 2010, 13, 243–248. [Google Scholar] [CrossRef]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef]
- World Bank Group. “Cameroon City Competitiveness Diagnostic,” World Bank Publications—Reports 30164, the World Bank Group 2018. Available online: https://ideas.repec.org/p/wbk/wboper/30164.html (accessed on 17 February 2021).
- Forkuo, E.K.; Frimpong, A. Analysis of Forest Cover Change Detection. Int. J. Remote Sens. Appl. 2012, 2, 82–92. [Google Scholar]
- Dutta, K.; Reddy, C.S.; Sharma, S.; Jha, C.S. Quantification and monitoring of forest cover changes in Agasthyamalai Biosphere Reserve, Western Ghats, India (1920–2012). Curr. Sci. 2016, 110, 508–520. [Google Scholar] [CrossRef]
- Singh, A. Review article digital change detection techniques using remotely sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Monserud, R.A. Methods for Comparing Global Vegetation Maps. 1990. Available online: http://pure.iiasa.ac.at/id/eprint/3413/1/WP-90-040.pdf (accessed on 6 November 2021).
- Ismail, M.H.; Jusoff, K. Satellite data classification accuracy assessment based on reference dataset. Int. J. Comput. Inf. Sci. Eng. 2008, 2, 96–102. [Google Scholar]
- Rientjes, T.H.M.; Haile, A.T.; Kebede, E.; Mannaerts, C.M.M.; Habib, E.; Steenhuis, T.S. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin–Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 1979–1989. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 1–15. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 113. [Google Scholar] [CrossRef]
- Simon, L.N.; Ernesta, N.N. Land Use Patterns and Vegetation Cover Changes in Coastal Precinct of the Mount Cameroon Landscape. J. Environ. Sci. Toxicol. Food Technol. 2018, 12, 2319–2399. [Google Scholar]
- Minang, P.A. Implementing Global Environmental Policy at Local Level: Community Carbon Forestry Perspectives in Cameroon. ITC. 2007. Available online: https://ris.utwente.nl/ws/files/6084846/thesis_Minang.pdf (accessed on 28 July 2020).
- Watts, J.; Akogo, G.M. Biodiversity assessment and developments towards participatory forest management on Mount Cameroon. Commonwealth. For. Rev. 1994, 73, 221–230. [Google Scholar]
- Abam, E.N.; Prince, G.T.T. Showcasing the Cultural Potential of its Municipality A Case Study of the Limbe City Council, Southwest Region; Cameroon. Ann. Soc. Sci. Manag. Stud. 2018, 1, 67–69. [Google Scholar]
- Van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Simon, D. Urban environments: Issues on the peri-urban fringe. Annu. Rev. Environ. Resour. 2008, 33, 167–185. [Google Scholar] [CrossRef]
- Cohen, M.J.; Garrett, J.L. The food price crisis and urban food (in) security. Environ. Urban. 2010, 22, 467–482. [Google Scholar] [CrossRef]
Dataset | Year | Sources | Population | Sources |
---|---|---|---|---|
Landsat 4 and 5 Thematic Mapper | 1986 | USGS | 44,561 | [65] |
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) | 2002 | USGS | 105,681 | [56] |
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) | 2013 | USGS | 139,320 | [80] |
Landsat 8 OLI/TIRS | 2020 | USGS | 247,321 | [65] |
1986 | 2002 | 2013 | 2020 | |||||
---|---|---|---|---|---|---|---|---|
Overall Accuracy (%) | 93.4 | 89.2 | 91.7 | 94.6 | ||||
Kappa Coefficient | 0.9 | 0.8 | 0.9 | 0.9 | ||||
LULC | PA | UA | PA | UA | PA | UA | PA | UA |
Agriculture | 95 | 83.8 | 74.2 | 76.5 | 85 | 95.7 | 95.9 | 86.2 |
Forest | 82 | 92.6 | 93.8 | 83.5 | 96.8 | 80.6 | 97.7 | 94.3 |
Urban | 100 | 98.4 | 100 | 100 | 100 | 93.8 | 100 | 96.1 |
Water | 96.7 | 100 | 96.3 | 100 | 95 | 100 | 90.3 | 100 |
LULC | 1986 | 2002 | 2013 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | |
Agriculture | 11.2 | 21.1 | 15.4 | 29.0 | 18.9 | 35.6 | 15.8 | 29.7 |
Forest | 31.9 | 60.2 | 27.2 | 51.3 | 17.4 | 32.8 | 15.0 | 28.2 |
Urban | 9.4 | 17.6 | 10.0 | 18.9 | 16.2 | 30.4 | 22.0 | 41.5 |
Water | 0.6 | 1.0 | 0.4 | 0.8 | 0.6 | 1.1 | 0.3 | 0.5 |
LULC | 1986–2002 | 2002–2013 | 2013–2020 | 1986–2020 |
---|---|---|---|---|
Agriculture | 4.2 | 3.5 | −3.1 | 4.6 |
Forest | −4.7 | −9.8 | −2.4 | −17.0 |
Urban | 0.7 | 6.1 | 5.9 | 12.7 |
Water | −0.1 | 0.2 | −0.3 | −0.3 |
Final | Initial | |||||
1986 | ||||||
Agriculture | Forest | Urban | Water | |||
2002 | Agriculture | 3.7 | 10.3 | 1.5 | ||
Forest | 6.9 | 19.4 | 0.8 | 0.1 | ||
Urban | 0.7 | 2.2 | 7.1 | 0.0 | ||
Water | 0.0 | 0.4 | ||||
2002 | ||||||
2013 | Agriculture | 7.0 | 11.0 | 0.9 | ||
Forest | 4.1 | 13.3 | 0.1 | |||
Urban | 4.3 | 2.8 | 9.0 | 0.0 | ||
Water | 0.0 | 0.2 | 0.0 | 0.4 | ||
2013 | ||||||
2020 | Agriculture | 7.8 | 6.2 | 1.8 | 0.1 | |
Forest | 5.0 | 9.5 | 0.4 | |||
Urban | 6.1 | 1.7 | 14.0 | 0.3 | ||
Water | 0.0 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deba Enomah, L.; Downs, J.; Acheampong, M.; Yu, Q.; Tanyi, S. Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon. Remote Sens. 2025, 17, 2631. https://doi.org/10.3390/rs17152631
Deba Enomah L, Downs J, Acheampong M, Yu Q, Tanyi S. Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon. Remote Sensing. 2025; 17(15):2631. https://doi.org/10.3390/rs17152631
Chicago/Turabian StyleDeba Enomah, Lucy, Joni Downs, Michael Acheampong, Qiuyan Yu, and Shirley Tanyi. 2025. "Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon" Remote Sensing 17, no. 15: 2631. https://doi.org/10.3390/rs17152631
APA StyleDeba Enomah, L., Downs, J., Acheampong, M., Yu, Q., & Tanyi, S. (2025). Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon. Remote Sensing, 17(15), 2631. https://doi.org/10.3390/rs17152631