Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Computational Model
3. Results and Discussion
3.1. Key Parameter Values
3.1.1. Wind Speed, Temperature, and Precipitation
3.1.2. Vegetation Coverage Factor
3.1.3. Climate Factor and Thorn Thwaite Precipitation–Evaporation Index
3.1.4. Soil Types in Bazhou
3.2. The Characteristic of the Emission Factor
3.2.1. Spatial Distribution Characteristic
3.2.2. Temporal Variation Characteristics
3.3. The Characteristic of SFD Emissions
Study Area | Year | Soil Dust Emission Intensity (t·km−2) | Source |
---|---|---|---|
Bazhou | 2021 | 5.15 | This study |
Yizhou District | 2021 | 4.27 | [47] |
Hami | 2021 | 0.74 | [47] |
Kashgar | 2021 | 1.39 | [47] |
BTH | 2019 | 0.04 | [45] |
“2 + 26” | 2018 | 0.54 | [40] |
Xining | 2018 | 0.17 | [48] |
Beijing | 2017 | 0.14 | [35] |
Tianjin | 2017 | 0.22 | [49] |
Daxing | 2021 | 0.02 | [46] |
3.4. Correlation Analysis
3.5. Uncertainty Analysis
4. Conclusions
- (1)
- This study reveals that Bazhou experiences high emission factors from soil wind erosion, with mean values for TSP, PM10, and PM2.5 of 55.46 t km−2 a−1, 27.73 t km−2 a−1, and 4.14 t km−2 a−1, respectively, during 2001–2022. Counties such as Yuli, Qiemo, and Ruoqiang consistently exhibited elevated emission factors. Substantial spatial heterogeneity was observed, with the highest values concentrated in central areas and around the Taklimakan Desert. Over time, soil dust emission factors showed a general upward trend, reaching their lowest levels around 2012, followed by a marked and statistically significant increase in most counties from 2012 to 2022.
- (2)
- From 2001 to 2022, the annual average emissions of TSP, PM10, and PM2.5 from soil sources in Bazhou were 3.23 × 107 t, 1.61 × 107 t, and 2.41 × 106 t, respectively. Emissions were highest in Ruoqiang, Qiemo, and Yuli, and lowest in Bohu, Hejing, and Korla. Bare land was the predominant source of TSP emissions, accounting for 72.55% of the total in Bazhou. Grasslands contributed 25.29%, while cropland and forest land accounted for 1.19% and 0.97% of the total, respectively. Both total emissions and emission factors in Bazhou have generally increased over the past decade, with significant rises in soil dust emissions observed across all counties—primarily driven by desert regions such as Ruoqiang, Qiemo, and Yuli.
- (3)
- Over the past two decades, TSP, PM10, and PM2.5 emissions from soil dust sources in Bazhou have been primarily regulated by meteorological variables, with precipitation exerting the most decisive influence. The analysis demonstrates substantial spatial heterogeneity in the drivers of soil wind erosion and PM10 emissions throughout Bazhou. In Ruoqiang, Bohu, Korla, and Qiemo, precipitation is the principal limiting factor, but arid conditions and sparse vegetation amplify the role of wind speed in dust emissions. In Heshuo, Hejing, and Yanqi, the impact of wind speed is greatly diminished due to stable vegetation cover, which enhances soil resistance to erosion. Yuli is distinguished by wind speed and temperature, reflecting the county’s extensive bare soils and severe aridity. In Luntai, precipitation remains the primary constraint on PM10 emissions. However, temperature also plays a substantial role.
- (4)
- The impact of anthropogenic activities on soil wind erosion and dust emissions in Bazhou was most evident in Hejing, where cropland expansion significantly increased PM10 emissions, while the presence of forested areas effectively mitigated these emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Bazhou | Bayingolin Mongol Autonomous Prefecture |
BTH | Beijing–Tianjin–Hebei |
EFs | Emission factors |
SFD | Soil fugitive dust |
SWEI | Soil wind erosion index |
WEQ | Wind erosion equation |
Appendix A
County | Loam | Sandy Loam | Silt Loam | Loamy Sand | Clay | Sandy Clay Loam | Sand | Clay Loam | Silty Clay | SUM |
---|---|---|---|---|---|---|---|---|---|---|
Luntai | 67.19% | 11.97% | 0.49% | 0.96% | 0.37% | 1.78% | 15.81% | 1.36% | 0.07% | 100.00% |
Yuli | 37.27% | 7.86% | 0.04% | 0.03% | 0.59% | 2.04% | 51.79% | 0.25% | 0.13% | 100.00% |
Ruoqiang | 44.52% | 24.16% | 0.15% | 0.18% | 0.09% | 3.96% | 26.25% | 0.43% | 0.27% | 100.00% |
Qiemo | 19.62% | 28.28% | 0.10% | 0.11% | 0.06% | 8.41% | 42.83% | 0.56% | 0.02% | 100.00% |
Yanqi | 73.61% | 18.54% | 0.79% | 0.54% | 1.37% | 0.33% | 2.99% | 1.83% | 0.00% | 100.00% |
Hejing | 45.87% | 52.08% | 0.57% | 0.30% | 0.12% | 0.14% | 0.57% | 0.33% | 0.02% | 100.00% |
Heshuo | 62.37% | 29.35% | 0.42% | 0.57% | 0.10% | 0.41% | 6.00% | 0.78% | 0.00% | 100.00% |
Bohu | 44.53% | 26.24% | 0.22% | 0.18% | 0.26% | 0.48% | 26.68% | 1.40% | 0.00% | 100.00% |
Korla | 51.40% | 9.41% | 0.51% | 0.47% | 0.53% | 0.24% | 30.49% | 6.84% | 0.09% | 100.00% |
Parameter | Test Methods | County 1-County 2 | p | Results |
---|---|---|---|---|
Annual mean NDVI | The Kruskal–Wallis test, with confidence of 95% | Qiemo–Ruoqiang | 0.336 | Non-significant differences |
Heshuo–Luntai | 0.054 | Non-significant differences | ||
All the rest of the counties | 0 | Significant difference | ||
EF of PM10 | The Kruskal–Wallis test, with confidence of 95% | Luntai–Yanqi | 0.058 | Non-significant differences |
Luntai–Heshuo | 0.959 | |||
Luntai–Bohu | 0.223 | |||
Ruoqiang–Qiemo | 0.093 | |||
Yanqi–Heshuo | 1 | |||
Bohu–Korla | 1 | |||
All the rest of the counties | 0 | Significant difference | ||
Emission of PM50 | The Kruskal–Wallis test, with confidence of 95% | All the rest of the counties | 0 | Significant difference |
Emission of PM10 | All the rest of the counties | 0 | Significant difference | |
Emission of PM2.5 | All the rest of the counties | 0 | Significant difference | |
Annual mean temperature | The Freedman test, with confidence of 95% | Bohu–Qiemo | 1 | Non-significant differences |
All the rest of the counties | 0 | Significant difference | ||
Annual | The Freedman test, with confidence of 95% | Yanqi–Heshuo | 0.905 | Non-significant differences |
All the rest of the counties | 0 | Significant difference | ||
Annual mean wind speed | The Freedman test, with confidence of 95% | All the rest of the counties | 0 | Significant difference |
References
- Huang, J.; Wang, T.; Wang, W.; Li, Z.; Yan, H. Climate Effects of Dust Aerosols over East Asian Arid and Semiarid Regions. J. Geophys. Res. Atmos. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Meng, H.; Wang, F.; Bai, G.; Li, H. A Study on Dust Storm Pollution and Source Identification in Northwestern China. Toxics 2025, 13, 33. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Zhang, J.; Yu, J.; Chen, L.; Sun, Y.; Mao, J.; Zhang, H.; Ma, Z.; Yang, W.; et al. Soil-Derived Dust PM10 and PM2.5 Fractions in Southern Xinjiang, China, Using an Artificial Neural Network Model. Atmosphere 2023, 14, 1644. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, D.; Huang, J.; He, J.; Chen, Y.; Chen, J.; Bi, H.; Lou, G.; Du, S.; Zhang, Y. Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023. Adv. Atmos. Sci. 2023, 40, 1549–1557. [Google Scholar] [CrossRef]
- Li, J.; He, Q.; Wang, Y.; Ma, X.; Zhang, X.; Li, Y. Three-Dimensional Structure and Transport Properties of Dust Aerosols in Central Asia—New Insights from CALIOP Observations, 2007–2022. Remote Sens. 2024, 16, 2049. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Li, J.; Jia, R.; Jiang, N.; Kang, L.; Ma, X.; Xie, T. Comparison of Dust Emissions, Transport, and Deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci. 2017, 60, 1338–1355. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Yang, X.-H.; Yang, F.; Lei, J.-Q.; Ali, M.; Li, S.-Y.; Liu, L.-Y.; Xue, Y.-B.; Wang, Z.-F.; Tian, W.-J. Windblown Dust in the Tarim Basin, Northwest China. Sci. Rep. 2025, 15, 11209. [Google Scholar] [CrossRef] [PubMed]
- Aghababaeian, H.; Ostadtaghizadeh, A.; Ardalan, A.; Asgary, A.; Akbary, M.; Yekaninejad, M.S.; Stephens, C. Global Health Impacts of Dust Storms: A Systematic Review. Environ. Health Insights 2021, 15, 1–28. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Lin, J.; Huang, J.; Zhao, D.; Yuan, T.; Huang, K.; Luo, Y.; Jia, Z.; Zang, Z.; et al. Fugitive Road Dust PM2.5 Emissions and Their Potential Health Impacts. Environ. Sci. Technol. 2019, 53, 8455–8465. [Google Scholar] [CrossRef]
- Guo, J.; Yin, Y.; Wang, Y.; Kang, H.; Xiao, H.; Chen, K.; Hao, J. Numerical Study of the Dust Distribution, Source and Sink, and Transport Features over East Asia. China Environ. Sci. 2017, 3, 801–812. [Google Scholar]
- Xing, Y.; Chen, Y.; Yan, S.; Cao, X.; Zhou, Y.; Zhang, X.; Shi, T.; Niu, X.; Wu, D.; Cui, J. Dust Storms from the Taklamakan Desert Significantly Darken Snow Surface on Surrounding Mountains. Atmos. Chem. Phys. 2024, 24, 5199–5219. [Google Scholar] [CrossRef]
- Liu, J.; Ding, J.; Rexiding, M.; Li, X.; Zhang, J.; Ran, S.; Bao, Q.; Ge, X. Characteristics of Dust Aerosols and Identification of Dust Sources in Xinjiang, China. Atmos. Environ. 2021, 262, 118651. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yin, Z.-Y. The Impacts of Taklimakan Dust Events on Chinese Urban Air Quality in 2015. Atmosphere 2018, 9, 281. [Google Scholar] [CrossRef]
- Gao, C.; Liu, M. The Impact of Local Environment and Neighboring Pollution on the Spatial Variation of Particulate Matter in Chinese Mainland. Atmosphere 2023, 14, 186. [Google Scholar] [CrossRef]
- Liu, Y.; Teng, Y.; Liang, S.; Li, X.; Zhao, J.; Shan, M.; Chen, L.; Yu, H.; Mao, J.; Zhang, H.; et al. Establishment of PM10 and PM2.5 Emission Inventories from Wind Erosion Source and Simulation of Its Environmental Impact Based on WEPS-Models3 in Southern Xinjiang, China. Atmos. Environ. 2021, 248, 118222. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, X.; Lei, J. Characteristics of Dust Weather in the Tarim Basin from 1989 to 2021 and Its Impact on the Atmospheric Environment. Remote Sens. 2023, 15, 1804. [Google Scholar] [CrossRef]
- Zhang, G.; Azorin-Molina, C.; Shi, P.; Lin, D.; Guijarro, J.A.; Kong, F.; Chen, D. Impact of Near-Surface Wind Speed Variability on Wind Erosion in the Eastern Agro-Pastoral Transitional Zone of Northern China, 1982–2016. Agric. For. Meteorol. 2019, 271, 102–115. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Guerschman, J.P.; Thomas, D.T.; Mata, G.; Handcock, R.N.; Leys, J.F.; Butler, H.J. Improving Ground Cover Monitoring for Wind Erosion Assessment Using MODIS BRDF Parameters. Remote Sens. Environ. 2018, 204, 756–768. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Leys, J.F.; Waters, C.M.; Orgill, S.; Eyres, M.J. Minimising Soil Organic Carbon Erosion by Wind Is Critical for Land Degradation Neutrality. Environ. Sci. Policy 2019, 93, 43–52. [Google Scholar] [CrossRef]
- Okin, G.S.; Gillette, D.A. Distribution of Vegetation in Wind-dominated Landscapes: Implications for Wind Erosion Modeling and Landscape Processes. J. Geophys. Res. Atmos. 2001, 106, 9673–9683. [Google Scholar] [CrossRef]
- Aili, A.; Oanh, N.T.K.; Abuduwaili, J. Variation Trends of Dust Storms in Relation to Meteorological Conditions and Anthropogenic Impacts in the Northeast Edge of the Taklimakan Desert, China. Open J. Air Pollut. 2016, 5, 127. [Google Scholar] [CrossRef]
- An, L.; Che, H.; Xue, M.; Zhang, T.; Wang, H.; Wang, Y.; Zhou, C.; Zhao, H.; Gui, K.; Zheng, Y. Temporal and Spatial Variations in Sand and Dust Storm Events in East Asia from 2007 to 2016: Relationships with Surface Conditions and Climate Change. Sci. Total Environ. 2018, 633, 452–462. [Google Scholar] [CrossRef]
- Wu, C.; Lin, Z.; Liu, X.; Li, Y.; Lu, Z.; Wu, M. Can Climate Models Reproduce the Decadal Change of Dust Aerosol in East Asia? Geophys. Res. Lett. 2018, 45, 9953–9962. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Sepehr, A. Statistical Evaluation of the Dust Events at Selected Stations in Southwest Asia: From the Caspian Sea to the Arabian Sea. Catena 2018, 165, 590–603. [Google Scholar] [CrossRef]
- Song, H.; Zhang, K.; Piao, S.; Wan, S. Spatial and Temporal Variations of Spring Dust Emissions in Northern China over the Last 30 Years. Atmos. Environ. 2016, 126, 117–127. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X. Loss and Conservation of Soil Organic Carbon and Nutrients in Arid and Semiarid China during Aeolian Dust Emissions. Soil Tillage Res. 2024, 235, 105910. [Google Scholar] [CrossRef]
- Xuan, J.; Liu, G.; Du, K. Dust Emission Inventory in Northern China. Atmos. Environ. 2000, 34, 4565–4570. [Google Scholar] [CrossRef]
- Panebianco, J.; Buschiazzo, D.E. Erosion Predictions with the Wind Erosion Equation (WEQ) Using Different Climatic Factors. Land Degrad. Dev. 2008, 19, 36–44. [Google Scholar] [CrossRef]
- Mandakh, N.; Tsogtbaatar, J.; Dash, D.; Khudulmur, S. Spatial Assessment of Soil Wind Erosion Using WEQ Approach in Mongolia. J. Geogr. Sci. 2016, 26, 473–483. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, N.; Yan, Q.; Zhang, R.; Chen, L.; Li, S. Research on Emission Inventory of Bareness Wind Erosion Dust in Zhengzhou. Environ. Pollut. Control 2016, 38, 22–27. [Google Scholar]
- Woodruff, N.P.; Siddoway, F. A Wind Erosion Equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- NP, S.E.W. Wind Erosion Forces in the United States and Their Use in Predicting Soil Loss. In Agriculture Handbook; Agricultural Research Service: Beltsville, MD, USA, 1968. [Google Scholar]
- Fryrear, D.; Sutherland, P.; Davis, G.; Hardee, G.; Dollar, M. Wind Erosion Estimates with RWEQ and WEQ. In Proceedings of the Conference Sustaining the Global Farm, 10th International Soil Conservation Organization Meeting; Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN, USA, 24–29 May 1999. [Google Scholar]
- Ministry of Environmental Protection. Available online: https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm (accessed on 16 May 2024).
- Li, B.; Huang, Y.; Bi, X.; Liu, L.; Qin, J. Localization of Soil Wind Erosion Dust Emission Factor in Beijing. Environ. Sci. 2020, 41, 2609–2616. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, B.; Wang, S.; Tao, H. An Estimation Method of Soil Wind Erosion in Inner Mongolia of China Based on Geographic Information System and Remote Sensing. J. Arid. Land 2015, 7, 304–317. [Google Scholar] [CrossRef]
- Li, T.; Dong, W.; Dai, Q.; Feng, Y.; Bi, X.; Zhang, Y.; Wu, J. Application and Validation of the Fugitive Dust Source Emission Inventory Compilation Method in Xiong’an New Area, China. Sci. Total Environ. 2021, 798, 149114. [Google Scholar] [CrossRef]
- Wang, P.; Chen, M.; An, W.; Liu, Y.; Pan, F. Research on the Fugitive Soil Dust Emission Inventory in Western China Based on Wind Erosion Equation Parameter Optimization. Front. Environ. Sci. 2023, 11, 1301934. [Google Scholar] [CrossRef]
- Resource and Environmental Science Data Platform. Available online: https://www.resdc.cn/ (accessed on 29 October 2024).
- Li, T.; Bi, X.; Dai, Q.; Wu, J.; Zhang, Y.; Feng, Y. Optimized Approach for Developing Soil Fugitive Dust Emission Inventory in “2+26” Chinese Cities. Environ. Pollut. 2021, 285, 117521. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. The Climates of North America: According to a New Classification. Geogr. Rev. 1931, 21, 633–655. [Google Scholar] [CrossRef]
- Lyles, L. Erosive Wind Energy Distributions and Climatic Factors for the West. J. Soil Water Conserv. 1983, 38, 106–109. [Google Scholar] [CrossRef]
- Xuan, J. Dust Emission Factors for Environment of Northern China. Atmos. Environ. 1999, 33, 1767–1776. [Google Scholar] [CrossRef]
- Tian, M.; Gao, J.; Zhang, L.; Zhang, H.; Feng, C.; Jia, X. Effects of Dust Emissions from Wind Erosion of Soil on Ambient Air Quality. Atmos. Pollut. Res. 2021, 12, 101108. [Google Scholar] [CrossRef]
- Zhao, Z.; Qi, Y.; Han, R.; Xiao, N.; Li, J. Changes in the Emission of Dust Particles from Soil in the Beijing-Tianjin-Hebei Region in the Past 20 Years. Acta Ecol. Sin. 2022, 42, 7910–7920. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Liu, S.; Zhao, J.; Zhao, B.; Zhou, F.; Zhu, D.; Wang, D.; Yu, L.; Yi, L.; et al. Emission Inventory of Soil Fugitive Dust Sources with High Spatiotemporal Resolution: A Case Study of Daxing District, Beijing, China. Land 2024, 13, 1991. [Google Scholar] [CrossRef]
- Bai, W.; Li, X.; Zhang, H.; Wang, J.; Zhao, X.; Lai, X.; Hong, W.; Jiang, Y. Construction of Emission Inventory and Temporal-Spatial Distribution of Soil Fugitive Dust in Typical Oasis Cities. Acta Sci. Nat. Univ. Pekin. 2025, 61, 217–226. [Google Scholar] [CrossRef]
- Lin, Y.; Ji, Y.; Lin, Z.; Gao, Y.; Yang, Y.; Xu, X. Construction of Emission Inventory and Temporal-Spatial Distribution of Soil Fugitive Dust in Xining, China. Environ. Chem. 2022, 41, 4006–4015. [Google Scholar] [CrossRef]
- Li, T.; Bi, X.; Dai, Q.; Liu, B.; Han, Y.; You, H.; Wang, L.; Zhang, J.; Cheng, Y.; Zhang, Y. Improving Spatial Resolution of Soil Fugitive Dust Emission Inventory Using RS-GIS Technology: An Application Case in Tianjin, China. Atmos. Environ. 2018, 191, 46–54. [Google Scholar] [CrossRef]
- He, J.; Cai, Q.; Cao, W. Wind Tunnel Study of Multiple Factors Affecting Wind Erosion from Cropland in Agro-Pastoral Area of Inner Mongolia, China. J. Mt. Sci. 2013, 10, 68–74. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Yuan, L.; Kong, R.; Han, S.; Han, W.; Li, J. Longer Dust Events over Northwest China from 2015 to 2022. Atmos. Res. 2024, 304, 107365. [Google Scholar] [CrossRef]
- Pajouhesh, M.; Gharahi, N.; Iranmanesh, M.; Cornelis, W.M. Effects of Vegetation Pattern and of Biochar and Powdery Soil Amendments on Soil Loss by Wind in a Semi-arid Region. Soil Use Manag. 2020, 36, 704–713. [Google Scholar] [CrossRef]
- Ebrahimi-Khusfi, Z.; Soleimani Sardoo, M. Recent Changes in Physical Properties of the Land Surface and Their Effects on Dust Events in Different Climatic Regions of Iran. Arab. J. Geosci. 2021, 14, 287. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z.; Zhang, S.; Jin, D.; Yang, C.; Melnikov, A.; Zhai, J. Self-Weighting of the Overlying Soil Horizon Catalyzed by Freeze–Thaw Cycles Leads to Silt Particle Enrichment in the Soil Profile. Catena 2024, 237, 107815. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C. Sensitivity of Soil Dust Emissions to Driving Factor Variability in Earth’s Main Drylands. Geoderma 2024, 445, 116876. [Google Scholar] [CrossRef]
Soil Texture Type | TSP | PM10 | PM2.5 |
---|---|---|---|
Sand | 4.44 | 2.22 | 0.33 |
Loamy sand | 3.00 | 1.50 | 0.23 |
Sandy loam | 4.06 | 2.03 | 0.30 |
Loam | 8.26 | 4.13 | 0.62 |
Silt loam | 4.31 | 2.16 | 0.32 |
Silt | 0.68 | 0.34 | 0.05 |
Sandy clay loam | 5.13 | 2.57 | 0.38 |
Clay loam | 2.63 | 1.32 | 0.20 |
Silty clay loam | 3.50 | 1.75 | 0.26 |
Sandy clay | 1.25 | 0.63 | 0.09 |
Silty clay | 1.55 | 0.77 | 0.12 |
Clay | 1.55 | 0.77 | 0.12 |
Emission Factors/(t km−2 a−1) | |||
---|---|---|---|
TSP | PM10 | PM2.5 | |
Luntai | 45.21 | 22.61 | 3.39 |
Yuli | 130.08 | 65.04 | 9.72 |
Ruoqiang | 65.55 | 32.78 | 4.90 |
Qiemo | 73.93 | 36.97 | 5.50 |
Yanqi | 37.21 | 18.6 | 2.79 |
Hejing | 6.03 | 3.01 | 0.45 |
Heshuo | 38.81 | 19.41 | 2.90 |
Bohu | 49.68 | 24.84 | 3.71 |
Korla | 52.66 | 26.33 | 3.94 |
Bazhou | 55.46 | 27.73 | 4.14 |
County | Change in EFs from 2001 to 2012/(t km−2 a−1) | Change in EFs from 2012 to 2022/(t km−2 a−1) | Change in EFs from 2001 to 2022/(t km−2 a−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
TSP | PM10 | PM2.5 | TSP | PM10 | PM2.5 | TSP | PM10 | PM2.5 | |
Luntai | 0.007 | 3.20 × 10−3 | 4.62 × 10−4 | 0.028 | 1.64 × 10−2 | 2.09 × 10−3 | 0.65 | 3.24 × 10−1 | 4.85 × 10−2 |
Yuli | −0.019 | −9.30 × 10−3 | −1.40 × 10−3 | 0.033 | 1.14 × 10−2 | 2.47 × 10−3 | 0.54 | 2.70 × 10−1 | 4.03 × 10−2 |
Ruoqiang | −0.010 | −4.80 × 10−3 | −7.05 × 10−4 | 0.023 * | 1.01 × 10−2 * | 1.72 × 10−3 * | 0.65 | 3.25 × 10−1 | 4.85 × 10−2 |
Qiemo | −0.008 | −4.20 × 10−3 | −5.92 × 10−4 | 0.020 | 5.10 × 10−3 | 1.52 × 10−3 | 0.58 | 2.88 × 10−1 | 4.29 × 10−2 |
Yanqi | −0.001 | −5.00 × 10−4 | −6.10 × 10−5 | 0.010 | 8.00 × 10−4 | 7.68 × 10−4 | 0.001 | 6.35 × 10−4 | 9.51 × 10−5 |
Hejing | 0.001 | 6.00 × 10−4 | 8.60 × 10−5 | 0.002 | 3.70 × 10−3 | 9.20 × 10−5 | 0.02 | 1.01 × 10−2 | 1.51 × 10−3 |
Heshuo | 0.0004 | −5.00 × 10−4 | −4.20 × 10−5 | 0.008 | 6.60 × 10−3 | 5.85 × 10−4 | 0.11 | 5.61 × 10−2 | 8.40 × 10−3 |
Bohu | −0.004 | −1.70 × 10−3 | −2.97 × 10−4 | 0.014 * | 6.70 × 10−3 * | 9.94 × 10−4 * | 0.26 | 1.31 × 10−1 | 1.96 × 10−2 |
Korla | −0.005 | −2.40 × 10−3 | −3.65 × 10−4 | 0.013 * | 8.40 × 10−3 * | 1.01 × 10−3 * | 0.01 | 6.27 × 10−3 | 9.39 × 10−4 |
Bazhou | −0.004 | −2.20 × 10−3 | −3.23 × 10−4 | 0.017 * | 1.64 × 10−2 * | 1.25 × 10−3 * | 0.31 | 1.56 × 10−1 | 2.34 × 10−2 |
County | Emissions/(t a−1) | Change in PM10 Emissions from 2001 to 2022/(t a−1) | ||||
---|---|---|---|---|---|---|
TSP | PM10 | PM2.5 | 2001 to 2022 | 2001 to 2012 | 2012 to 2022 | |
Luntai | 6.36 × 105 | 3.18 × 105 | 4.76 × 104 | 1.73 × 104 | 6.17 × 103 * | 5.09 × 104 * |
Yuli | 7.66 × 106 | 3.83 × 106 | 5.72 × 105 | 5.89 × 104 | −6.82 × 103 * | 1.49 × 105 * |
Ruoqiang | 1.27 × 107 | 6.33 × 106 | 9.45 × 105 | 1.40 × 105 | −3.25 × 104 * | 3.64 × 105 * |
Qiemo | 1.01 × 107 | 5.05 × 106 | 7.52 × 105 | 1.08 × 105 | −2.29 × 104 * | 2.73 × 105 * |
Yanqi | 8.48 × 104 | 4.24 × 104 | 6.35 × 103 | 3.09 × 102 | −1.38 × 102 | 1.83 × 103 * |
Hejing | 1.88 × 105 | 9.39 × 104 | 1.40 × 104 | 2.30 × 103 | 1.08 × 103 * | 5.78 × 103 * |
Heshuo | 4.83 × 105 | 2.41 × 105 | 3.61 × 104 | 4.64 × 103 | −1.52 × 103 * | 1.44 × 104 * |
Bohu | 1.27 × 105 | 6.34 × 104 | 9.48 × 103 | 5.69 × 102 | −2.04 × 102 | 1.86 × 103 * |
Korla | 3.47 × 105 | 1.73 × 105 | 2.60 × 104 | 1.28 × 103 | −2.98 × 102 | 3.09 × 103 * |
Bazhou | 3.23 × 107 | 1.61 × 107 | 2.41 × 106 | 3.63 × 105 | −1.45 × 104 * | 8.88 × 105 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Li, F.; Yang, Y.; Ma, T.; Chen, J. Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022). Atmosphere 2025, 16, 911. https://doi.org/10.3390/atmos16080911
Zhu S, Li F, Yang Y, Ma T, Chen J. Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022). Atmosphere. 2025; 16(8):911. https://doi.org/10.3390/atmos16080911
Chicago/Turabian StyleZhu, Shuang, Fang Li, Yue Yang, Tong Ma, and Jianhua Chen. 2025. "Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022)" Atmosphere 16, no. 8: 911. https://doi.org/10.3390/atmos16080911
APA StyleZhu, S., Li, F., Yang, Y., Ma, T., & Chen, J. (2025). Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022). Atmosphere, 16(8), 911. https://doi.org/10.3390/atmos16080911