Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Study Methods
2.3.1. CA-ANN Model
2.3.2. Validation of Predictive Model Accuracy
2.3.3. The InVEST Model Quantifies Carbon Stocks
2.3.4. The Theil–Sen Median Trend Analysis and Mann–Kendall Tests
2.3.5. Spatial Autocorrelation Analysis
2.3.6. Geographical Detector Model
3. Results
3.1. Land Cover Change in Guiyang
3.2. Land Cover Prediction and Validation Based on CA-ANN
3.3. Prediction of Land Cover Change in Guiyang
3.4. Characteristics of Carbon Stock Changes
3.4.1. Time Series Characteristics of Carbon Stocks
3.4.2. Spatial Characteristics of Carbon Stocks
3.5. Driving Factors of Carbon Stock Changes
4. Discussion
4.1. Dynamic Changes in Land Cover and Their Impact on Carbon Stocks
4.2. Determinants of Spatial Variation in Carbon Stocks
4.3. Uncertainty Analysis of Land Cover Prediction and Carbon Stocks Estimation
5. Conclusions
- From 2000 to 2020, forest was the dominant land cover type in Guiyang, encompassing a total land cover change area of 250.02 km2 and an increase of 179.78 km2 in impervious surfaces, primarily resulting from the conversion of cropland and forest.
- Machine learning prediction models demonstrated good applicability and high accuracy in Guiyang, with Kappa coefficients exceeding 0.91 and overall accuracy surpassing 93.99%. Impervious surfaces are projected to continue expanding in the study area through 2035.
- From 2000 to 2035, carbon stocks in Guiyang will first increase and then decrease, demonstrating a regional distribution of elevated values in the west and north and diminished values in the central and southern areas. The expansion of impervious surfaces will further reduce carbon stocks, and changes in carbon stocks showed high consistency with land cover changes both temporally and spatially. The spatial distribution of carbon stocks in the study area remains predominantly stable.
- Natural factors dominated the spatial differentiation of carbon stocks. The dynamic changes in carbon stocks were driven by multiple factors acting synergistically, with NDVI being the strongest individual driver. AAT and NDVI were the most important interactive drivers, and the interaction between NDVI and POP continued to strengthen its influence on carbon stocks.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McCarthy, J.J. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Wei, W.; Hao, S.; Yao, M.; Chen, W.; Wang, S.; Wang, Z.; Wang, Y.; Zhang, P. Unbalanced economic benefits and the electricity-related carbon emissions embodied in China’s interprovincial trade. J. Environ. Manag. 2020, 263, 110390. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, G.; Meyer-Jacob, C.; Huang, L.; Liu, X.; Huang, G.; Klamt, A.-M.; Smol, J.P. Land-use and climate controls on aquatic carbon cycling and phototrophs in karst lakes of southwest China. Sci. Total Environ. 2021, 751, 141738. [Google Scholar] [CrossRef]
- Dong, H.; Liu, Y.; Zhao, Z.; Tan, X.; Managi, S. Carbon neutrality commitment for China: From vision to action. Sustain. Sci. 2022, 17, 1741–1755. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.O.; Nava, L.F.; Estrada, F.; Calderón-Bustamante, O.; Martínez-Meyer, E.; Carabias, J.; Larralde-Corona, A.H.; Barrios, M.; Pardo-Villegas, P.D. Impacts of land management and climate change in a developing and socioenvironmental challenging transboundary region. J. Environ. Manag. 2021, 300, 113748. [Google Scholar] [CrossRef]
- Zafar, Z.; Zubair, M.; Zha, Y.; Mehmood, M.S.; Rehman, A.; Fahd, S.; Nadeem, A.A. Predictive modeling of regional carbon storage dynamics in response to land use/land cover changes: An InVEST-based analysis. Ecol. Inform. 2024, 82, 102701. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, J.; Li, N. Change in land-use structure due to urbanisation in China. J. Clean. Prod. 2021, 321, 128986. [Google Scholar] [CrossRef]
- Fu, K.; Chen, L.; Yu, X.; Jia, G. How has carbon storage changed in the Yili-Tianshan region over the past three decades and into the future? What has driven it to change? Sci. Total Environ. 2024, 945, 174005. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Lukas, P.; Melesse, A.M.; Kenea, T.T. Prediction of future land use/land cover changes using a coupled CA-ANN model in the upper omo–gibe river basin, Ethiopia. Remote Sens. 2023, 15, 1148. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, X.; Li, A.; Nan, X.; Lei, G.; Wang, C. Multi-scenario simulation of land use change along China-Pakistan Economic Corridor through coupling FLUS model with SD model. J. Geoinf. Sci. 2020, 22, 2393–2409. [Google Scholar]
- Selmy, S.A.; Kucher, D.E.; Mozgeris, G.; Moursy, A.R.; Jimenez-Ballesta, R.; Kucher, O.D.; Fadl, M.E.; Mustafa, A.-r.A. Detecting, analyzing, and predicting land use/land cover (LULC) changes in arid regions using landsat images, CA-Markov hybrid model, and GIS techniques. Remote Sens. 2023, 15, 5522. [Google Scholar] [CrossRef]
- Geng, J.; Shen, S.; Cheng, C.; Dai, K. A hybrid spatiotemporal convolution-based cellular automata model (ST-CA) for land-use/cover change simulation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102789. [Google Scholar] [CrossRef]
- Admas, M.; Melesse, A.M.; Tegegne, G. Predicting the Impacts of Land Use/Cover and Climate Changes on Water and Sediment Flows in the Megech Watershed, Upper Blue Nile Basin. Remote Sens. 2024, 16, 2385. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sinha, S.; Kumari, M.; Mishra, V.N.; Hasher, F.F.B.; Szostak, M.; Zhran, M. Spatio-Temporal Influences of Urban Land Cover Changes on Thermal-Based Environmental Criticality and Its Prediction Using CA-ANN Model over Kolkata (India). Remote Sens. 2025, 17, 1082. [Google Scholar] [CrossRef]
- Li, C.; Xu, H.; Du, P.; Tang, F. Predicting land cover changes and carbon stock fluctuations in Fuzhou, China: A deep learning and InVEST approach. Ecol. Indic. 2024, 167, 112658. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Liang, J.; Zhang, C.; Chen, E. Predicting the impacts of urban development on urban thermal environment using machine learning algorithms in Nanjing, China. J. Environ. Manag. 2024, 356, 120560. [Google Scholar] [CrossRef]
- Xiang, X.; Zhai, Z.; Fan, C.; Ding, Y.; Ye, L.; Li, J. Modelling future land use land cover changes and their impacts on urban heat island intensity in Guangzhou, China. J. Environ. Manag. 2024, 366, 121787. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Ni, C.; Mao, F.; Du, H.; Li, X.; Xu, Y.; Huang, Z. Spatiotemporal Evolution and Influencing Factors of Forest Carbon Storage Based on BIOME-BGC Model and Geographical Detector in Eight Basins of Zhejiang Province in China. Forests 2025, 16, 316. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, C.; She, J.; Wang, Y.; Tong, W.; Guo, Z. Spatiotemporal Analysis, Predictive Modeling, and Driving Mechanism Investigation of Carbon Storage Dynamics in Changde City Under the Framework of LUCC. Sustainability 2025, 17, 1273. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area–A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Wu, A.; Wang, Z. Multi-scenario simulation and carbon storage assessment of land use in a multi-mountainous city. Land Use Policy 2025, 153, 107529. [Google Scholar] [CrossRef]
- Hu, C.; Wu, W.; Zhou, X.; Wang, Z. Spatiotemporal changes in landscape patterns in karst mountainous regions based on the optimal landscape scale: A case study of Guiyang City in Guizhou Province, China. Ecol. Indic. 2023, 150, 110211. [Google Scholar] [CrossRef]
- Wang, X.; Wen, H.; Gui, B.; Liu, Z.; Yang, L. Urban terrain, mountain landscape, and housing price: A heterogeneous investigation of the amenity effects in a mountainous city (Guiyang) from the vertical dimension. Appl. Geogr. 2025, 174, 103479. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Bao, Y. Cool island effects of urban remnant natural mountains for cooling communities: A case study of Guiyang, China. Sustain. Cities Soc. 2021, 71, 102983. [Google Scholar] [CrossRef]
- Kong, N.; Wang, Z. Response of plant diversity of urban remnant mountains to surrounding urban spatial morphology: A case study in Guiyang of Guizhou Province, China. Urban Ecosyst. 2022, 25, 437–452. [Google Scholar] [CrossRef]
- Luo, Q.; Bao, Y.; Wang, Z.; Chen, X. Potential recreation service efficiency of urban remnant mountain wilderness: A case study of Yunyan District of Guiyang city, China. Ecol. Indic. 2022, 141, 109081. [Google Scholar] [CrossRef]
- Li, Y.; Geng, H. Evolution of land use landscape patterns in karst watersheds of Guizhou Plateau and its ecological security evaluation. Land 2022, 11, 2225. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Xu, H.; Liu, W.; Wang, J.; Chen, X.; Liu, L. GLC_FCS30D: The first global 30-m land-cover dynamic monitoring product with a fine classification system from 1985 to 2022 using dense time-series Landsat imagery and continuous change-detection method. Earth Syst. Sci. Data Discuss. 2024, 16, 1353–1381. [Google Scholar] [CrossRef]
- Demessie, S.F.; Dile, Y.T.; Bedadi, B.; Tarkegn, T.G.; Bayabil, H.K.; Sintayehu, D.W. Assessing and projecting land use land cover changes using machine learning models in the Guder watershed, Ethiopia. Environ. Chall. 2025, 18, 101074. [Google Scholar] [CrossRef]
- Senthilkumar, C.; Alabdulkreem, E.; Alruwais, N.; Kavitha, M. Coastal spatial planning using object-based image analysis and image classification techniques. J. S. Am. Earth Sci. 2025, 152, 105322. [Google Scholar]
- Gu, M.; Ye, C.; Hu, M.; Lyu, X.; Li, X.; Hu, H.; Huang, X. Multi-scenario simulation of land use change based on MCR-SD-FLUS model: A case study of Nanchang, China. Trans. GIS 2022, 26, 2932–2953. [Google Scholar] [CrossRef]
- Huang, M.; Mamitimin, Y.; Abulizi, A.; Yimaer, R.; Tiemuerbieke, B.; Chen, H.; Tao, T.; Ma, Y. Integrated assessment of land use and carbon storage changes in the Tulufan-Hami Basin under the background of urbanization and climate change. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104261. [Google Scholar] [CrossRef]
- Song, J.; He, X.; Zhang, F.; Ma, X.; Jim, C.Y.; Johnson, B.A.; Chan, N.W. Analyzing and Predicting LUCC and Carbon Storage Changes in Xinjiang’s Arid Ecosystems Under the Carbon Neutrality Goal. Remote Sens. 2024, 16, 4439. [Google Scholar] [CrossRef]
- Ding, F.; Pan, Z.; Wu, P.; Cui, Y.; Zhou, F. Carbon Accumulation and Distribution Characteristics of the Evergreen Broad-Leaved and Deciduous Broadleaved Mixed Forests in East Guizhou. Acta Ecol. Sin. 2015, 35, 1761–1768. [Google Scholar]
- Li, K.; Wang, S.; Cao, M. Carbon storage of vegetation and soil in China. Sci. China (Ser. D) 2003, 33, 72–80. [Google Scholar] [CrossRef]
- Du, S.; Zhou, Z.; Huang, D.; Zhang, F.; Deng, F.; Yang, Y. The response of carbon stocks to land use/cover change and a vulnerability multi-scenario analysis of the karst region in Southern China based on PLUS-InVEST. Forests 2023, 14, 2307. [Google Scholar] [CrossRef]
- Chen, F.; Xie, T.; Yang, Y.; Chen, S.; Chen, F.; Huang, W.; Chen, J. Discussion of the “warming and wetting” trend and its future variation in the drylands of Northwest China under global warming. Sci. China Earth Sci. 2023, 66, 1241–1257. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, J.; Dong, G.; Wei, Y. Quantitative analysis of NDVI driving factors based on the geographical detector model in the Chengdu-Chongqing region, China. Ecol. Indic. 2023, 155, 110978. [Google Scholar] [CrossRef]
- Tang, J.; Wang, Q.; Li, Z.; Gu, J.; Xu, J. Coupling coordination degree of industrial solid waste prevention and treatment efficiencies and its driving factors in China. Ecol. Indic. 2024, 158, 111395. [Google Scholar] [CrossRef]
- Moran, P.A. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B (Methodol.) 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wei, S.; Liu, X.; McNeill, M.R.; Wang, Y.; Sun, W.; Tu, X.; Wang, G.; Ban, L.; Zhang, Z.; Zhang, R. Identification of spatial distribution and drivers for grasshopper populations based on geographic detectors. Ecol. Indic. 2023, 154, 110500. [Google Scholar] [CrossRef]
- Chen, R.; Fei, X.; Zhu, J.; Chen, W.; Du, H.; Huang, Y.; Shen, Y.; Zhang, Y.; Niu, A.; Xu, P. Assessing carbon storage dynamics in an ecological civilization demonstration zone amid rapid urbanization: A multi-scenario study of Guizhou Province, China. Resour. Environ. Sustain. 2025, 21, 100223. [Google Scholar] [CrossRef]
- Khan, A.; Sudheer, M. Machine learning-based monitoring and modeling for spatio-temporal urban growth of Islamabad. Egypt. J. Remote Sens. Space Sci. 2022, 25, 541–550. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Gu, T.; Chen, W.; Liang, J.; Pan, S.; Ye, X. Identifying the driving forces of cultivated land fragmentation in China. Environ. Sci. Pollut. Res. 2023, 30, 105275–105292. [Google Scholar] [CrossRef]
- Kooch, Y.; Ghorbanzadeh, N.; Francaviglia, R. Soil carbon stocks can be negatively affected by land use and climate change in natural ecosystems of semi-arid environment of Iran. Geoderma Reg. 2022, 31, e00591. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Liu, D. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Appl. Geogr. 2020, 115, 102135. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Sha, A.; Zhang, J.; Pan, Y.; Zhang, S. How to recognize and measure the impact of phasing urbanization on eco-environment quality: An empirical case study of 19 urban agglomerations in China. Technol. Forecast. Soc. Change 2025, 210, 123845. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Xu, D.; Gong, Y. Elemental evolution characteristics and influencing factors of green infrastructure network in karst mountain cities: A case study of Qianzhong urban agglomeration in Southwest China. Ecol. Process. 2024, 13, 54. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, W.; Liu, Z.; Liu, W.; Li, K.; Zhang, B.; Zhang, Y.; Yu, L.; Sakai, T. Urban expansion, economic development, and carbon emissions: Trends, patterns, and decoupling in mainland China’s provincial capitals (1985–2020). Ecol. Indic. 2024, 169, 112777. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Streets, D.G.; Wang, C. Can new-type urbanization realize low-carbon development? A spatiotemporal heterogeneous analysis in 288 cities and 18 urban agglomerations in China. J. Clean. Prod. 2023, 420, 138426. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The integration of new-type urbanization and rural revitalization strategies in China: Origin, reality and future trends. Land 2021, 10, 207. [Google Scholar] [CrossRef]
- Wang, C.; Jin, J.; Davies, C.; Chen, W.Y. Urban forests as nature-based solutions: A comprehensive overview of the national forest city action in China. Curr. For. Rep. 2024, 10, 119–132. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Zhou, Q.; Zhao, Y.; Cai, L.; Yang, Z. Spatiotemporal dynamics and similarity in soil moisture in shallow soils on karst slopes. J. Hydrol. 2024, 639, 131655. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Fan, C.; Wang, Z.; Tang, N.; Deng, G. Construction of ecological network in downtown of Guiyang city based on morphologically spatial pattern and spatially principal component analysis. Acta Ecol. Sin. 2022, 42, 6620–6632. [Google Scholar] [CrossRef]
Data Type | Data Name | Resolution | Source |
---|---|---|---|
Basic data | Land cover | 30 m | INTERNATIONAL RESEARCH CENTER OF BIG DATA FOR SUSTAINABLE DEVELOPMENT GOALS (https://data.casearth.cn, accessed on 5 January 2025) |
Natural factors | Annual average precipitation (AAP) | 1 km | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, accessed on 7 January 2025) |
Annual average temperature (AAT) | 1 km | ||
Digital elevation model (DEM) | 30 m | Resource and Environment Science and Data Center of Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 5 January 2025) | |
Slope | 30 m | Calculated based on DEM | |
Slope aspect | 30 m | ||
Mountain shadow | 30 m | ||
Normalized vegetation index (NDVI) | 250 m | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, accessed on 7 January 2025) | |
Fractional vegetation cover (FVC) | 250 m | ||
Socioeconomic factors | Population (POP) | 100 m | WorldPop (https://www.worldpop.org, accessed on 18 January 2025) |
Night lighting (NTL) | 500 m | National Earth System Science Data Center (http://www.geodata.cn, accessed on 22 January 2025) | |
Gross domestic product (GDP) | 1 km | Resource and Environment Science and Data Center of Chinese Academy of Sciences (https://www.resdc.cn, accessed on 14 January 2025) | |
Location factors | Distance to highways | / | OpenStreetMap (https://www.openstreetmap.org, accessed on 1 February 2025) |
Distance to railways | / | ||
Distance to roads | / | ||
Distance to rivers | / | ||
Distance to government sites | / |
Land Cover Type | ||||
---|---|---|---|---|
Cropland | 9.04 | 1.16 | 13.88 | 0.13 |
Grassland | 1.61 | 1.71 | 11.39 | 0 |
Forest | 40.01 | 132.65 | 21.76 | 0.99 |
Impervious surfaces | 0 | 0 | 9.09 | 0 |
Water body | 0 | 0 | 0 | 0 |
Unused land | 1.45 | 0.26 | 8.95 | 0 |
Land Cover Type | 2000 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | Area | % | |
Cropland | 2781.13 | 34.59 | 2757.19 | 34.29 | 2717.51 | 33.80 | 2613.20 | 32.50 | 2617.94 | 32.56 |
Grassland | 228.57 | 2.84 | 241.31 | 3.00 | 228.05 | 2.84 | 286.88 | 3.57 | 330.61 | 4.11 |
Forest | 4556.24 | 56.67 | 4585.75 | 57.04 | 4586.99 | 57.05 | 4452.82 | 55.38 | 4403.95 | 54.77 |
Impervious surfaces | 374.25 | 4.65 | 361.79 | 4.50 | 413.87 | 5.15 | 574.70 | 7.15 | 573.98 | 7.14 |
Water body | 84.39 | 1.05 | 62.73 | 0.78 | 62.19 | 0.77 | 98.73 | 1.23 | 104.10 | 1.29 |
Unused land | 15.58 | 0.19 | 31.39 | 0.39 | 31.55 | 0.39 | 13.83 | 0.17 | 9.58 | 0.12 |
Land Cover Type | 2010 | 2015 | 2020 | |||
---|---|---|---|---|---|---|
GLC_FCS30D | Simulated | GLC_FCS30D | Simulated | GLC_FCS30D | Simulated | |
Cropland | 2717.51 | 2717.51 | 2613.20 | 2661.04 | 2617.94 | 2657.41 |
Grassland | 228.05 | 228.05 | 286.88 | 267.26 | 330.61 | 275.16 |
Forest | 4586.99 | 4586.99 | 4452.82 | 4506.22 | 4403.95 | 4506.23 |
Impervious surfaces | 413.87 | 413.87 | 574.70 | 500.90 | 573.98 | 496.04 |
Water body | 62.19 | 62.19 | 98.73 | 78.66 | 104.10 | 81.46 |
Unused land | 31.55 | 31.55 | 13.83 | 26.08 | 9.58 | 23.87 |
OA | 95.89% | 95.78% | 93.99% | |||
Kappa | 0.93 | 0.93 | 0.89 |
Land Cover Type | 2020 | 2025 | 2020–2025 | 2030 | 2020–2030 | 2035 | 2020–2035 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area | % | Aea | % | Area | % | Area | % | Area | % | Area | |
Cropland | 2617.94 | 32.56 | 2607.07 | 32.43 | −10.87 | 2664.68 | 33.14 | 46.74 | 2624.81 | 32.65 | 6.87 |
Grassland | 330.61 | 4.11 | 346.52 | 4.31 | 15.91 | 324.17 | 4.03 | −6.44 | 300.05 | 3.73 | −30.56 |
Forest | 4403.95 | 54.77 | 4406.02 | 54.80 | 2.07 | 4352.46 | 54.13 | −51.49 | 4393.61 | 54.65 | −10.34 |
Impervious surfaces | 573.98 | 7.14 | 575.03 | 7.15 | 1.06 | 587.52 | 7.31 | 13.54 | 608.95 | 7.57 | 34.97 |
Water body | 104.10 | 1.29 | 96.76 | 1.20 | −7.34 | 104.43 | 1.30 | 0.33 | 104.07 | 1.29 | −0.03 |
Unused land | 9.58 | 0.12 | 8.75 | 0.11 | −0.83 | 6.89 | 0.09 | −2.68 | 8.67 | 0.11 | −0.91 |
2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | |
---|---|---|---|---|---|---|---|---|
Moran’s I | 0.1356 | 0.1353 | 0.1457 | 0.1391 | 0.1487 | 0.1485 | 0.1526 | 0.1482 |
Variance | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 |
Z-score | 7.7537 | 7.7366 | 8.3276 | 7.9531 | 8.4970 | 8.4888 | 8.7186 | 8.4682 |
p-value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Driving Factors | 2000 | 2005 | 2010 | 2015 | 2020 | Mean |
---|---|---|---|---|---|---|
q | q | q | q | q | q | |
AAP(X1) | 0.0163 # | 0.0325 | 0.0130 # | 0.0394 | 0.0373 | 0.0277 |
AAT(X2) | 0.0334 | 0.0351 | 0.0388 | 0.0357 | 0.0351 | 0.0356 |
NDVI(X3) | 0.2600 | 0.2465 | 0.3104 | 0.2522 | 0.2631 | 0.2664 |
FVC(X4) | 0.0280 | 0.0376 | 0.0537 | 0.0920 | 0.1040 | 0.0631 |
POP(X5) | 0.0208 | 0.1746 | 0.0284 | 0.0193 | 0.0255 | 0.0537 |
NTL(X6) | 0.0289 | 0.0459 | 0.0567 | 0.1064 | 0.1398 | 0.0755 |
GDP(X7) | 0.0317 | 0.0772 | 0.0943 | 0.0782 | 0.0454 | 0.0654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhou, Z.; Kong, J.; Wang, C.; Wang, Y.; Xie, R.; Ding, C.; Zhang, X. Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City. Remote Sens. 2025, 17, 2608. https://doi.org/10.3390/rs17152608
Li R, Zhou Z, Kong J, Wang C, Wang Y, Xie R, Ding C, Zhang X. Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City. Remote Sensing. 2025; 17(15):2608. https://doi.org/10.3390/rs17152608
Chicago/Turabian StyleLi, Rui, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding, and Xinyue Zhang. 2025. "Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City" Remote Sensing 17, no. 15: 2608. https://doi.org/10.3390/rs17152608
APA StyleLi, R., Zhou, Z., Kong, J., Wang, C., Wang, Y., Xie, R., Ding, C., & Zhang, X. (2025). Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City. Remote Sensing, 17(15), 2608. https://doi.org/10.3390/rs17152608