Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways
Abstract
1. Introduction
Region | Historical Drought Trends | Historical Flood Trends | Projected Trends | Key Implications |
---|---|---|---|---|
Continent-wide | More frequent, intense, and widespread droughts observed over last 50 years, with notable droughts during 1970s–90s [15]. | Increased frequency and intensity of extreme flood events in various basins including Niger and Zambezi [16]. | Extreme events (heatwaves, floods, droughts) expected to worsen, linked to climate change projections [17]. | Compounding crises leading to widespread socio-economic impacts; stresses on agriculture, water, and infrastructure. |
Sahel | Prolonged dry spells during the 1970s and 1980s causing major drought crises; increasing drought tendencies persist [18,19]. | Some instances of flooding, particularly in the Gulf of Guinea and Savannah zones; variability in wet/dry extremes noted [20]. | Increased drought frequency and severity projected; desertification and land degradation likely to intensify [17,21]. | Worsened food and water insecurity, accelerated land degradation, and desertification threatening livelihoods. |
East Africa (Horn) | Severe drought in 2011–2012 (worst in 60 years) and a drying trend from 1983 to 2014; regionally variable drought hotspots exist [22]. | Shift towards heavy rains and floods as seen in 2019–2020, linked to positive Indian Ocean Dipole (IOD) events [23]. | Rising temperatures with uncertain rainfall patterns; some areas wetter, others drier [8,17]. | Severe food crises, displacement, heightened risks to agriculture and water resources requiring adaptive strategies. |
Southern Africa | Notable extended droughts in 2014–2016 and 2019; drought frequency increasing [14]. | Region prone to floods in river valleys and urban areas; increased extreme precipitation events documented [16]. | Extreme weather events including both droughts and floods expected to worsen; drier conditions to intensify [17]. | Reduced agricultural productivity, water scarcity, and vulnerability of human settlements, necessitating integrated adaptation. |
Sahara | Highest observed increase in drought trends across multiple timescales; persistent aridity intensification [15]. | Flooding rare but possible flash floods are under-documented due to sparse data. | Continued dryness and potential desert expansion; groundwater depletion likely [17]. | Heightened vulnerability to extreme aridity and water resource depletion; significant challenges for sustaining populations and ecosystems. |
2. Evolving Research Landscapes in African Hydrology
3. Contemporary Hydrological Dynamics and Water Security
3.1. Modern Water Security Challenges and Anthropogenic Influence
3.2. Groundwater Responses to Climate Variability and Human Activities
3.3. Regional Flood Generation Mechanisms and Trends
3.4. Atmospheric and Land-Surface Feedback on the Water Cycle
4. African Monsoon Dynamics and Regional Hydrological Impacts
4.1. East African Monsoon Impacts and Hydrological Variability
4.2. West African Monsoon Variability and Hydrological Sensitivity
5. Future Projections and Water Resource Management
5.1. Climate Change Projections for African Basins
River Basin | Projected Changes in Precipitation | Projected Changes in Evapotranspiration (ET) | Projected Changes in River Flow (Climate Change Only) | Influence of LULCC on River Flow | Key Implications |
---|---|---|---|---|---|
Nile | Mixed signals with inter-annual and spatial variability, with the most significant increases in the rainy season and a significant decrease in the dry season [80]. The results suggest the probability of an increase in total precipitation. | Increase in evapotranspiration leading to higher atmospheric evaporative demand [80] | Mixed signals with likely increases in total river flow and peak discharges [80] | General LULCC impacts noted for Africa with accepted considerations of land uses at 52% of the cases [81] | High uncertainty in future flows, increased evaporation, reduced water availability for agriculture, higher risk of floods and droughts in the future |
Congo | Increase in northwest/southeast regions, decrease in left/south with decline under RCP2.6 [3] | Decline under RCP2.6, milder changes under combined drivers when investigating how evapotranspiration responds to both climate change and LULCC scenarios [3] | Reduced flows with up to 7% decrease under climate change [3] | Largest difference between scenarios: +18% increase with LULCC vs. >20% decrease without LULCC [3] | Significant impacts on agriculture, hydropower, and water availability; deforestation is a major concern requiring policies to combat the current trend of deforestation |
Niger | Increase under climate change alone (+44 to +50 mm/yr) with a reduction in discharge volume at the beginning of the high flow period, explained by a delayed start of the rainy season [82] | Substantial role in water availability with evapotranspiration impacts that should be interpreted cautiously [81] | Largest decrease in river flows in all of Africa due to climate change [3] with projected decreases of 5–12 m3/s under RCP 4.5 and 36–52 m3/s under RCP 8.5 [82] | Reduction in water availability under RCP6.0/8.5 with LULCC effects requiring policies to halt global greenhouse gas emissions [3] | Further desertification in northern West Africa, threatening livelihoods and requiring improved water management schemes within the context of a changing climate. |
Zambezi | Slight increase in average rainfall but high variability with drying trends and shorter, more variable seasons experiencing prolonged drought periods [83] | Negative signal under all RCPs with increasing evapotranspiration as changes in temperature and rainfall have a direct effect on the quantity of evapotranspiration [83] | Reduced flows with up to 7% decrease [3] and reduction in average annual stream flow [83] | Minimal impact due to mild LULCC; can show increases due to lower simulated historical values [3] | Increased flow variability, more floods/droughts, significant warming, prolonged drought periods and extreme floods with the basin experiencing one of the most variable climates of any major river basin in the world |
Limpopo | Mixed projections with some studies showing potential for higher river flows [3], and modellers managed to understand and build robust rainfall-runoff relationships in Limpopo [81] | Substantial role in water availability with evapotranspiration impacts that should be interpreted cautiously [81] | Higher river flows likely with the Limpopo River likely to have higher river flows [3] | River flows increase from climate change scenarios under all RCPs, with land-use considerations showing the Limpopo River will likely have higher river flows [3] | Increased flow variability, potential for more floods/droughts, impact on agriculture/energy sectors and hence the livelihood of people, need for coordination |
5.2. Remote Sensing Applications for Hydrological Monitoring
5.3. Adaptation Strategies and Policy Implications
6. Future Directions in African Hydrology Research
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RCP | Representative Concentration Pathway |
ESM | Earth System Models |
LULC | Land-use Land-cover |
DEM | Digital Elevation Model |
EbA | Ecosystem-based Adaptation |
EWS | Early Warning Signals |
BVOC | Biogenic Volatile Organic Compound |
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
RCM | Regional Climate Model |
SWAT | Soil and Water Assessment Tool |
WEF | Water–Energy–Food |
CC | Climate Change |
ET | Evapotranspiration |
LULCC | Land-use Land-cover change |
CORDEX | Coordinated Regional Climate Downscaling Experiment |
GRACE | Gravity Recovery and Climate Experiment |
bSOA | Biogenic secondary organic aerosols |
HydroSHEDS | Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales |
References
- Simon, M.H.; Ziegler, M.; Bosmans, J.; Barker, S.; Reason, C.J.C.; Hall, I.R. Eastern South African Hydroclimate over the Past 270,000 Years. Sci. Rep. 2015, 5, 18153. [Google Scholar] [CrossRef]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate Change Vulnerability, Water Resources and Social Implications in North Africa. Reg. Environ. Change 2020, 20, 15. [Google Scholar] [CrossRef]
- Chawanda, C.J.; Nkwasa, A.; Thiery, W.; Van Griensven, A. Combined Impacts of Climate and Land-Use Change on Future Water Resources in Africa. Hydrol. Earth Syst. Sci. 2024, 28, 117–138. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Zhou, W.; Ndehedehe, C.E.; Ishola, K.A.; Laux, P.; Akinsanola, A.A.; Dieng, M.D.B.; Wang, X. Global Heatwaves Dynamics Under Climate Change Scenarios: Multidimensional Drivers and Cascading Impacts. Earth’s Future 2025, 13, e2025EF006486. [Google Scholar] [CrossRef]
- WMO. State of the Climate in Africa 2023; United Nations: New York City, NY, USA, 2024; ISBN 978-92-63-11360-3. [Google Scholar]
- Lisika, L.K.; Bankanza, J.C.M.; Eale, L.E.; Bompere Lemo, P.; Kasereka, J.K.; Bwangoy Bankanza, J.-R.; Mwamba, V.L. Signature of Climate Dynamics on Hydrological Drought Dynamics: A Qualitative Analysis. Heliyon 2024, 10, e39822. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Zhou, W.; Ndehedehe, C.E.; Wang, X.; Ishola, K.A.; Laux, P. Minimizing Uncertainties in Climate Projections and Water Budget Reveals the Vulnerability of Freshwater to Climate Change. One Earth 2024, 7, 72–87. [Google Scholar] [CrossRef]
- Ogunrinde, A.T.; Adeyeri, O.E.; Xian, X.; Yu, H.; Jing, Q.; Faloye, O.T. Long-Term Spatiotemporal Trends in Precipitation, Temperature, and Evapotranspiration Across Arid Asia and Africa. Water 2024, 16, 3161. [Google Scholar] [CrossRef]
- Li, K.Y.; Coe, M.T.; Ramankutty, N.; Jong, R.D. Modeling the Hydrological Impact of Land-Use Change in West Africa. J. Hydrol. 2007, 337, 258–268. [Google Scholar] [CrossRef]
- Zehe, E.; Sivapalan, M. Threshold Behaviour in Hydrological Systems as (Human) Geo-Ecosystems: Manifestations, Controls, Implications. Hydrol. Earth Syst. Sci. 2009, 13, 1273–1297. [Google Scholar] [CrossRef]
- Miller, C.; Finch, J.; Hill, T.; Peterse, F.; Humphries, M.; Zabel, M.; Schefuß, E. Late Quaternary Climate Variability at Mfabeni Peatland, Eastern South Africa. Clim. Past. 2019, 15, 1153–1170. [Google Scholar] [CrossRef]
- Yeboah, F.; Ackom, E.K.; Yidana, S.M.; Awotwi, A. Hydrologic Modelling for Flood Threshold and Hazard Prediction in the Black Volta River Basin, West Africa. Environ. Model. Assess. 2024, 29, 375–394. [Google Scholar] [CrossRef]
- Lombe, P.; Carvalho, E.; Rosa-Santos, P. Drought Dynamics in Sub-Saharan Africa: Impacts and Adaptation Strategies. Sustainability 2024, 16, 9902. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A Review of Droughts on the African Continent: A Geospatial and Long-Term Perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Lumbroso, D. Flood Risk Management in Africa. J. Flood Risk Manag. 2020, 13, e12612. [Google Scholar] [CrossRef]
- Nooni, I.; Hagan, D.; Ullah, W.; Lu, J.; Li, S.; Prempeh, N.; Gnitou, G.; Lim Kam Sian, K. Projections of Drought Characteristics Based on the CNRM-CM6 Model over Africa. Agriculture 2022, 12, 495. [Google Scholar] [CrossRef]
- Reda, K.W.; Yongdong, W.; Yuan, Y.; Na, Z.; Bora, Z.; Haile, G.G.; Gebrewahid, Y. Spatiotemporal Characteristics of Drought Events in Africa’s Great Green Wall Region During 1950–2022. JGR Biogeosci. 2025, 130, e2024JG008313. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Laux, P.; Ishola, K.A.; Zhou, W.; Balogun, I.A.; Adeyewa, Z.D.; Kunstmann, H. Homogenising Meteorological Variables: Impact on Trends and Associated Climate Indices. J. Hydrol. 2022, 607, 127585. [Google Scholar] [CrossRef]
- Kodja, D.J.; Quenum, G.M.L.D.; Koubodana, H.D.; Amoussou, E.; Akoteyon, I.S.; Akognongbé, A.S.J.; Ahéhéhinnou Yêdo, M.F.; Mahé, G.; Paturel, J.-E.; Vissin, E.W.; et al. Investigation of Drought and Flooding Areas in Coastal Countries of West Africa in the Context of Global Warming. Proc. IAHS 2024, 385, 359–364. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Zhou, W.; Laux, P.; Ndehedehe, C.E.; Wang, X.; Usman, M.; Akinsanola, A.A. Multivariate Drought Monitoring, Propagation, and Projection Using Bias-Corrected General Circulation Models. Earth’s Future 2023, 11, e2022EF003303. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Spatial and Temporal Variation of Drought Patterns over East Africa 2020. EGU Gen. Assem. Conf. Abstr. 2020, 6575. [Google Scholar] [CrossRef]
- Wainwright, C.M.; Finney, D.L.; Kilavi, M.; Black, E.; Marsham, J.H. Extreme Rainfall in East Africa, October 2019–January 2020 and Context under Future Climate Change. Weather 2021, 76, 26–31. [Google Scholar] [CrossRef]
- Dibi-Anoh, P.A.; Koné, M.; Gerdener, H.; Kusche, J.; N’Da, C.K. Hydrometeorological Extreme Events in West Africa: Droughts. Surv. Geophys. 2023, 44, 173–195. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Jimenez, B.; Miller, K.; Oki, T.; Şen, Z.; Shiklomanov, I. The Implications of Projected Climate Change for Freshwater Resources and Their Management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Assede, E.S.P.; Orou, H.; Biaou, S.S.H.; Geldenhuys, C.J.; Ahononga, F.C.; Chirwa, P.W. Understanding Drivers of Land Use and Land Cover Change in Africa: A Review. Curr. Landsc. Ecol. Rep. 2023, 8, 62–72. [Google Scholar] [CrossRef]
- Kayitesi, N.M.; Guzha, A.C.; Tonini, M.; Mariethoz, G. Land Use Land Cover Change in the African Great Lakes Region: A Spatial–Temporal Analysis and Future Predictions. Environ. Monit. Assess. 2024, 196, 852. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Laux, P.; Lawin, A.E.; Arnault, J. Assessing the Impact of Human Activities and Rainfall Variability on the River Discharge of Komadugu-Yobe Basin, Lake Chad Area. Environ. Earth Sci. 2020, 79, 143. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Zhou, W.; Laux, P.; Wang, X.; Dieng, D.; Widana, L.A.E.; Usman, M. Land Use and Land Cover Dynamics: Implications for Thermal Stress and Energy Demands. Renew. Sustain. Energy Rev. 2023, 179, 113274. [Google Scholar] [CrossRef]
- Sahagian, D. Global Physical Effects of Anthropogenic Hydrological Alterations: Sea Level and Water Redistribution. Glob. Planet. Change 2000, 25, 39–48. [Google Scholar] [CrossRef]
- Zitoun, R.; Marcinek, S.; Hatje, V.; Sander, S.G.; Völker, C.; Sarin, M.; Omanović, D. Climate Change Driven Effects on Transport, Fate and Biogeochemistry of Trace Element Contaminants in Coastal Marine Ecosystems. Commun. Earth Environ. 2024, 5, 560. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Taylor, R.G.; Favreau, G.; Todd, M.C.; Shamsudduha, M.; Villholth, K.G.; MacDonald, A.M.; Scanlon, B.R.; Kotchoni, D.O.V.; Vouillamoz, J.-M.; et al. Observed Controls on Resilience of Groundwater to Climate Variability in Sub-Saharan Africa. Nature 2019, 572, 230–234. [Google Scholar] [CrossRef]
- Miralles, D.G.; Vilà-Guerau De Arellano, J.; McVicar, T.R.; Mahecha, M.D. Vegetation–Climate Feedbacks across Scales. Ann. N. Y. Acad. Sci. 2025, 1544, 27–41. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Ishola, K.A. Variability and Trends of Actual Evapotranspiration over West Africa: The Role of Environmental Drivers. Agric. For. Meteorol. 2021, 308–309, 108574. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Adeyeri, O.E.; Ferreira, V.G.; Zhou, W. Terrestrial Water Storage in Australia under Stress from Compound Climate Extremes. Resour. Environ. Sustain. 2025, 21, 100242. [Google Scholar] [CrossRef]
- Pazola, A.; Shamsudduha, M.; French, J.; MacDonald, A.M.; Abiye, T.; Goni, I.B.; Taylor, R.G. High-Resolution Long-Term Average Groundwater Recharge in Africa Estimated Using Random Forest Regression and Residual Interpolation. Hydrol. Earth Syst. Sci. 2024, 28, 2949–2967. [Google Scholar] [CrossRef]
- Tramblay, Y.; Villarini, G.; Saidi, M.E.; Massari, C.; Stein, L. Classification of Flood-Generating Processes in Africa. Sci. Rep. 2022, 12, 18920. [Google Scholar] [CrossRef]
- Van Dijk, A. Global Water Monitor 2024—Summary Report; Global Water Monitor Consortium: Canberra, Australia, 2025. [Google Scholar]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-32584-4. [Google Scholar]
- Hounkpè, J.; Merz, B.; Badou, F.D.; Bossa, A.Y.; Yira, Y.; Lawin, E.A. Potential for Seasonal Flood Forecasting in West Africa Using Climate Indexes. J. Flood Risk Manag. 2025, 18, e12833. [Google Scholar] [CrossRef]
- Kitambo, B.; Papa, F.; Paris, A.; Tshimanga, R.M.; Calmant, S.; Fleischmann, A.S.; Frappart, F.; Becker, M.; Tourian, M.J.; Prigent, C.; et al. A Combined Use of in Situ and Satellite-Derived Observations to Characterize Surface Hydrology and Its Variability in the Congo River Basin. Hydrol. Earth Syst. Sci. 2022, 26, 1857–1882. [Google Scholar] [CrossRef]
- Liang, S.; He, T.; Huang, J.; Jia, A.; Zhang, Y.; Cao, Y.; Chen, X.; Chen, X.; Cheng, J.; Jiang, B.; et al. Advancements in High-Resolution Land Surface Satellite Products: A Comprehensive Review of Inversion Algorithms, Products and Challenges. Sci. Remote Sens. 2024, 10, 100152. [Google Scholar] [CrossRef]
- Zahiri, E.-P.; Bamba, I.; Famien, A.M.; Koffi, A.K.; Ochou, A.D. Mesoscale Extreme Rainfall Events in West Africa: The Cases of Niamey (Niger) and the Upper Ouémé Valley (Benin). Weather Clim. Extrem. 2016, 13, 15–34. [Google Scholar] [CrossRef]
- Baker, J.L.; World Bank (Eds.) Climate Change, Disaster Risk, and the Urban Poor: Cities Building Resilience for a Changing World; Urban development; World Bank: Washington, DC, USA, 2012; ISBN 978-0-8213-8845-7. [Google Scholar]
- Addisuu, A.A.; Mengistu Tsidu, G.; Basupi, L.V. Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction— Part 2: Representation of Extreme Precipitation. Climate 2025, 13, 93. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Slater, L.; Fan, X.; Chai, Y.; Sorooshian, S. Hydrological Projections under CMIP5 and CMIP6: Sources and Magnitudes of Uncertainty. Bull. Am. Meteorol. Soc. 2024, 105, E59–E74. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Laux, P.; Lawin, A.E.; Oyekan, K.S.A. Multiple Bias-Correction of Dynamically Downscaled CMIP5 Climate Models Temperature Projection: A Case Study of the Transboundary Komadugu-Yobe River Basin, Lake Chad Region, West Africa. SN Appl. Sci. 2020, 2, 1221. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, J.; Bradshaw, C.D.; Xu, X.; Shen, T.; Li, S.; Nie, J.; Zhang, C.; Li, X.; Liu, Z.; et al. Vegetation Feedbacks Accelerated the Late Miocene Climate Transition. Sci. Adv. 2025, 11, eads4268. [Google Scholar] [CrossRef]
- Vella, R.; Forrest, M.; Pozzer, A.; Tsimpidi, A.P.; Hickler, T.; Lelieveld, J.; Tost, H. Influence of Land Cover Change on Atmospheric Organic Gases, Aerosols, and Radiative Effects. Atmos. Chem. Phys. 2025, 25, 243–262. [Google Scholar] [CrossRef]
- Duan, X.; Chang, M.; Wu, G.; Situ, S.; Zhu, S.; Zhang, Q.; Huangfu, Y.; Wang, W.; Chen, W.; Yuan, B.; et al. Estimation of Biogenic Volatile Organic Compound (BVOC) Emissions in Forest Ecosystems Using Drone-Based Lidar, Photogrammetry, and Image Recognition Technologies. Atmos. Meas. Tech. 2024, 17, 4065–4079. [Google Scholar] [CrossRef]
- Higgins, S.I.; Conradi, T.; Ongole, S.; Turpie, J.; Weiss, J.; Eggli, U.; Slingsby, J.A. Changes in How Climate Forces the Vegetation of Southern Africa. Ecosystems 2023, 26, 1716–1733. [Google Scholar] [CrossRef]
- Ehrmann, W.; Schmiedl, G.; Beuscher, S.; Krüger, S. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes. PLoS ONE 2017, 12, e0170989. [Google Scholar] [CrossRef]
- Salgueiro, V.; Costa, M.J.; Guerrero-Rascado, J.L.; Couto, F.T.; Bortoli, D. Characterization of Forest Fire and Saharan Desert Dust Aerosols over South-Western Europe Using a Multi-Wavelength Raman Lidar and Sun-Photometer. Atmos. Environ. 2021, 252, 118346. [Google Scholar] [CrossRef]
- Mallet, M.; Voldoire, A.; Solmon, F.; Nabat, P.; Drugé, T.; Roehrig, R. Impact of Biomass Burning Aerosols (BBA) on the Tropical African Climate in an Ocean–Atmosphere–Aerosol Coupled Climate Model. Atmos. Chem. Phys. 2024, 24, 12509–12535. [Google Scholar] [CrossRef]
- Atai, G.; Ayanlade, A.; Oluwatimilehin, I.A.; Ayanlade, O.S. Geospatial Distribution and Projection of Aerosol over Sub-Saharan Africa: Assessment from Remote Sensing and Other Platforms. Aerosol Sci. Eng. 2021, 5, 357–372. [Google Scholar] [CrossRef]
- Baxter, A.J.; Verschuren, D.; Peterse, F.; Miralles, D.G.; Martin-Jones, C.M.; Maitituerdi, A.; Van Der Meeren, T.; Van Daele, M.; Lane, C.S.; Haug, G.H.; et al. Reversed Holocene Temperature–Moisture Relationship in the Horn of Africa. Nature 2023, 620, 336–343. [Google Scholar] [CrossRef]
- Tierney, J.E.; deMenocal, P.B. Abrupt Shifts in Horn of Africa Hydroclimate Since the Last Glacial Maximum. Science 2013, 342, 843–846. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Cui, A.; Ma, C.; Zhao, L.; Tang, L.; Jia, Y. Pollen Records of the Little Ice Age Humidity Flip in the Middle Yangtze River Catchment. Quat. Sci. Rev. 2018, 193, 43–53. [Google Scholar] [CrossRef]
- Lupien, R.L.; Russell, J.M.; Pearson, E.J.; Castañeda, I.S.; Asrat, A.; Foerster, V.; Lamb, H.F.; Roberts, H.M.; Schäbitz, F.; Trauth, M.H.; et al. Orbital Controls on Eastern African Hydroclimate in the Pleistocene. Sci. Rep. 2022, 12, 3170. [Google Scholar] [CrossRef] [PubMed]
- Ovaskainen, O.; Finkelshtein, D.; Kutoviy, O.; Cornell, S.; Bolker, B.; Kondratiev, Y. A General Mathematical Framework for the Analysis of Spatiotemporal Point Processes. Theor. Ecol. 2014, 7, 101–113. [Google Scholar] [CrossRef]
- Shanahan, T.M.; McKay, N.P.; Hughen, K.A.; Overpeck, J.T.; Otto-Bliesner, B.; Heil, C.W.; King, J.; Scholz, C.A.; Peck, J. The Time-Transgressive Termination of the African Humid Period. Nat. Geosci. 2015, 8, 140–144. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Jiang, Y.; Huang, Q.; Huo, Z.; Liu, L.; Huang, G. Responses of Crop Growth and Water Productivity to Climate Change and Agricultural Water-Saving in Arid Region. Sci. Total Environ. 2020, 703, 134621. [Google Scholar] [CrossRef]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The East African Long Rains in Observations and Models. J. Clim. 2014, 27, 7185–7202. [Google Scholar] [CrossRef]
- Saha, A.; Sekharan, S. Importance of Volumetric Shrinkage Curve (VSC) for Determination of Soil–Water Retention Curve (SWRC) for Low Plastic Natural Soils. J. Hydrol. 2021, 596, 126113. [Google Scholar] [CrossRef]
- Teutschbein, C.; Grabs, T.; Laudon, H.; Karlsen, R.H.; Bishop, K. Simulating Streamflow in Ungauged Basins under a Changing Climate: The Importance of Landscape Characteristics. J. Hydrol. 2018, 561, 160–178. [Google Scholar] [CrossRef]
- Nkiaka, E.; Bryant, R.G.; Kom, Z. Understanding Links Between Water Scarcity and Violent Conflicts in the Sahel and Lake Chad Basin Using the Water Footprint Concept. Earth’s Future 2024, 12, e2023EF004013. [Google Scholar] [CrossRef]
- Nkiaka, E.; Bryant, R.G.; Dembélé, M. Quantifying Sahel Runoff Sensitivity to Climate Variability, Soil Moisture and Vegetation Changes Using Analytical Methods. Earth Syst. Environ. 2025, 9, 491–504. [Google Scholar] [CrossRef]
- Kafando, M.B.; Boko, B.A.; Yonaba, R.; Koïta, M.; Dobi, F.B.; Bambara, A.; Mounirou, L.A. Influence of Past Climatic Conditions on Groundwater Levels in Basement Aquifers of the Sahel. Hydrogeol. J. 2025, 33, 531–551. [Google Scholar] [CrossRef]
- Massuel, S.; Cappelaere, B.; Favreau, G.; Leduc, C.; Lebel, T.; Vischel, T. Integrated Surface Water–Groundwater Modelling in the Context of Increasing Water Reserves of a Regional Sahelian Aquifer. Hydrol. Sci. J. 2011, 56, 1242–1264. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Adeyeri, O.E.; Onojeghuo, A.O.; Ferreira, V.G.; Kalu, I.; Okwuashi, O. Understanding Global Groundwater-Climate Interactions. Sci. Total Environ. 2023, 904, 166571. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Lawin, A.E.; Laux, P.; Ishola, K.A.; Ige, S.O. Analysis of Climate Extreme Indices over the Komadugu-Yobe Basin, Lake Chad Region: Past and Future Occurrences. Weather Clim. Extrem. 2019, 23, 100194. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Laux, P.; Lawin, A.E.; Ige, S.O.; Kunstmann, H. Analysis of Hydrometeorological Variables over the Transboundary Komadugu-Yobe Basin, West Africa. J. Water Clim. Change 2020, 11, 1339–1354. [Google Scholar] [CrossRef]
- Taylor, C.M.; Belušić, D.; Guichard, F.; Parker, D.J.; Vischel, T.; Bock, O.; Harris, P.P.; Janicot, S.; Klein, C.; Panthou, G. Frequency of Extreme Sahelian Storms Tripled since 1982 in Satellite Observations. Nature 2017, 544, 475–478. [Google Scholar] [CrossRef]
- Mpandeli, S.; Naidoo, D.; Mabhaudhi, T.; Nhemachena, C.; Nhamo, L.; Liphadzi, S.; Hlahla, S.; Modi, A.T. Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa. Int. J. Environ. Res. Public Health 2018, 15, 2306. [Google Scholar] [CrossRef]
- Larbi, I.; Hountondji, F.C.C.; Dotse, S.-Q.; Mama, D.; Nyamekye, C.; Adeyeri, O.E.; Djan’na Koubodana, H.; Odoom, P.R.E.; Asare, Y.M. Local Climate Change Projections and Impact on the Surface Hydrology in the Vea Catchment, West Africa. Hydrol. Res. 2021, 52, 1200–1215. [Google Scholar] [CrossRef]
- Demissie, T.A. Impact of Climate Change on Hydrologic Components Using CORDEX Africa Climate Model in Gilgel Gibe 1 Watershed Ethiopia. Heliyon 2023, 9, e16701. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, Z.A.; Bizuneh, Y.K.; Mekonnen, A.G. The Impacts of Climate Change on Hydrological Processes of Gilgel Gibe Catchment, Southwest Ethiopia. PLoS ONE 2023, 18, e0287314. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Brissette, F.P.; Zhang, X.J.; Chen, H.; Guo, S.; Zhao, Y. Bias Correcting Climate Model Multi-Member Ensembles to Assess Climate Change Impacts on Hydrology. Clim. Change 2019, 153, 361–377. [Google Scholar] [CrossRef]
- Tedla, M.G.; Rasmy, M.; Tamakawa, K.; Selvarajah, H.; Koike, T. Assessment of Climate Change Impacts for Balancing Transboundary Water Resources Development in the Blue Nile Basin. Sustainability 2022, 14, 15438. [Google Scholar] [CrossRef]
- Shamseddin, A.M.; Chaibi, T. Scanning Climate Change Impacts on Water Resources of the Largest African River Basins. Int. J. River Basin Manag. 2020, 18, 33–38. [Google Scholar] [CrossRef]
- Esther Babalola, T.; Gbenro Oguntunde, P.; Ebenezer Ajayi, A.; Omowonuola Akinluyi, F. Future Climate Change Impacts on River Discharge Seasonality for Selected West African River Basins. In Weather Forecasting; Saifullah, M., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83968-053-3. [Google Scholar]
- Banze, F.; Guo, J.; Xiaotao, S. Variability and Trends of Rainfall, Precipitation and Discharges over Zambezi River Basin, Southern Africa: Review. IJH 2018, 2. [Google Scholar] [CrossRef]
- Ndehedehe, C. Hydro-Climatic Extremes in the Anthropocene, 1st ed.; Springer Climate Series; Springer International Publishing AG: Cham, Switzerland, 2023; ISBN 978-3-031-37727-3. [Google Scholar]
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S.; et al. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surv. Geophys. 2023, 44, 43–93. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Zhou, W.; Ndehedehe, C.E.; Wang, X. Global Vegetation, Moisture, Thermal and Climate Interactions Intensify Compound Extreme Events. Sci. Total Environ. 2024, 912, 169261. [Google Scholar] [CrossRef]
- Ichoku, C.; Adegoke, J. Synthesis and Review: African Environmental Processes and Water-Cycle Dynamics. Environ. Res. Lett. 2016, 11, 120206. [Google Scholar] [CrossRef]
- Sigopi, M.; Shoko, C.; Dube, T. Advancements in Remote Sensing Technologies for Accurate Monitoring and Management of Surface Water Resources in Africa: An Overview, Limitations, and Future Directions. Geocarto Int. 2024, 39, 2347935. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wu, L.; Xu, B.; Hu, J.; Zhou, Y.; Miao, Z. Deriving a Time Series of 3D Glacier Motion to Investigate Interactions of a Large Mountain Glacial System with Its Glacial Lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset Technique. J. Hydrol. 2018, 559, 596–608. [Google Scholar] [CrossRef]
- Kalu, I.; Ndehedehe, C.E.; Okwuashi, O.; Eyoh, A.E. Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sens. 2021, 13, 2543. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging Trends in Global Freshwater Availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Akpoti, K.; Velpuri, N.M.; Mizukami, N.; Kagone, S.; Leh, M.; Mekonnen, K.; Owusu, A.; Tinonetsana, P.; Phiri, M.; Madushanka, L.; et al. Advancing Water Security in Africa with New High-Resolution Discharge Data. Sci. Data 2024, 11, 1195. [Google Scholar] [CrossRef]
- Martin Santos, I.; Herrnegger, M.; Holzmann, H. Seasonal Discharge Forecasting for the Upper Danube. J. Hydrol. Reg. Stud. 2021, 37, 100905. [Google Scholar] [CrossRef]
- Farag, R.; Zahran, S.; Sobeih, M.; Helal, E. Enhancing Uncertainty of Regional Climate Models for Climate Change Projection at Western Nile Delta. Water Sci. 2024, 38, 225–238. [Google Scholar] [CrossRef]
- UNEP-UNDP-IUC Making the Case for Ecosystem Based Adaptation: Building Resilience to Climate Change. Available online: https://iucn.org/resources/issues-brief/ecosystem-based-adaptation (accessed on 2 July 2025).
- Klein Goldewijk, K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic Land Use Estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. EoS Trans. 2008, 89, 93–94. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyeri, O.E. Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways. Water 2025, 17, 2247. https://doi.org/10.3390/w17152247
Adeyeri OE. Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways. Water. 2025; 17(15):2247. https://doi.org/10.3390/w17152247
Chicago/Turabian StyleAdeyeri, Oluwafemi E. 2025. "Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways" Water 17, no. 15: 2247. https://doi.org/10.3390/w17152247
APA StyleAdeyeri, O. E. (2025). Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways. Water, 17(15), 2247. https://doi.org/10.3390/w17152247