Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining and Processing Occurrence Data
2.2. Environmental Variables
2.3. Modeling Methods
3. Results
3.1. Accuracy Evaluation and Dominant Environmental Variables
3.2. Suitable Areas Under the Current Climate Conditions
3.3. Change of Suitable Areas Under Future Climate Conditions
3.4. Shift of the Centroids Within the Suitable Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Trachypteris picta | T. picta |
Maximum entropy | MaxEnt |
Receiver operating characteristic | ROC |
Area under the curve | AUC |
References
- Bellamy, C.L. A World Catalogue and Bibliography of the Jewel Beetles (Coleoptera: Buprestoidea); Pensoft: Sofia, Bulgaria, 2008; Volume 1–4. [Google Scholar]
- Li, Y. Causes and control technology of Chrysobothris succedanea Saunders damages at Robinia pseudoacacia cv. Idaho; in Beinhe New District in Yinchuan City. Ningxia J. Agric. For. Sci. Technol. 2018, 59, 20. [Google Scholar]
- Kelnarova, I.; Jendek, E.; Grebennikov, V.V.; Bocak, L. First molecular phylogeny of Agrilus (Coleoptera: Buprestidae), the largest genus on Earth, with DNA barcode database for forestry pest diagnostics. Bull. Entomol. Res. 2019, 109, 200–211. [Google Scholar] [CrossRef]
- Zhang, P.; Cui, Z.; Xu, H.; Ali, A.; Zhang, X.; Liu, X.; Zhang, Y.; Zhou, X.; Lu, Z. Thirst or malnutrition: The impacts of invasive insect Agrilus mali on the physiological status of wild apple trees. Forests 2020, 11, 440. [Google Scholar] [CrossRef]
- Kovacs, K.F.; Mercader, R.J.; Haight, R.G.; Siegert, N.W.; McCullough, D.G.; Liebhold, A.M. The influence of satellite populations of emerald ash borer on projected economic costs in U.S. Communities, 2010–2020. J. Environ. Manag. 2011, 92, 2170–2181. [Google Scholar] [CrossRef] [PubMed]
- Herms, D.A.; McCullough, D.G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Ann. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Obenberger, J. O některých palaearktických druzích rodu Melanophila Eschsch. (Col. Bupr.). De nonnullis generis Melanophila Eschsch. speciebus palaearcticis (Col. Bupr.). Acta Entomol. Mus. Nat. Pra. 1944, 21–22, 147–150. [Google Scholar]
- Qu, B.X.; Chen, H.; Liu, F.D. Study on Melanophila decastigma Fabricius II: Occurring Regularity and Its Control. J. Northwest For. Coll. 1991, 66, 28–33. [Google Scholar]
- Babmorad, M.; Abaei, M.; Zinali, S. Biological study of Melanophila (= Trachypteris) picta (Col.: Buprestidae) in Karaj. Appl. Entomol. Phytopathol. 2008, 75, 55–71. [Google Scholar]
- Makan, N.; Yue, C.Y.; Zhang, X.P.; Maimaiti, A. Risk analysis on invasion of Melanophila decastigma in Xinjiang. Prot. Fores. Sci. Tech. 2013, 6, 25–27. [Google Scholar]
- Uphur, Y. Control Methods for the Trachypteris picta in Korla City. South China Agric. 2015, 9, 64. [Google Scholar]
- Xue, X.Q. The occurrence and control of Melanophila decastigma Fabr. Sci. Silv. Sin. 1978, 2, 37–41. [Google Scholar]
- Yakup, A.; Semiy, K.; Zhang, X.P.; Yue, C.Y.; Liu, A.H. The current situation of the harmful effects of Melanophila decastigma on industrial raw material forests in Karamay and its control measures. Prot. Fores. Sci. Tech. 2014, 9, 76–77. [Google Scholar]
- Trew, B.T.; Maclean, I.M.D.; McGill, B. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 2021, 30, 768–783. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Veloz, S.; Holt, B.G.; Singarayer, J.; Valdes, P.; Davis, B.; Brewer, S.C.; Williams, J.W.; Rahbek, C. Amplified plant turnover in response to climate change forecast by Late Quaternary records. Nat. Clim. Change 2016, 6, 1115–1119. [Google Scholar] [CrossRef]
- Bush, M.B.; Silman, M.R.; Urrego, D.H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 2004, 303, 827–829. [Google Scholar] [CrossRef]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef]
- Poloni, R.; Iannella, M.; Fusco, G.; Fattorini, S. Conservation biogeography of high-altitude longhorn beetles under climate change. Insect Conserv. Diver. 2022, 15, 429–444. [Google Scholar] [CrossRef]
- Moguel-Cárdenas, L.I.; León-Cortés, J.L.; Rodríguez-Aguilar, O.; Castillo-Vera, A.; Islebe, G.A. Climate-driven change and conservation of threatened satyrine butterflies in cloud forests of southern Mexico. J. Insect Conserv. 2024, 28, 331–343. [Google Scholar] [CrossRef]
- Yu, Y.L.; Li, Z.Q. Predicting the potential distribution of Cheirotonus jansoni (Coleoptera: Scarabaeidae) under climate change. Insects 2024, 15, 1012. [Google Scholar] [CrossRef] [PubMed]
- Sutherst, R.W.; Maywald, G.E. A computerized system for matching climates in ecology. Agric. Ecosyst. Environ. 1985, 13, 281–299. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Maywald, G.E.; Bottomley, W.; Bourne, A. CLIMEX v2; Hearne Scientific Software: Melbourne, Australia, 2004. [Google Scholar]
- Brook, B.W.; Duncan, R.P. The future of science in species distribution models. J. Biogeogr. 2015, 42, 1–4. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapirer, E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-Niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Mondanaro, A.; Di Febbraro, M.; Castiglione, S.; Melchionna, M.; Serio, C.; Girardi, G.; Belfiore, A.M.; Raia, P. ENphylo: A new method to model the distribution of extremely rare species. Methods Ecol. Evol. 2023, 14, 911–922. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Urbani, F.; D’Alessandro, P.; Biondi, M. Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects inresponse to climate change. Bull. Insectol. 2017, 70, 189–200. [Google Scholar]
- Fan, S.Y.; Chen, C.; Zhao, Q.; Wei, J.F.; Zhang, H.F. Identifying potentially climatic suitability areas for Arma custos (Hemiptera: Pentatomidae) in China under climate change. Insects 2020, 11, 674. [Google Scholar] [CrossRef]
- Zhang, Y.; Hughes, A.C.; Zhao, Z.H.; Li, Z.H.; Qin, Y.J. Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Glob. Ecol. Conserv. 2022, 34, e02021. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lu, Y.Y.; Han, M.Y.; Li, L.L.; He, P.; Shi, A.M.; Bai, M. Using MaxEnt model to predict the potential distribution of three potentially invasive scarab beetles in China. Insects 2023, 14, 239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.L.; Liu, S.; Xu, C.Q.; Wei, H.S.; Guo, K.; Xu, R.; Qiao, H.L.; Liu, P.F. Prediction of potential distribution of Carposina coreana in China under the current and future climate change. Insects 2024, 15, 411. [Google Scholar] [CrossRef]
- Shi, X.D.; Yin, Q.; Sang, Z.Y.; Zhu, Z.L.; Jia, Z.K.; Ma, L.Y. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecol. Indic. 2021, 27, 107762. [Google Scholar] [CrossRef]
- Chen, B.G.; Zou, H.; Zhang, B.Y.; Zhang, X.Y.; Jin, X.X.; Wang, C.; Zhang, X.X. Distribution pattern and change prediction of Saposhnikovia divaricata suitable area in China under climate change. Ecol. Indic. 2022, 143, 109311. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Warren, R.; Price, J.; Graham, E.; Forstenhaeusler, N.; VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science 2018, 360, 791–795. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Lee, C.M.; Kim, S.-S. Prediction of abundance of beetles according to climate warming in South Korea. J. Asia-Pac. Biodivers. 2015, 8, 7–30. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Yang, L.; Long, J.K.; Chang, Z.M.; Chen, X.S. Predicting suitable areas for Metcalfa pruinose (Hemiptera: Flatidae) under climate change and implications for management. J. Insect Sci. 2024, 24, 7. [Google Scholar] [CrossRef]
- Fu, C.; Wen, X.Y.; Huang, T.T.; Wang, Y.L.; Liu, X.; Jiang, N.; Wang, R.L.; Zhao, J.P. Comparison of GARP and MaxEnt in modeling current and future geographic distribution of Ceracris nigricornis Walker (Acrididae, Orthoptera) in China. Ecol. Evol. 2024, 14, e70439. [Google Scholar] [CrossRef]
- Sobek-Swant, S.; Kluza, D.A.; Cuddington, K.; Lyons, D.B. Potential distribution of emerald ash borer: What can we learn from ecological niche models using Maxent and GARP? Forest Ecol. and Manag. 2012, 81, 23–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Jiamahate, A.; Yang, H.; Cao, L.; Dang, Y.; Lu, Z.; Yang, Z.; Bozorov, T.A.; Wang, X. Potential ecological distribution of the beetle Agrilus mali Matsumura (Coleoptera: Buprestidae) in China under three climate change scenarios, with consequences for commercial and wild apple forests. Biology 2024, 13, 803. [Google Scholar] [CrossRef] [PubMed]
- Sambaraju, K.R.; Powell, K.A.; Beaudoin, A. Multi-model assessments to characterize occurrences of emerald ash borer (Coleoptera: Buprestidae). J. Insect Sci. 2025, 16, 18. [Google Scholar] [CrossRef]
- Koo, K.S.; Lee, K.-H.; Lee, D.; Jiang, Y. Impact of obscured data on species distribution models. Conserv. Biol. 2025; published online. [Google Scholar]
- Verbruggen, H.; Tyberghein, L.; Belton, G.S.; Mineur, F.; Jueterbock, A.; Hoarau, G.; Gurgel, C.F.; Clerk, O.D. Improving transferability of introduced species’ distribution models: New tools to forecast the spread of a highly invasive seaweed. PLoS ONE 2013, 8, e63337. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.F.; Peng, L.F.; He, Z.Q.; Lu, Y.; Wang, F. Potential distribution of two invasive pineapple pests under climate change. Pest. Manag. Sci. 2020, 76, 1652–1663. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tateishi, R.; Alsaaideh, B.; Sharma, R.C.; Wakaizumi, T.; Miyamoto, D.; Bai, X.; Long, B.D.; Gegentana, G.; Maitiniyazi, A. Production of global land cover data–GLCNMO2013. J. Geogr. Geol. 2017, 9, 1–15. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Riahi, K. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Zhu, G.P.; Jiao, H.J. Effect of the MaxEnt model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modeling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Wei, B.; Wang, R.L.; Hou, K.; Wang, X.Y.; Wu, W. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 2018, 16, e00477. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A.T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Rödder, D.; Schmidtlein, S.; Veithm, M.; Lötters, S. Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors studied? PLoS ONE 2009, 4, e7843. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Lu, Y.Y.; Li, P.P. Prediction of potential geographic distribution for common snapping turtle (Chelydra serpentina) based on MaxEnt modelling. Chin. J. Wildlife 2017, 38, 467–472. [Google Scholar]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Stockwell, D.R.B.; Peterson, A.T. Effects of sample size on accuracy of species distribution models. Ecol. Model 2002, 148, 1–13. [Google Scholar] [CrossRef]
- Ji, Q.Z.; Wang, R.X.; Huang, Z.P.; Yuan, J.H.; Ren, G.P.; Xiao, W. Effects of sample size and study range on accuracy of MaxEnt in predicting species distribution: A case study of the black-and-white snub-nosed monkey. Acta Theriol. Sin. 2019, 39, 126–133. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Janitza, S.; Strobl, C.; Boulesteix, A.L. An AUC-based permutation variable importance measure for random forests. BMC Bioinform. 2013, 14, 119. [Google Scholar] [CrossRef]
- Ye, G.; You, L.; Lu, C.; Lin, W.; Luo, M.; Tan, F. Global climate change and adaptive management of forest ecosystem. World For. Res. 2015, 28, 145–167. [Google Scholar]
- Speight, M.R.; Hunter, M.D.; Watt, A.D. Ecology of Insects: Concepts and Applications; Wiley-Blackwell Hoboken: Hoboken, NJ, USA, 2008. [Google Scholar]
- Deo, R.C. Links between native forest and climate in Australia. Weather 2011, 66, 64–69. [Google Scholar] [CrossRef]
Bioclimatic Variable | Description | Contribution (%) | Permutation Importance (%) |
---|---|---|---|
Bio01 | Annual mean temperature | 26.2 | 55.5 |
Bio02 | Mean daily temperature range | 6.2 | 6.1 |
Bio03 | Isothermality | 10.3 | 5.4 |
Bio04 | Temperature seasonality | 7.8 | 11.6 |
Bio05 | Maximum temperature of the warmest month | 1.4 | 11.5 |
Bio11 | Mean temperature of the coldest quarter | 18.6 | 1.1 |
Bio18 | Precipitation of the warmest quarter | 5.8 | 4.9 |
Bio19 | Precipitation of the coldest quarter | 14 | 2.4 |
gm_lc | Global land cover type | 8.4 | 1.2 |
gm_ve | Global vegetation (tree cover percentage) | 1.4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, S.; Li, Y.; Ding, S.; Shi, A.; Yang, D.; Wei, Z. Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae). Insects 2025, 16, 802. https://doi.org/10.3390/insects16080802
Liu H, Wang S, Li Y, Ding S, Shi A, Yang D, Wei Z. Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae). Insects. 2025; 16(8):802. https://doi.org/10.3390/insects16080802
Chicago/Turabian StyleLiu, Huafeng, Shuangyi Wang, Yunchun Li, Shuangmei Ding, Aimin Shi, Ding Yang, and Zhonghua Wei. 2025. "Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae)" Insects 16, no. 8: 802. https://doi.org/10.3390/insects16080802
APA StyleLiu, H., Wang, S., Li, Y., Ding, S., Shi, A., Yang, D., & Wei, Z. (2025). Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae). Insects, 16(8), 802. https://doi.org/10.3390/insects16080802