Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,891)

Search Parameters:
Keywords = Lactobacillus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 666 KiB  
Article
Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design
by Rafael González-Cuello, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
J. Compos. Sci. 2025, 9(8), 419; https://doi.org/10.3390/jcs9080419 - 5 Aug 2025
Abstract
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus [...] Read more.
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus reuteri through microencapsulation using a binary polysaccharide mixture composed of low acyl gellan gum (LAG), high acyl gellan gum (HAG), and calcium for the microencapsulation of L. reuteri. To achieve this, the Box–Behnken design was applied, targeting the optimization of L. reuteri microencapsulated to withstand simulated gastrointestinal conditions. The microcapsules were crafted using the internal ionic gelation method, and optimization was performed using response surface methodology (RSM) based on the Box–Behnken design. The model demonstrated robust predictive power, with R2 values exceeding 95% and a lack of fit greater than p > 0.05. Under optimized conditions—0.88% (w/v) LAG, 0.43% (w/v) HAG, and 24.44 mM Ca—L. reuteri reached a viability of 97.43% following the encapsulation process. After 4 h of exposure to simulated gastric fluid (SGF) and intestinal fluid (SIF), the encapsulated cells maintained a viable count of 8.02 log CFU/mL. These promising results underscore the potential of biopolymer-based microcapsules, such as those containing LAG and HAG, as an innovative approach for safeguarding probiotics during gastrointestinal passage, paving the way for new probiotic-enriched food products. Full article
Show Figures

Figure 1

11 pages, 1947 KiB  
Article
Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses
by Baiyila Wu, Xue Cao, Mingshan Fu, Yuxin Bao, Tiemei Wu, Kai Liu, Shubo Wen, Fenglin Gao, Haifeng Wang, Hua Mei and Yang Song
Agronomy 2025, 15(8), 1888; https://doi.org/10.3390/agronomy15081888 - 5 Aug 2025
Abstract
The purpose of this study was to investigate the effect of different additives on the microbial composition, fermentation quality, and bacterial community structure of big-bale Leymus chinensis silage. An experiment was set up with four treatment groups: a control (C) group, Lacticaseibacillus rhamnosus [...] Read more.
The purpose of this study was to investigate the effect of different additives on the microbial composition, fermentation quality, and bacterial community structure of big-bale Leymus chinensis silage. An experiment was set up with four treatment groups: a control (C) group, Lacticaseibacillus rhamnosus (L) group, molasses (M) group, and L. rhamnosus + molasses (LM) group, with three replications per group, and L. chinensis silages were fermented for 20 and 40 days. The lactic acid, acetic acid, 1,2-propanediol, and propionic acid contents increased, and pH, butyric acid, 1-propanol, and ethanol contents decreased in the L, M, and LM groups compared to the C group. In the LM group, the number of lactic acid bacteria was the highest, while the pH was the lowest. Enterobacter and Paucibacter were the main dominant genera in the C group. The addition of L. rhamnosus and molasses increased the relative abundance of Lactobacillus, Weissella, and Enterococcus. Lactobacillus abundance correlated positively (p < 0.01) with Lactococcus, Enterococcus, and Weissella and correlated negatively with Enterobacter and Paucibacter. Conversely, Enterobacter and Paucibacter showed a strong positive correlation (p < 0.01, R = 0.55) during fermentation. Lactobacillus, Enterococcus, and Weissella were positively associated (p < 0.01) with acetic and lactic acid levels, while Enterobacter abundance was correlated positively (p < 0.05, R = 0.43) with 1,2-propanediol content. In summary, the addition of both L. rhamnosus and molasses improved the fermentation quality and bacterial community structure of big-bale L. chinensis silage. In addition to inhibiting harmful microorganisms, this combination improved the fermentation products of big-bale L. chinensis silage through microbial regulation. Full article
(This article belongs to the Special Issue Innovative Solutions for Producing High-Quality Silage)
Show Figures

Figure 1

23 pages, 2663 KiB  
Article
Antimicrobial and Anticancer Activities of Lactiplantibacillus plantarum Probio87 Isolated from Human Breast Milk
by Pei Xu, Mageswaran Uma Mageswary, Azka Ainun Nisaa, Xiang Li, Yi-Jer Tan, Chern-Ein Oon, Cheng-Siang Tan, Wen Luo and Min-Tze Liong
Nutrients 2025, 17(15), 2554; https://doi.org/10.3390/nu17152554 - 5 Aug 2025
Abstract
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and [...] Read more.
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and carbohydrate utilization. Prebiotic preferences were assessed using FOS, GOS, and inulin. Antibiotic susceptibility was evaluated per EFSA standards. Antimicrobial activity of the cell-free supernatant (CFS) was tested against Staphylococcus aureus, Escherichia coli, and Candida species. Effects on Lactobacillus iners and L. crispatus were analyzed. Anticancer properties were assessed in HeLa, CaSki (HPV-positive), and C-33A (HPV-negative) cervical cancer cell lines through proliferation, apoptosis, angiogenesis, and cell cycle assays. Results: Probio87 showed strong acid and bile tolerance, efficient mucin adhesion, and broad carbohydrate utilization, favoring short-chain prebiotics like FOS and GOS over inulin. It met EFSA antibiotic safety standards. The CFS exhibited potent antimicrobial activity, including complete inhibition of Candida albicans. Probio87 selectively inhibited L. iners without affecting L. crispatus, indicating positive modulation of vaginal microbiota. In cervical cancer cells, the CFS significantly reduced proliferation and angiogenesis markers (p < 0.05), and induced apoptosis and cell cycle arrest in HPV-positive cells, with minimal effects on HPV-negative C-33A cells. Conclusions: Probio87 demonstrates strong probiotic potential, with safe, selective antimicrobial and anticancer effects. Its ability to modulate key microbial and cancer-related pathways supports its application in functional foods or therapeutic strategies for vaginal and cervical health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

16 pages, 2097 KiB  
Article
Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice
by Di Yuan, Shan Zhang, Bin Hong, Shan Shan, Jingyi Zhang, Dixin Sha, Shiwei Gao, Qing Liu, Shuwen Lu and Chuanying Ren
Foods 2025, 14(15), 2733; https://doi.org/10.3390/foods14152733 - 5 Aug 2025
Abstract
Growing demand for plant-based nutraceuticals drives the need for innovative bioprocessing strategies. This study developed an integrated approach combining germination and Lactobacillus-mediated fermentation to produce a γ-aminobutyric acid (GABA)-enriched functional beverage from brown rice. Systematic screening identified an optimal rice cultivar for germination. [...] Read more.
Growing demand for plant-based nutraceuticals drives the need for innovative bioprocessing strategies. This study developed an integrated approach combining germination and Lactobacillus-mediated fermentation to produce a γ-aminobutyric acid (GABA)-enriched functional beverage from brown rice. Systematic screening identified an optimal rice cultivar for germination. Sequential enzymatic liquefaction and saccharification were optimized to generate a suitable hydrolysate. Screening of 13 probiotic strains revealed that a 10-strain Lactobacillus–Bifidobacterium consortium maximized GABA synthesis (12.2 mg/100 g). Fermentation parameters were optimized to 0.25% monosodium glutamate, 4% inoculum, 10 μmol/L pyridoxine hydrochloride, 37 °C, and 24 h. The resulting beverage achieved significantly elevated GABA concentrations while exhibiting low fat (0.2 g/100 g), reduced caloric content (233.6 kJ/100 g), and high viable probiotic counts (2 × 108 CFU/g). This strategy demonstrates significant potential for the scalable production of multifunctional, plant-based nutraceuticals with targeted bioactive components. Full article
Show Figures

Figure 1

21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 3202 KiB  
Article
Gut Microbiota Composition in Rats Consuming Sucralose or Rebaudioside A at Recommended Doses Under Two Dietary Interventions
by Meztli Ramos-García, Alma Delia Genis-Mendoza, Carlos García-Vázquez, José Jaime Martínez-Magaña, Viridiana Olvera-Hernández, Mirian Carolina Martínez-López, Juan Cuauhtémoc Díaz-Zagoya, Carina Shianya Alvarez-Villagomez, Isela Esther Juárez-Rojop, Humberto Nicolini and Jorge Luis Ble-Castillo
Metabolites 2025, 15(8), 529; https://doi.org/10.3390/metabo15080529 - 4 Aug 2025
Abstract
Background: Artificial non-nutritive sweeteners (NNSs), such as sucralose, have been associated with gut microbiota (GM) alterations. However, the impact of rebaudioside A (reb A), a natural NNS, on GM has received limited scrutiny. Objective: The objective of this study was to examine [...] Read more.
Background: Artificial non-nutritive sweeteners (NNSs), such as sucralose, have been associated with gut microbiota (GM) alterations. However, the impact of rebaudioside A (reb A), a natural NNS, on GM has received limited scrutiny. Objective: The objective of this study was to examine the response of GM composition to sucralose and reb A in rats under two dietary conditions. Methods: Male Wistar rats (150–200 g) fed with a normal diet (ND) or a high-fat diet (HFD) were randomly assigned to receive sucralose (SCL), reb A (REB), glucose (GLU, control), or sucrose (SUC). The NNS interventions were administered in water at doses equivalent to the acceptable daily intake (ADI). After eight weeks, the GM composition in fecal samples was analyzed through 16S ribosomal RNA gene sequencing. Results: The NNSs did not modify the diversity, structure, phylum-level composition, or Firmicutes/Bacteroidetes (F/B) ratio of the GM in rats under ND or HFD. However, REB with HFD decreased Bacilli and increased Faecalibacterium abundance at the class level. SCL and REB in rats receiving ND reduced the genera Romboutsia and Lactobacillus. Conclusions: Our study suggests that when sucralose or reb A is consumed at recommended doses, there is no alteration in the diversity or the composition of the GM at the phylum level. The clinical relevance of these findings lies in the potential modifications of the GM at specific taxonomic levels by the consumption of these NNSs. Further research involving humans and including a broader range of microbial analyses is warranted. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

21 pages, 3334 KiB  
Article
Protective Efficacy of Lactobacillus plantarum Postbiotic beLP-K in a Dexamethasone-Induced Sarcopenia Model
by Juyeong Moon, Jin-Ho Lee, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Jinsu Choi, Min-ah Kim, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Int. J. Mol. Sci. 2025, 26(15), 7504; https://doi.org/10.3390/ijms26157504 (registering DOI) - 3 Aug 2025
Viewed by 54
Abstract
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. [...] Read more.
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. This study assessed the preventive effects and mechanisms of heat-killed Lactobacillus plantarum postbiotic beLP-K (beLP-K) against dexamethasone (DEX)-induced sarcopenia in C2C12 myotubes and Sprague-Dawley rats. The administration of beLP-K did not induce cytotoxicity and mitigated cell damage caused by DEX. Furthermore, beLP-K significantly reduced the expression of forkhead box O3 α (FoxO3α), muscle atrophy f-box (MAFbx)/atrogin-1, and muscle RING-finger protein-1 (MuRF1), which are associated with muscle protein degradation. DEX induced weight loss in rats; however, in the beLP-K group, weight gain was observed. Micro-computed tomography analysis revealed that beLP-K increased muscle mass, correlating with weight and grip strength. beLP-K alleviated the DEX-induced reduction in grip strength and increased the mass of hind leg muscles. The correlation between beLP-K administration and increased muscle mass was associated with decreased expression levels of muscle degradation-related proteins such as MAFbx/atrogin-1 and MuRF1. Therefore, beLP-K may serve as a treatment for sarcopenia or as functional food material. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 2123 KiB  
Article
Neuroprotective Effect Against Ischemic Stroke of the Novel Functional Drink Containing Anthocyanin and Dietary Fiber Enriched-Functional Ingredient from the Mixture of Banana and Germinated Jasmine Rice
by Mubarak Muhammad, Jintanaporn Wattanathorn, Wipawee Thukham-mee, Sophida Phuthong and Supaporn Muchimapura
Life 2025, 15(8), 1222; https://doi.org/10.3390/life15081222 - 2 Aug 2025
Viewed by 92
Abstract
Due to the stroke-protective effects of dietary fiber and anthocyanin together with the synergistic interaction, we hypothesized that the functional drink containing the anthocyanins and dietary fiber-enriched functional ingredient from banana and germinated black Jasmine rice (BR) should protect against ischemic stroke. [...] Read more.
Due to the stroke-protective effects of dietary fiber and anthocyanin together with the synergistic interaction, we hypothesized that the functional drink containing the anthocyanins and dietary fiber-enriched functional ingredient from banana and germinated black Jasmine rice (BR) should protect against ischemic stroke. BR at doses of 300, 600, and 900 mg/kg body weight (BW) was orally given to male Wistar rats weighing 290–350 g once daily for 21 days, and they were subjected to ischemic reperfusion injury induced by temporary occlusion of the middle cerebral artery (MCAO/IR) for 90 min. The treatment was prolonged for 21 days after MCAO/IR. They were assessed for brain infarction volume, neuron density, Nrf2, MDA, and catalase in the cortex together with serum TNF-α and IL-6. Lactobacillus and Bifidobacterium spp. in feces were also assessed. Our results showed that BR improved the increase in brain infarcted volume, MDA, TNF-α, and IL-6 and the decrease in neuron density, Nrf2, catalase, and both bacteria spp. induced by MCAO/IR. These data suggest the stroke-protective effect of the novel functional drink, and the action may involve the improvement of Nrf2, oxidative stress, inflammation, and the amount of Lactobacillus and Bifidobacterium spp. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 - 1 Aug 2025
Viewed by 180
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

20 pages, 2168 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 - 1 Aug 2025
Viewed by 97
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

29 pages, 6122 KiB  
Article
Lacticaseibacillus paracasei L21 and Its Postbiotics Ameliorate Ulcerative Colitis Through Gut Microbiota Modulation, Intestinal Barrier Restoration, and HIF1α/AhR-IL-22 Axis Activation: Combined In Vitro and In Vivo Evidence
by Jingru Chen, Linfang Zhang, Yuehua Jiao, Xuan Lu, Ning Zhang, Xinyi Li, Suo Zheng, Bailiang Li, Fei Liu and Peng Zuo
Nutrients 2025, 17(15), 2537; https://doi.org/10.3390/nu17152537 - 1 Aug 2025
Viewed by 202
Abstract
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate [...] Read more.
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate colitis were evaluated using an in vitro lipopolysaccharide (LPS)-induced intestinal crypt epithelial cell (IEC-6) model and an in vivo dextran sulfate sodium (DSS)-induced UC mouse model. Results: In vitro, L. paracaseiL21 decreased levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-8) while increasing anti-inflammatory IL-10 levels (p < 0.05) in LPS-induced IEC-6 cells, significantly enhancing the expression of tight junction proteins (ZO-1, occludin, claudin-1), thereby restoring the intestinal barrier. In vivo, both viable L. paracaseiL21 and its heat-inactivated postbiotic (H-L21) mitigated weight loss, colon shortening, and disease activity indices, concurrently reducing serum LPS and proinflammatory mediators. Interventions inhibited NF-κB signaling while activating HIF1α/AhR pathways, increasing IL-22 and mucin MUC2 to restore goblet cell populations. Gut microbiota analysis showed that both interventions increased the abundance of beneficial gut bacteria (Lactobacillus, Dubococcus, and Akkermansia) and improved faecal propanoic acid and butyric acid levels. H-L21 uniquely exerted an anti-inflammatory effect, marked by the regulation of Dubosiella, while L. paracaseiL21 marked by the Akkermansia. Conclusions: These results highlight the potential of L. paracaseiL21 as a candidate for the development of both probiotic and postbiotic formulations. It is expected to provide a theoretical basis for the management of UC and to drive the development of the next generation of UC therapies. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

22 pages, 3360 KiB  
Article
Effect of Atmospheric Cold Plasma Treatment on the Microorganism Growth, Diversity, and Quality of Coconut Water During Refrigerator Storage
by Lixian Zeng, Wenyue Gu, Yuanyuan Wang, Wentao Deng, Jiamei Wang and Liming Zhang
Foods 2025, 14(15), 2709; https://doi.org/10.3390/foods14152709 - 1 Aug 2025
Viewed by 162
Abstract
To study the effect of cold plasma (CP) on the refrigerator shelf life of coconut water, microorganism growth and diversity and physicochemical properties were investigated. Results indicated that CP treatment did not cause significant color changes in coconut water, with turbidity remaining lower [...] Read more.
To study the effect of cold plasma (CP) on the refrigerator shelf life of coconut water, microorganism growth and diversity and physicochemical properties were investigated. Results indicated that CP treatment did not cause significant color changes in coconut water, with turbidity remaining lower than the control even after 6 days of storage. Enzymatic activity analysis revealed reduced polyphenol oxidase (PPO) and peroxidase (POD) levels in treated samples. Specifically, the 12 s CP treatment resulted in the lowest antioxidant capacity values: 15.77 Fe2+/g for ferric reducing antioxidant power (FRAP), 37.15% for DPPH radical scavenging, and 39.51% for ABTS+ radical scavenging. Microbial enumeration showed that extended CP treatment effectively inhibited the growth of total viable counts, psychrophilic bacteria, lactic acid bacteria, and yeast. High-throughput sequencing identified Leuconostoc, Carnobacterium, and Lactobacillus as the dominant bacterial genera. During storage, Carnobacterium was the primary genus in the early stage, while Leuconostoc emerged as the dominant genus by the end of the storage period. In summary, CP as an effective non-thermal technology was able to maintain quality and antioxidant capacity, inhibit microbial growth, and delay the spoilage in coconut water to help extend the refrigerated shelf life of the product. Full article
Show Figures

Figure 1

13 pages, 1801 KiB  
Review
Lactobacillus acidophilus in Aquaculture: A Review
by Lu Zhang, Jian Zhou, Zhipeng Huang, Han Zhao, Zhongmeng Zhao, Chengyan Mou, Yang Feng, Huadong Li, Qiang Li and Yuanliang Duan
Microbiol. Res. 2025, 16(8), 174; https://doi.org/10.3390/microbiolres16080174 - 1 Aug 2025
Viewed by 127
Abstract
Microbial feed additives can effectively promote the healthy development of aquaculture, and Lactobacillus acidophilus can be utilized to mitigate disease risks and enhance productivity while minimizing antibiotic use. This article summarizes research on the application of L. acidophilus in aquaculture, focusing on growth [...] Read more.
Microbial feed additives can effectively promote the healthy development of aquaculture, and Lactobacillus acidophilus can be utilized to mitigate disease risks and enhance productivity while minimizing antibiotic use. This article summarizes research on the application of L. acidophilus in aquaculture, focusing on growth and nutrient utilization, intestinal structure and microbial communities, disease prevention and control in aquatic organisms, and the regulation of water quality. This review holds significant implications for the development of compound feed additives and environmental regulators involving L. acidophilus, as well as for future aquatic food safety. Full article
(This article belongs to the Topic The Role of Microorganisms in Waste Treatment)
Show Figures

Figure 1

12 pages, 788 KiB  
Article
Gut Microbial Composition on Dienogest Therapy in Patients with Endometriosis
by Veronika Pronina, Pavel Denisov, Vera Muravieva, Alexey Skorobogatiy, Ksenia Zhigalova, Galina Chernukha, Gennady Sukhikh and Tatiana Priputnevich
Microbiol. Res. 2025, 16(8), 169; https://doi.org/10.3390/microbiolres16080169 - 1 Aug 2025
Viewed by 188
Abstract
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. [...] Read more.
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. Dienogest (DNG) is widely used for endometriosis management, but its effects on gut microbiota remain underexplored. This study investigates the impact of DNG on gut microbial composition in endometriosis patients, aiming to elucidate its therapeutic mechanisms beyond hormonal modulation. DNG therapy led to a significant reduction in the Bacillota/Bacteroidota ratio (p = 0.0421), driven by decreased Staphylococcus spp. (p = 0.0244) and increased commensal bacteria such as Lactobacillus spp. and Collinsella aerofaciens (p = 0.049). Species richness and alpha diversity indices showed a non-significant upward trend. Notably, C. aerofaciens, a butyrate producer linked to gut barrier integrity, was detected twice as frequently during therapy. The study also observed reductions in facultative anaerobes like Enterococcus spp. and a trend toward higher titers of beneficial Bacteroidota. This study provides the first evidence that DNG therapy modulates gut microbiota in endometriosis patients, favoring a composition associated with anti-inflammatory and barrier-protective effects. The observed shifts—reduced opportunistic pathogens and increased symbionts—suggest a novel mechanism for DNG’s efficacy, potentially involving the microbial regulation of estrogen metabolism and immune responses. Full article
Show Figures

Figure 1

Back to TopTop