Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Germinated Brown Rice
2.3. Preparation of GBR Enzymatic Hydrolysate
2.4. Determination of Centrifugal Sedimentation Rate
2.5. Determination of Dextrose Equivalent (DE)
2.6. Screening of Fermentation Strains
2.7. Optimization Experimental Design
2.8. Determination of GABA Content by HPLC
2.9. Nutrient Composition Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Screening of High-GABA Brown Rice Varieties
3.2. Optimization of Slurry Water-to-Rice Ratio
3.3. Optimization of Liquefaction Conditions
3.3.1. Enzyme Dosage Optimization
3.3.2. Time Optimization
3.3.3. Temperature Optimization
3.4. Optimization of Saccharification Conditions
3.4.1. Enzyme Dosage Optimization
3.4.2. Time Optimization
3.4.3. Temperature Optimization
3.5. Optimization of Fermentation Conditions
3.5.1. Screening of Fermentation Strains
3.5.2. Effect of Monosodium Glutamate (MSG) Supplementation
3.5.3. Effect of Probiotic Inoculum Size
3.5.4. Fermentation Time and pH Dynamics
3.5.5. Pyridoxine Hydrochloride Supplementation
3.6. Final Beverage Production Protocol
3.7. Nutrient Value
3.8. Considerations for Product Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braga, J.D.; Thongngam, M.; Kumrungsee, T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut–brain axis. npj Sci. Food 2024, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Yoon, H. Gamma-Aminobutyric Acid Signaling in Damage Response, Metabolism, and Disease. Int. J. Mol. Sci. 2023, 24, 4584. [Google Scholar] [CrossRef] [PubMed]
- Bahram, R.P.; Javadi, A.; Bodbodak, S.; Khodaei, M.A. Production of functional baguette biofortified with gamma-aminobutyric acid. J. Food Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Liu, C.; Li, Y.; Miao, S.; Grimi, N.; Cao, H.; Guan, X. Metabolism, application in the food industry, and enrichment strategies of gamma-aminobutyric acid. Trends Food Sci. Technol. 2024, 154, 104773. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.; Zhao, S.; Qiao, D.; Li, B.; Zhang, B. Germination and fermentation synergistically tailor the starch structure within brown rice and the quality features of brown rice tea. Food Res. Int. 2025, 211, 116437. [Google Scholar] [CrossRef]
- Ren, C.; Lu, S.; Guan, L.; Hong, B.; Zhang, Y.; Huang, W.; Li, B.; Liu, W.; Lu, W. The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice. J. Integr. Agric. 2022, 21, 2767–2776. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Moreau, R.A.; Powell, M.J.; Obando-Ulloa, J.M. Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages. Foods 2022, 11, 220. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Duan, Z.; Tang, Y.; Shu, W.; Xie, Y.; Liu, Q.; Yuan, Y. Differences in the chemical composition and physicochemical properties between brown rice kernels and brown rice flours after Lactobacillus fermentation and their impact on the qualities of brown rice noodles. LWT 2025, 215, 117219. [Google Scholar] [CrossRef]
- Pannerchelvan, S.; Rios-Solis, L.; Faizal Wong, F.W.; Zaidan, U.H.; Wasoh, H.; Mohamed, M.S.; Tan, J.S.; Mohamad, R.; Halim, M. Strategies for improvement of gamma-aminobutyric acid (GABA) biosynthesis via lactic acid bacteria (LAB) fermentation. Food Funct. 2023, 14, 3929–3948. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Gao, L.; Ge, R.; Cui, X.; Zhou, J.; Li, Z. Gamma-aminobutyric acid (GABA) promotes characteristics of Levilactobacillus sp. LB-2. LWT 2023, 184, 115014. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Chang, L. Effects of lactic acid bacteria fermentation on the phytochemicals content, taste and aroma of blended edible rose and shiitake beverage. Food Chem. 2023, 405, 134722. [Google Scholar] [CrossRef]
- Stachelska, M.A.; Karpiński, P.; Kruszewski, B. Health-Promoting and Functional Properties of Fermented Milk Beverages with Probiotic Bacteria in the Prevention of Civilization Diseases. Nutrients 2025, 17, 9. [Google Scholar] [CrossRef]
- Iorizzo, M.; Paventi, G.; Di Martino, C. Biosynthesis of Gamma-Aminobutyric Acid (GABA) by Lactiplantibacillus plantarum in Fermented Food Production. Curr. Issues Mol. Biol. 2024, 46, 200–220. [Google Scholar] [CrossRef] [PubMed]
- Icer, M.A.; Sarikaya, B.; Kocyigit, E.; Atabilen, B.; Çelik, M.N.; Capasso, R.; Ağagündüz, D.; Budán, F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024, 13, 2437. [Google Scholar] [CrossRef] [PubMed]
- Phuengjayaem, S.; Booncharoen, A.; Tanasupawat, S. Characterization and comparative genomic analysis of gamma-aminobutyric acid (GABA)-producing lactic acid bacteria from Thai fermented foods. Biotechnol. Lett. 2021, 43, 1637–1648. [Google Scholar] [CrossRef]
- Komatsuzaki, N.; Tsukahara, K.; Toyoshima, H.; Suzuki, T.; Shimizu, N.; Kimura, T. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 2007, 78, 556–560. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.; van der Werf, W.; Duan, L. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. J. Funct. Foods 2014, 10, 283–291. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Yuthaworawit, N.; Whanmek, K.; Suttisansanee, U.; Santivarangkna, C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J. Funct. Foods 2021, 86, 104710. [Google Scholar] [CrossRef]
- Zhu, L.; Fan, Z.; Li, W.; Shan, Y. Goat Milk Exhibits a Higher Degree of Protein Oxidation and Aggregation than Cow Milk During Cold Storage. Foods 2025, 14, 851. [Google Scholar] [CrossRef]
- Deshavath, N.N.; Mukherjee, G.; Goud, V.V.; Veeranki, V.D.; Sastri, C.V. Pitfalls in the 3,5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. Int. J. Biol. Macromol. 2020, 156, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Liao, W.-Y.; Wu, S.-M.; Gong, X.; Bai, C. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. J. Dairy Sci. 2020, 103, 98–105. [Google Scholar] [CrossRef]
- NY/T 2890–2016; Determination of γ-aminobutyric Acid in Rice—High Performance Liquid Chromatography. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2016.
- GB/Z 21922-2008; Technical Guidelines for Fundamental Terms of Food Nutrition. Standardization Administration of China: Beijing, China, 2008.
- GB 5009.6-2016; National Food Safety Standard—Determination of Fat in Foods. National Health Commission of China: Beijing, China, 2016.
- GB 5009.5-2016; National Food Safety Standard—Determination of Protein in Foods. National Health Commission of China: Beijing, China, 2016.
- GB 4789.35-2023; National Food Safety Standard—Food Microbiological Examination: Lactic Acid Bacteria Examination. National Health Commission of China: Beijing, China, 2023.
- GB 5009.268-2016; National Food Safety Standard—Determination of Multi-Elements in Foods. National Health Commission of China: Beijing, China, 2016.
- GB 5009.88-2023; National Food Safety Standard—Determination of Dietary Fiber in Foods. National Health Commission of China: Beijing, China, 2023.
- Kato, T.; Horibata, A. Distribution of γ-oryzanol in the outer layers of brown rice and its variation among cultivars. Plant Prod. Sci. 2021, 24, 256–265. [Google Scholar] [CrossRef]
- Nguyen, B.C.Q.; Shahinozzaman, M.; Tien, N.T.K.; Thach, T.N.; Tawata, S. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice. J. Cereal Sci. 2020, 93, 102985. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Xie, B.; Sun, Z. An Approach to Processing More Bioavailable Chickpea Milk by Combining Enzymolysis and Probiotics Fermentation. J. Food Qual. 2022, 2022, 1665524. [Google Scholar] [CrossRef]
- Wei, D.; Ma, T.; Montalbán-López, M.; Li, X.; Wu, X.; Mu, D. Enhanced Production, Enzymatic Activity, and Thermostability of an α-Amylase from Bacillus amyloliquefaciens in Lactococcus lactis. J. Agri. Food Chem. 2024, 72, 24587–24598. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, X.; Zhang, Z.; Tian, M.; Zhang, F. Investigation of the potential mechanisms of α-amylase and glucoamylase through ultrasound intensification. LWT 2024, 198, 115979. [Google Scholar] [CrossRef]
- Zong, X.; Wen, L.; Wang, Y.; Li, L. Research progress of glucoamylase with industrial potential. J. Food Biochem. 2022, 46, e14099. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, N.; Shima, J.; Kawamoto, S.; Momose, H.; Kimura, T. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22, 497–504. [Google Scholar] [CrossRef]
- Zhuang, K.; Jiang, Y.; Feng, X.; Li, L.; Dang, F.; Zhang, W.; Man, C. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437T induced by L-MSG. PLoS ONE 2018, 13, e0199021. [Google Scholar] [CrossRef]
- Wu, C.-H.; Hsueh, Y.-H.; Kuo, J.-M.; Liu, S.-J. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation. Int. J. Mol. Sci. 2018, 19, 143. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Mari, E.; Guerrini, S.; Granchi, L. Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. Int. Dairy J. 2022, 127, 105284. [Google Scholar] [CrossRef]
- Yogeswara, I.B.; Kittibunchakul, S.; Rahayu, E.S.; Domig, K.J.; Haltrich, D.; Nguyen, T.H. Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods. Processes 2021, 9, 22. [Google Scholar] [CrossRef]
- Hye Ji, J.; Na-Kyoung, L.; Hyun-Dong, P. Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink. Food Sci. Anim. Resour. 2024, 44, 255–268. [Google Scholar]
- Akamine, Y.; Millman, J.F.; Uema, T.; Okamoto, S.; Yonamine, M.; Uehara, M.; Kozuka, C.; Kaname, T.; Shimabukuro, M.; Kinjo, K. Fermented brown rice beverage distinctively modulates the gut microbiota in Okinawans with metabolic syndrome: A randomized controlled trial. Nutr. Res. 2022, 103, 68–81. [Google Scholar] [CrossRef]
Code | Product Name | Composite Starter Culture (Microbial Strains) |
---|---|---|
A | Angel Yeast Yogurt Starter (2 strains) | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus |
B | Angel Yeast Yogurt Starter (4 strains) | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactococcus lactis subsp. lactis, Bifidobacterium animalis subsp. |
C | Angel Yeast Yogurt Starter (8 strains) | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri |
D | Angel Yeast Yogurt Starter (10 strains) | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium animalis subsp. lactis, Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium infantis, Lactobacillus reuteri |
E | Angel Yeast Yogurt Starter (12 strains) | Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Bifidobacterium longum, Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium adolescentis, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus casei |
F | Chuanxiu (imported, 10 strains) | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Leuconostoc mesenteroides subsp. mesenteroides, Lactococcus lactis subsp. lactis biovar diacetylactis |
G | Yogourmet Kefir Yogurt Starter | Lactobacillus acidophilus, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis biovar diacetylactis, Saccharomyces cerevisiae, Kluyveromyces lactis |
H | Biosky (Greek Style) Yogurt Starter Powder | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus casei |
I | Biosky (Probiotic Type) (upgraded, 8 strains) | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus casei, Bifidobacterium animalis subsp. lactis, Bifidobacterium longum, Lactobacillus rhamnosus |
J | Biosky (10 strains) | Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis biovar diacetylactis, Leuconostoc mesenteroides subsp. mesenteroides, Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis, Bifidobacterium longum, Bifidobacterium infantis |
K | Chuanxiu Pickle/Kimchi Starter | Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus rhamnosus |
L | Biosky Pickle Starter Powder | Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus fermentum |
M | Shangchuan Pickle Starter | Lactobacillus plantarum, Leuconostoc mesenteroides subsp. mesenteroides, Pediococcus pentosaceus |
Sample Name | Raw GABA | Germinated GABA |
---|---|---|
Zhongjiazao 17 | 2.96 ± 0.05 o | 5.44 ± 0.07 r |
Yixiangyou 2115 | 1.75 ± 0.02 q | 20.58 ± 0.11 f |
Deyou 8 | 2.99 ± 0.07 o | 19.11 ± 0.18 g |
Fengliangyou 4 | 3.74 ± 0.03 l | 15.48 ± 0.22 j |
Tiejing 11 | 3.55 ± 0.02 m | 18.19 ± 0.14 i |
Tonghe 899 | 6.83 ± 0.04 f | 9.09 ± 0.16 p |
Tongke 59 | 7.97 ± 0.08 e | 14.24 ± 0.09 k |
Ningjing 48 | 6.17 ± 0.10 h | 25.92 ± 0.28 c |
Ningjing 43 | 6.53 ± 0.06 g | 11.93 ± 0.10 m |
Fuyuan 4 | 5.63 ± 0.04 i | 21.59 ± 0.06 e |
Songjing 22 | 3.62 ± 0.04 lm | 11.47 ± 0.11 n |
Songjing 19 | 5.67 ± 0.08 i | 18.73 ± 0.17 h |
Wuyoudao 4 | 4.70 ± 0.09 j | 7.32 ± 0.14 q |
Suijing 18 | 3.26 ± 0.08 n | 28.63 ± 0.08 b |
Suijing 309 | 2.75 ± 0.11 p | 29.68 ± 0.12 a |
Jiudao 75 | 11.61 ± 0.14 d | 20.83 ± 0.29 f |
Liaojing 337 | 4.63 ± 0.11 j | 13.98 ± 0.24 kl |
Yujing 91 | 4.40 ± 0.07 k | 9.07 ± 0.17 p |
Jingliangyouhuazhan | 4.30 ± 0.04 k | 8.83 ± 0.07 p |
Tianyouhuazhan | 3.39 ± 0.09 n | 10.67 ± 0.16 o |
Xinjing 64 | 16.97 ± 0.15 a | 24.06 ± 0.17 d |
Zhennuo 19 | 16.91 ± 0.13 a | 17.31 ± 0.23 d |
Longdao 24 | 13.17 ± 0.11 b | 13.87 ± 0.26 d |
Longjing 31 | 11.98 ± 0.09 c | 12.50 ± 0.14 l |
Ratio | Texture Description |
---|---|
1:0.5 | Extremely viscous, non-stirrable |
1:1 | Highly viscous, difficult to stir |
1:2 | Moderately viscous, stirrable |
1:4 | Slightly thin |
1:6 | Very thin |
1:8 | Extremely thin |
Processing Stage | Optimized Condition |
---|---|
Raw material | Suijing 309 brown rice |
Germination | 4 h soaking (RT) + 40 h sprouting (30 °C, rinsing every 2 h) |
Slurry preparation | Rice-to-water ratio 1:2 (w/v) |
Liquefaction | α-amylase 30 U/g, 80 °C, 40 min |
Saccharification | Glucoamylase 75 U/g, 60 °C, 1 h |
Fermentation consortium | 10-strain Culture J (Lactobacillus and Bifidobacterium consortium) |
MSG supplementation | 0.25% (w/v) |
Inoculum size | 4% (w/v) |
Cofactor addition | Pyridoxine hydrochloride 10 μmol/L |
Fermentation | 37 °C, 24 h |
Parameter | Value |
---|---|
Energy | 233.58 kJ/100 g |
Protein | 0.057 g/100 g |
Fat | 0.2 g/100 g |
Carbohydrates | 13.45 g/100 g |
Sodium | 112.2 mg/100 g |
Lactic acid bacteria | 2 × 108 CFU/g |
Total dietary fiber | 0.21 g/100 g |
Reducing sugars | 14.6 g/100 g |
GABA | 12.2 mg/100 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, D.; Zhang, S.; Hong, B.; Shan, S.; Zhang, J.; Sha, D.; Gao, S.; Liu, Q.; Lu, S.; Ren, C. Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice. Foods 2025, 14, 2733. https://doi.org/10.3390/foods14152733
Yuan D, Zhang S, Hong B, Shan S, Zhang J, Sha D, Gao S, Liu Q, Lu S, Ren C. Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice. Foods. 2025; 14(15):2733. https://doi.org/10.3390/foods14152733
Chicago/Turabian StyleYuan, Di, Shan Zhang, Bin Hong, Shan Shan, Jingyi Zhang, Dixin Sha, Shiwei Gao, Qing Liu, Shuwen Lu, and Chuanying Ren. 2025. "Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice" Foods 14, no. 15: 2733. https://doi.org/10.3390/foods14152733
APA StyleYuan, D., Zhang, S., Hong, B., Shan, S., Zhang, J., Sha, D., Gao, S., Liu, Q., Lu, S., & Ren, C. (2025). Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice. Foods, 14(15), 2733. https://doi.org/10.3390/foods14152733