Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = LPS-interacting peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2497 KB  
Article
Structures, Interactions, and Antimicrobial Activity of the Shortest Thanatin Peptide from Anasa tristis
by Swaleeha Jaan Abdullah, Jia Sheng Guan, Yuguang Mu and Surajit Bhattacharjya
Int. J. Mol. Sci. 2025, 26(19), 9571; https://doi.org/10.3390/ijms26199571 - 30 Sep 2025
Viewed by 295
Abstract
Antimicrobial peptides (AMPs), also referred to as host defense peptides, are promising molecules in the development of the next generation of antibiotics against drug-resistant bacterial pathogens. Thanatin comprises a family of naturally occurring cationic AMPs derived from several species of insects. The first [...] Read more.
Antimicrobial peptides (AMPs), also referred to as host defense peptides, are promising molecules in the development of the next generation of antibiotics against drug-resistant bacterial pathogens. Thanatin comprises a family of naturally occurring cationic AMPs derived from several species of insects. The first thanatin, 21 residues long, was identified from the spined soldier bug, and more thanatin peptides have been discovered in recent studies. The 16-residue thanatin from Anasa tristis, or Ana-thanatin, represents the shortest sequence in the family. However, the antimicrobial activity and mechanistic process underpinning bacterial cell killing have yet to be reported for Ana-thanatin peptide. In this work, we examined the antibacterial activity, structures, and target interactions of Ana-thanatin. Our results demonstrated that Ana-thanatin exerts potent antibiotic activity against strains of Gram-negative and Gram-positive bacteria. Biophysical studies demonstrated that Ana-thanatin interacts with LPS outer membrane and can permeabilize the OM barrier in the process. Atomic-resolution structures of the peptide in free solution and in complex with lipopolysaccharide (LPS) micelle were solved by NMR, determining canonical β-sheet structures. Notably, in complex with LPS, the β-sheet structure of the peptide was better defined in terms of the packing of amino acid residues. Further, MD simulations demonstrated rapid binding of the Ana-thanatin peptide with the LPS molecules within the lipid bilayers. These studies have revealed structural features which could be responsible for LPS-OM disruption of the Gram-negative bacteria. In addition, NMR heteronuclear single quantum coherence (HSQC) studies have demonstrated that Ana-thanatin can strongly interact with the LPS transport periplasmic protein LptAm, potentially inhibiting OM biogenesis. Taken together, we surmise that the Ana-thanatin peptide could serve as a template for the further development of novel antibiotics. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

14 pages, 603 KB  
Review
Functional Interactions Between Recombinant Serum Amyloid A1 (SAA1) and Chemokines in Leukocyte Recruitment
by Jo Van Damme, Sofie Struyf, Paul Proost, Ghislain Opdenakker and Mieke Gouwy
Int. J. Mol. Sci. 2025, 26(5), 2258; https://doi.org/10.3390/ijms26052258 - 3 Mar 2025
Cited by 1 | Viewed by 1223
Abstract
The acute phase response is a hallmark of all inflammatory reactions and acute phase reactants, such as C-reactive protein (CRP) and serum amyloid A (SAA) proteins, are among the most useful plasma and serum markers of inflammation in clinical medicine. Although it is [...] Read more.
The acute phase response is a hallmark of all inflammatory reactions and acute phase reactants, such as C-reactive protein (CRP) and serum amyloid A (SAA) proteins, are among the most useful plasma and serum markers of inflammation in clinical medicine. Although it is well established that inflammatory cytokines, mainly interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) induce SAA in the liver, the biological functions of elicited SAA remain an enigma. By the classical multi-step protein purification studies of chemotactic factors present in plasma or serum, we discovered novel chemokines and SAA1 fragments, which are induced during inflammatory reactions. In contrast to earlier literature, pure SAA1 fails to induce chemokines, an ascribed function that most probably originates from contaminating lipopolysaccharide (LPS). However, intact SAA1 and fragments thereof synergize with CXC and CC chemokines to enhance chemotaxis. Natural SAA1 fragments are generated by inflammatory proteinases such as matrix metalloproteinase-9 (MMP-9). They mediate synergy with chemokines by the interaction with cognate G protein-coupled receptors (GPCRs), formyl peptide receptor 2 (FPR2) and (CC and CXC) chemokine receptors. In conclusion, SAA1 enforces the action of many chemokines and assists in local leukocyte recruitment, in particular, when the concentrations of specifically-induced chemokines are still low. Full article
Show Figures

Figure 1

18 pages, 10335 KB  
Article
Cow Placenta Peptides Ameliorate D-Galactose-Induced Intestinal Barrier Damage by Regulating TLR/NF-κB Pathway
by Yuquan Zhao, Zhi Zeng, Weijian Zheng, Zeru Zhang, Hanwen Zhang, Yuxin Luo, Kunshan Zhao, Yuyan Ding, Wei Lu, Fuxing Hao, Yixin Huang and Liuhong Shen
Vet. Sci. 2025, 12(3), 229; https://doi.org/10.3390/vetsci12030229 - 3 Mar 2025
Viewed by 1394
Abstract
This study investigated the protective effects and mechanisms of cow placenta peptides (CPP) on intestinal barrier damage in aging model mice. Forty-eight male ICR mice were assigned to four groups: a control group (N), an aging model group (M), a CPP treatment group [...] Read more.
This study investigated the protective effects and mechanisms of cow placenta peptides (CPP) on intestinal barrier damage in aging model mice. Forty-eight male ICR mice were assigned to four groups: a control group (N), an aging model group (M), a CPP treatment group (T), and a vitamin C treatment group (P). Groups T and P received oral administration of CPP (2000 mg/kg/day) and vitamin C (100 mg/kg/day), respectively, while groups M, T, and P were subjected to intraperitoneal injections of D-galactose (D-gal) (300 mg/kg/day). Group N received an equivalent volume of normal saline via intraperitoneal injection. Treatments were administered once daily for 8 weeks. The results demonstrated that CPP significantly alleviated D-galactose-induced intestinal structural damage, increasing the villus height-to-crypt depth ratio and reducing serum diamine oxidase (DAO) and lipopolysaccharide (LPS) levels. CPP notably alleviated intestinal oxidative stress and inflammation, restored tight junction expression, and enhanced intestinal barrier integrity. Transcriptome sequencing identified 1396 DEGs associated with CPP’s effects, highlighting TLR4, IL-1β, and Mmp9 as core regulatory genes through protein–protein interaction network analysis. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses implicated the TLR4/NF-κB signaling pathway, which was further validated. Western blotting confirmed that CPP significantly down-regulated TLR4, IKKβ, and p-NF-κB p65 protein expression in the intestines of aging mice. In conclusion, CPP effectively alleviates D-gal-induced intestinal barrier damage in aging mice by enhancing antioxidant defense and inhibiting the TLR4/NF-κB signaling pathway, thereby diminishing inflammation and protecting intestinal barrier integrity. Full article
Show Figures

Figure 1

15 pages, 2329 KB  
Article
Modeling the Interaction Between Silver(I) Ion and Proteins with 12-6 Lennard-Jones Potential: A Bottom-Up Parameterization Approach
by Luca Manciocchi, Alexandre Bianchi, Valérie Mazan, Mark Potapov, Katharina M. Fromm and Martin Spichty
Biophysica 2025, 5(1), 7; https://doi.org/10.3390/biophysica5010007 - 25 Feb 2025
Cited by 1 | Viewed by 2160
Abstract
Silver(I) ions and organometallic complexes thereof are well-established antimicrobial agents. They have been employed in medical applications for centuries. It is also known that some bacteria can resist silver(I) treatments through an efflux mechanism. However, the exact mechanism of action remains unclear. All-atom [...] Read more.
Silver(I) ions and organometallic complexes thereof are well-established antimicrobial agents. They have been employed in medical applications for centuries. It is also known that some bacteria can resist silver(I) treatments through an efflux mechanism. However, the exact mechanism of action remains unclear. All-atom force-field simulations can provide valuable structural and thermodynamic insights into the molecular processes of the underlying mechanism. Lennard-Jones parameters of silver(I) have been available for quite some time; their applicability to properly describing the binding properties (affinity, binding distance) between silver(I) and peptide-based binding motifs is, however, still an open question. Here, we demonstrate that the standard 12-6 Lennard-Jones parameters (previously developed to describe the hydration free energy with the TIP3P water model) significantly underestimate the interaction strength between silver(I) and both methionine and histidine. These are two key amino-acid residues in silver(I)-binding motifs of proteins involved in the efflux process. Using free-energy calculations, we calibrated non-bonded fix (NBFIX) parameters for the CHARMM36m force field to reproduce the experimental binding constant between amino acid sidechain fragments and silver(I) ions. We then successfully validated the new parameters on a set of small silver-binding peptides with experimentally known binding constants. In addition, we monitored how silver(I) ions increased the α-helical content of the LP1 oligopeptide, in agreement with previously reported Circular Dichroism (CD) experiments. Future improvements are outlined. The implementation of these new parameters is straightforward in all simulation packages that can use the CHARMM36m force field. It sets the stage for the modeling community to study more complex silver(I)-binding processes such as the interaction with silver(I)-binding-transporter proteins. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Graphical abstract

23 pages, 9986 KB  
Article
Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy
by Pei-Pei Liu, Xin-Yue Yu, Qing-Qing Pan, Jia-Jun Ren, Yu-Xuan Han, Kai Zhang, Yan Wang, Yin Huang and Tao Ban
Pharmaceuticals 2025, 18(1), 43; https://doi.org/10.3390/ph18010043 - 2 Jan 2025
Cited by 4 | Viewed by 1767 | Correction
Abstract
Background/Objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses. Methods: We generated a mouse model of SCM induced [...] Read more.
Background/Objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses. Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and RNA sequencing (RNA-seq). Using network proximity analysis, we screened for FDA-approved drugs that interact with SCM-associated pathways. Additionally, we tested the cardioprotective effects of two drug candidates in the SCM mouse model and explored their mechanism-of-action in H9c2 cells. Results: Network analysis identified 129 drugs associated with SCM, which were refined to 14 drug candidates based on strong network predictions, proven anti-infective effects, suitability for ICU use, and minimal side effects. Among them, acetaminophen and pyridoxal phosphate significantly improved cardiac function in SCM moues, as demonstrated by the increased ejection fraction (EF) and fractional shortening (FS), and the reduced levels of cardiac injury biomarkers: B-type natriuretic peptide (BNP) and cardiac troponin I (cTn-I). In vitro assays revealed that acetaminophen inhibited prostaglandin synthesis, reducing inflammation, while pyridoxal phosphate restored amino acid balance, supporting cellular function. These findings suggest that both drugs possess protective effects against SCM. Conclusions: This study provides a robust platform for drug repurposing in SCM, identifying acetaminophen and pyridoxal phosphate as promising candidates for clinical translation, with the potential to improve treatment outcomes in septic patients with cardiac complications. Full article
(This article belongs to the Special Issue Data-Driven Biomarker and Drug Discovery for Complex Disease)
Show Figures

Figure 1

16 pages, 3689 KB  
Article
Single Disulfide Bond in Host Defense Thanatin Analog Peptides: Antimicrobial Activity, Atomic-Resolution Structures and Target Interactions
by Swaleeha Jaan Abdullah, Jia Sheng Guan, Yuguang Mu and Surajit Bhattacharjya
Int. J. Mol. Sci. 2025, 26(1), 51; https://doi.org/10.3390/ijms26010051 - 24 Dec 2024
Cited by 3 | Viewed by 1535
Abstract
Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of Podisus maculiventris insects, is gaining considerable attention in the generation of novel classes of [...] Read more.
Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of Podisus maculiventris insects, is gaining considerable attention in the generation of novel classes of antibiotics. Thanatin or thanatin-based analog peptides are extremely potent in killing bacterial pathogens in the Enterobacteriaceae family, including drug-resistant strains of Escherichia coli and Klebsiella pneumoniae. A single disulfide bond that covalently links two anti-parallel β-strands in thanatin could be pivotal to its selective antibacterial activity and mode of action. However, potential correlations of the disulfide covalent bond with structure, activity and target binding in thanatin peptides are currently unclear to. Here, we examined a 16-residue designed thanatin peptide, namely disulfide-bonded VF16QK, and its Cys to Ser substituted variant, VF16QKSer, to delineate their structure–activity relationships. Bacterial growth inhibitory activity was only detected for the disulfide-bonded VF16QK peptide. Mechanistically, both peptides vastly differ in their bacterial cell permeabilizations, atomic-resolution structures, interactions with the LPS-outer membrane and target periplasmic protein LptAm binding. In particular, analysis of the 3-D structures of the two peptides revealed an altered folded conformation for the VF16QKSer peptide that was correlated with diminished LPS-outer membrane permeabilization and target interactions. Analysis of docked complexes of LPS–thanatin peptides indicated potential structural requirements and conformational adaptation for antimicrobial activity. Collectively, these observations contrast with those for the disulfide-bonded β-hairpin antimicrobial protegrin and tachyplesin peptides, where disulfide bonds are dispensable for activity. We surmise that the atomistic structures and associated molecular interactions presented in this work can be utilized to design novel thanatin-based antibiotics. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

18 pages, 4306 KB  
Article
The Synergic Immunomodulatory Effect of Vitamin D and Chickpea Protein Hydrolysate in THP-1 Cells: An In Vitro Approach
by Ángela Alcalá-Santiago, Rocío Toscano-Sánchez, José Carlos Márquez-López, José Antonio González-Jurado, María-Soledad Fernández-Pachón, Belén García-Villanova, Justo Pedroche and Noelia María Rodríguez-Martín
Int. J. Mol. Sci. 2024, 25(23), 12628; https://doi.org/10.3390/ijms252312628 - 25 Nov 2024
Cited by 2 | Viewed by 1637
Abstract
Vitamin D (VD), a crucial micronutrient, regulates bone health and immune responses. Recent studies suggest that VD may confer protective effects against chronic inflammatory diseases. Additionally, plant-based peptides can show biological activities. Furthermore, the supplementation of protein hydrolysates with VD could potentially enhance [...] Read more.
Vitamin D (VD), a crucial micronutrient, regulates bone health and immune responses. Recent studies suggest that VD may confer protective effects against chronic inflammatory diseases. Additionally, plant-based peptides can show biological activities. Furthermore, the supplementation of protein hydrolysates with VD could potentially enhance the bioactivity of peptides, leading to synergistic effects. In this study, THP-1 cells were exposed to low concentrations of Lipopolysaccharide (LPS) to induce inflammation, followed by treatment with vitamin D at different concentrations (10, 25, or 50 nM) or a chickpea protein hydrolysate (“H30BIO”) supplemented with VD. The cytotoxicity of VD was evaluated using viability assay to confirm its safety. The cytokine secretion of TNF-α, IL-1β, and IL6 was assessed in the cell supernatant, and the gene expression of TNF-α, IL-1β, IL6, IL8, CASP-1, COX2, NRF2, NF-ĸB, NLRP3, CCL2, CCR2, IP10, IL10, and RANTES was quantified by qRT-PCR. Treatment with VD alone significantly decreased the expression of the pro-inflammatory genes TNF-α and IL6, as well as their corresponding cytokine levels in the supernatants. While IL-1β gene expression remained unchanged, a reduction in its cytokine release was observed upon VD treatment. No dose-dependent effects were observed. Interestingly, the combination of VD with H30BIO led to an increase in TNF-α expression and secretion in contrast with the LPS control, coupled with a decrease in IL-1β levels. Additionally, genes such as IP10, NF-κB, CCL2, COX2, NRF2, and CASP-1 exhibited notable modulation, suggesting that the combination treatment primarily downregulates NF-κB-related gene activity. This study demonstrates a synergistic interaction between VD and H30BIO, suggesting that this combination may enhance pathways involving TNF-α, potentially aiding in the resolution and modulation of inflammation through adaptive processes. These findings open new avenues for research into the therapeutic applications of enriched protein hydrolysates with VD to manage low-grade inflammatory-related conditions. Full article
(This article belongs to the Special Issue The Role of Micronutrients in Metabolic and Infectious Diseases)
Show Figures

Figure 1

16 pages, 2591 KB  
Article
Short Link N Modulates Inflammasome Activity in Intervertebral Discs Through Interaction with CD14
by Muskan Alad, Michael P. Grant, Laura M. Epure, Sunny Y. Shih, Geraldine Merle, Hee-Jeong Im, John Antoniou and Fackson Mwale
Biomolecules 2024, 14(10), 1312; https://doi.org/10.3390/biom14101312 - 16 Oct 2024
Cited by 1 | Viewed by 1651
Abstract
Intervertebral disc degeneration and pain are associated with the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome activation and the processing of interleukin-1 beta (IL-1β). Activation of thehm inflammasome is triggered by Toll-like receptor stimulation and requires the cofactor receptor cluster [...] Read more.
Intervertebral disc degeneration and pain are associated with the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome activation and the processing of interleukin-1 beta (IL-1β). Activation of thehm inflammasome is triggered by Toll-like receptor stimulation and requires the cofactor receptor cluster of differentiation 14 (CD14). Short Link N (sLN), a peptide derived from link protein, has been shown to modulate inflammation and pain in discs in vitro and in vivo; however, the underlying mechanisms remain elusive. This study aims to assess whether sLN modulates IL-1β and inflammasome activity through interaction with CD14. Disc cells treated with lipopolysaccharides (LPS) with or without sLN were used to assess changes in Caspase-1, IL-1β, and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Peptide docking of sLN to CD14 and immunoprecipitation were performed to determine their interaction. The results indicated that sLN inhibited LPS-induced NFκB and Caspase-1 activation, reducing IL-1β maturation and secretion in disc cells. A significant decrease in inflammasome markers was observed with sLN treatment. Immunoprecipitation studies revealed a direct interaction between sLN and the LPS-binding pocket of CD14. Our results suggest that sLN could be a potential therapeutic agent for discogenic pain by mitigating IL-1β and inflammasome activity within discs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 1735 KB  
Article
Peptide TaY Attenuates Inflammatory Responses by Interacting with Myeloid Differentiation 2 and Inhibiting NF-κB Signaling Pathway
by Junyong Wang, Yichen Zhou, Jing Zhang, Yucui Tong, Zaheer Abbas, Xuelian Zhao, Zhenzhen Li, Haosen Zhang, Sichao Chen, Dayong Si, Rijun Zhang and Xubiao Wei
Molecules 2024, 29(20), 4843; https://doi.org/10.3390/molecules29204843 - 13 Oct 2024
Cited by 5 | Viewed by 1644
Abstract
A balanced inflammatory response is crucial for the organism to defend against external infections, however, an exaggerated response may lead to detrimental effects, including tissue damage and even the onset of disease. Therefore, anti-inflammatory drugs are essential for the rational control of inflammation. [...] Read more.
A balanced inflammatory response is crucial for the organism to defend against external infections, however, an exaggerated response may lead to detrimental effects, including tissue damage and even the onset of disease. Therefore, anti-inflammatory drugs are essential for the rational control of inflammation. In this study, we found that a previously screened peptide TaY (KEKKEVVEYGPSSYGYG) was able to inhibit the LPS-induced RAW264.7 inflammatory response by decreasing a series of proinflammatory cytokines, such as TNF-α, IL-6, and nitric oxide (NO). To elucidate the underlying mechanism, we conducted further investigations. Western blot analysis showed that TaY reduced the phosphorylation of key proteins (IKK-α/β, IκB-α,NF-κB (P65)) in the TLR4-NF-κB signaling pathway and inhibited the inflammatory response. Furthermore, molecular docking and molecular dynamic simulations suggested that TaY binds to the hydrophobic pocket of MD2 through hydrogen bonding and hydrophobic interactions, potentially competing with LPS for MD2 binding. Collectively, TaY is a promising candidate for the development of novel therapeutic strategies against inflammatory disorders. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 2180 KB  
Review
Effects of Saponins on Lipid Metabolism: The Gut–Liver Axis Plays a Key Role
by Shixi Cao, Mengqi Liu, Yao Han, Shouren Li, Xiaoyan Zhu, Defeng Li, Yinghua Shi and Boshuai Liu
Nutrients 2024, 16(10), 1514; https://doi.org/10.3390/nu16101514 - 17 May 2024
Cited by 17 | Viewed by 9227
Abstract
Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have [...] Read more.
Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut–liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives—short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut–liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders. Full article
Show Figures

Figure 1

17 pages, 3276 KB  
Article
The Tick Saliva Peptide HIDfsin2 TLR4-Dependently Inhibits the Tick-Borne Severe Fever with Thrombocytopenia Syndrome Virus in Mouse Macrophages
by Luyao Wang, Yishuo Liu, Rui Pang, Yiyuan Guo, Yingying Ren, Yingliang Wu and Zhijian Cao
Antibiotics 2024, 13(5), 449; https://doi.org/10.3390/antibiotics13050449 - 15 May 2024
Cited by 2 | Viewed by 2152
Abstract
Ticks transmit a variety of pathogens to their hosts by feeding on blood. The interactions and struggle between tick pathogens and hosts have evolved bilaterally. The components of tick saliva can directly or indirectly trigger host biological responses in a manner that promotes [...] Read more.
Ticks transmit a variety of pathogens to their hosts by feeding on blood. The interactions and struggle between tick pathogens and hosts have evolved bilaterally. The components of tick saliva can directly or indirectly trigger host biological responses in a manner that promotes pathogen transmission; however, host cells continuously develop strategies to combat pathogen infection and transmission. Moreover, it is still unknown how host cells develop their defense strategies against tick-borne viruses during tick sucking. Here, we found that the tick saliva peptide HIDfsin2 enhanced the antiviral innate immunity of mouse macrophages by activating the Toll-like receptor 4 (TLR4) signaling pathway, thereby restricting tick-borne severe fever with thrombocytopenia syndrome virus (SFTSV) replication. HIDfsin2 was identified to interact with lipopolysaccharide (LPS), a ligand of TLR4, and then depolymerize LPS micelles into smaller particles, effectively enhancing the activation of the nuclear factor kappa-B (NF-κB) and type I interferon (IFN-I) signaling pathways, which are downstream of TLR4. Expectedly, TLR4 knockout completely eliminated the promotion effect of HIDfsin2 on NF-κB and type I interferon activation. Moreover, HIDfsin2 enhanced SFTSV replication in TLR4-knockout mouse macrophages, which is consistent with our recent report that HIDfsin2 hijacked p38 mitogen-activated protein kinase (MAPK) to promote the replication of tick-borne SFTSV in A549 and Huh7 cells (human cell lines) with low expression of TLR4. Together, these results provide new insights into the innate immune mechanism of host cells following tick bites. Our study also shows a rare molecular event relating to the mutual antagonism between tick-borne SFTSV and host cells mediated by the tick saliva peptide HIDfsin2 at the tick–host–virus interface. Full article
(This article belongs to the Special Issue Peptide Antibiotics from Microbes and Venomous Animals, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 1703 KB  
Article
Influence of Lipopolysaccharide-Interacting Peptides Fusion with Endolysin LysECD7 and Fatty Acid Derivatization on the Efficacy against Acinetobacter baumannii Infection In Vitro and In Vivo
by Xiaowan Li, Wenwen Shangguan, Xiaoqian Yang, Xiaoyue Hu, Yanan Li, Wenjie Zhao, Meiqing Feng and Jun Feng
Viruses 2024, 16(5), 760; https://doi.org/10.3390/v16050760 - 11 May 2024
Cited by 6 | Viewed by 2232
Abstract
Acinetobacter baumannii has developed multiple drug resistances, posing a significant threat to antibiotic efficacy. LysECD7, an endolysin derived from phages, could be a promising therapeutic agent against multi-drug resistance A. baumannii. In this study, in order to further enhance the antibacterial efficiency [...] Read more.
Acinetobacter baumannii has developed multiple drug resistances, posing a significant threat to antibiotic efficacy. LysECD7, an endolysin derived from phages, could be a promising therapeutic agent against multi-drug resistance A. baumannii. In this study, in order to further enhance the antibacterial efficiency of the engineered LysECD7, a few lipopolysaccharide-interacting peptides (Li5, MSI594 and Li5-MSI) were genetically fused with LysECD7. Based on in vitro antibacterial activity, the fusion protein Lys-Li5-MSI was selected for further modifications aimed at extending its half-life. A cysteine residue was introduced into Lys-Li5-MSI through mutation (Lys-Li5-MSIV12C), followed by conjugation with a C16 fatty acid chain via a protonation substitution reaction(V12C-C16). The pharmacokinetic profile of V12C-C16 exhibited a more favorable characteristic in comparison to Lys-Li5-MSI, thereby resulting in enhanced therapeutic efficacy against lethal A. baumannii infection in mice. The study provides valuable insights for the development of novel endolysin therapeutics and proposes an alternative therapeutic strategy for combating A. baumannii infections. Full article
(This article belongs to the Special Issue Bacteriophage Lytic Proteins)
Show Figures

Figure 1

17 pages, 3900 KB  
Article
Outer-Membrane Permeabilization, LPS Transport Inhibition: Activity, Interactions, and Structures of Thanatin Derived Antimicrobial Peptides
by Swaleeha Jaan Abdullah, Bernice Tan Siu Yan, Nithya Palanivelu, Vidhya Bharathi Dhanabal, Juan Pablo Bifani and Surajit Bhattacharjya
Int. J. Mol. Sci. 2024, 25(4), 2122; https://doi.org/10.3390/ijms25042122 - 9 Feb 2024
Cited by 9 | Viewed by 3108
Abstract
Currently, viable antibiotics available to mitigate infections caused by drug-resistant Gram-negative bacteria are highly limited. Thanatin, a 21-residue-long insect-derived antimicrobial peptide (AMP), is a promising lead molecule for the potential development of novel antibiotics. Thanatin is extremely potent, particularly against the Enterobacter group [...] Read more.
Currently, viable antibiotics available to mitigate infections caused by drug-resistant Gram-negative bacteria are highly limited. Thanatin, a 21-residue-long insect-derived antimicrobial peptide (AMP), is a promising lead molecule for the potential development of novel antibiotics. Thanatin is extremely potent, particularly against the Enterobacter group of Gram-negative pathogens, e.g., E. coli and K. pneumoniae. As a mode of action, cationic thanatin efficiently permeabilizes the LPS-outer membrane and binds to the periplasmic protein LptAm to inhibit outer membrane biogenesis. Here, we have utilized N-terminal truncated 16- and 14-residue peptide fragments of thanatin and investigated structure, activity, and selectivity with correlating modes of action. A designed 16-residue peptide containing D-Lys (dk) named VF16 (V1PIIYCNRRT-dk-KCQRF16) demonstrated killing activity in Gram-negative bacteria. The VF16 peptide did not show any detectable toxicity to the HEK 293T cell line and kidney cell line Hep G2. As a mode of action, VF16 interacted with LPS, permeabilizing the outer membrane and binding to LptAm with high affinity. Atomic-resolution structures of VF16 in complex with LPS revealed cationic and aromatic surfaces involved in outer membrane interactions and permeabilization. Further, analyses of an inactive 14-residue native thanatin peptide (IM14: IIYCNRRTGKCQRM) delineated the requirement of the β-sheet structure in activity and target interactions. Taken together, this work would pave the way for the designing of short analogs of thanatin-based antimicrobials. Full article
Show Figures

Figure 1

17 pages, 7712 KB  
Article
Porcine β-Defensin 114: Creating a Dichotomous Response to Inflammation
by Guoqi Su, Sheng Huang, Shan Jiang, Li Chen, Feiyun Yang, Zuohua Liu, Guixue Wang and Jinxiu Huang
Int. J. Mol. Sci. 2024, 25(2), 1016; https://doi.org/10.3390/ijms25021016 - 13 Jan 2024
Cited by 3 | Viewed by 2158
Abstract
The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine β-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects [...] Read more.
The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine β-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114’s regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 μg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 μg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 μg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 μg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the “Cytokine–cytokine receptor interaction” signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

16 pages, 4671 KB  
Article
Structures, Interactions and Activity of the N-Terminal Truncated Variants of Antimicrobial Peptide Thanatin
by Swaleeha Jaan Abdullah, Yuguang Mu and Surajit Bhattacharjya
Antibiotics 2024, 13(1), 74; https://doi.org/10.3390/antibiotics13010074 - 12 Jan 2024
Cited by 7 | Viewed by 2895
Abstract
Gram-negative bacteria are intrinsically more resistant to many frontline antibiotics, which is attributed to the permeability barrier of the outer membrane, drug efflux pumps and porins. Consequently, discovery of new small molecules antibiotics to kill drug-resistant Gram-negative bacteria presents a significant challenge. Thanatin, [...] Read more.
Gram-negative bacteria are intrinsically more resistant to many frontline antibiotics, which is attributed to the permeability barrier of the outer membrane, drug efflux pumps and porins. Consequently, discovery of new small molecules antibiotics to kill drug-resistant Gram-negative bacteria presents a significant challenge. Thanatin, a 21-residue insect-derived antimicrobial peptide, is known for its potent activity against Enterobacter Gram-negative bacteria, including drug-resistant strains. Here, we investigated a 15-residue N-terminal truncated analog PM15 (P1IIYCNRRTGKCQRM15) of thanatin to determine modes of action and antibacterial activity. PM15 and the P1 to Y and A substituted variants PM15Y and PM15A delineated interactions and permeabilization of the LPS–outer membrane. In antibacterial assays, PM15 and the analogs showed growth inhibition of strains of Gram-negative bacteria that is largely dependent on the composition of the culture media. Atomic-resolution structures of PM15 and PM15Y in free solution and in complex with LPS micelle exhibited persistent β-hairpin structures similar to native thanatin. However, in complex with LPS, the structures of peptides are more compact, with extensive packing interactions among residues across the two anti-parallel strands of the β-hairpin. The docked complex of PM15/LPS revealed a parallel orientation of the peptide that may be sustained by potential ionic and van der Waals interactions with the lipid A moiety of LPS. Further, PM15 and PM15Y bind to LptAm, a monomeric functional variant of LptA, the periplasmic component of the seven-protein (A-G) complex involved in LPS transport. Taken together, the structures, target interactions and antibacterial effect of PM15 presented in the current study could be useful in designing thanatin-based peptide analogs. Full article
Show Figures

Figure 1

Back to TopTop