Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = LC-MS/MS-QTOF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 262 KB  
Article
Flavonoid and Phenolic Quantification from Açaí (Euterpe oleracea Mart and Euterpe precatoria Mart), Mirití (Mauritia flexuosa L.), and Cupuassu (Theobroma grandiflorum (Wild. Ex Spreng.) Schum) from Vaupés, Colombia, Using LC-QqQ-MS
by Manuel Salvador Rodríguez, Aida Juliana Martínez León, Lina Sabrina Porras, Iván Alejandro Giraldo, Esmeralda Rojas, Fredy Eduardo Lavao and Kaoma Martínez
Plants 2025, 14(17), 2632; https://doi.org/10.3390/plants14172632 - 24 Aug 2025
Viewed by 398
Abstract
Amazonian fruits are valued for their rich phytochemical composition, yet limited data exist for species in Colombia. This study aimed to characterize the flavonoid and phenolic acid profiles of Euterpe olereacea and Euterpe precatoria (açaí), Mauritia flexuosa (mirití), and Theobroma grandiflorum (cupuassu) from [...] Read more.
Amazonian fruits are valued for their rich phytochemical composition, yet limited data exist for species in Colombia. This study aimed to characterize the flavonoid and phenolic acid profiles of Euterpe olereacea and Euterpe precatoria (açaí), Mauritia flexuosa (mirití), and Theobroma grandiflorum (cupuassu) from Vaupes, Colombia. Liquid chromatography coupled with triple quadrupole mass spectrometry (LC-QqQ-MS) and LC-QTOF-MS were used to identify and quantify bioactive compounds in fruit pulp samples. A total of 14 flavonoids and 23 phenolic acid derivatives were detected. M. flexuosa exhibited the highest total flavonoid content, particularly for catechin (4.86 µg/g). E. oleracea and E. precatoria showed the highest phenolic acid concentrations, with 4-hydroxybenzoic acid and ferulic acid as dominant compounds. The presence of cyanidin-O-glucoside was confirmed in Euterpe species but not in M. flexuosa or T. grandiflorum. Compared to international reports, the Colombian samples generally presented lower concentrations, likely due to genotypic, environmental, and methodological differences. These findings contribute to the phytochemical profiling of underrepresented Amazonian fruits and support their potential for functional food and nutraceutical applications. Further studies are recommended to evaluate the bioavailability and health-promoting effects of these compounds. Full article
Show Figures

Graphical abstract

15 pages, 1782 KB  
Review
The Brazilian Native Fruits Araçá, Guabijú, and Guabiroba: A Brief and Integrative Review on Their Phenolic Composition and Analytical Methods
by Patrícia Gotardo Machado, Felipe Siqueira Molina, Milene Teixeira Barcia and Cristiano Augusto Ballus
Foods 2025, 14(16), 2858; https://doi.org/10.3390/foods14162858 - 18 Aug 2025
Viewed by 452
Abstract
Brazil has one of the greatest biodiversities in the world, with emphasis on the fruit family Myrtaceae, to which the native fruits guabijú (Myrcianthes pungens (O.Berg) D.Legrand), guabiroba (Campomanesia xanthocarpa (Mart.) O.Berg), and araçá (Psidium cattleyanum Sabine) belong. These fruits [...] Read more.
Brazil has one of the greatest biodiversities in the world, with emphasis on the fruit family Myrtaceae, to which the native fruits guabijú (Myrcianthes pungens (O.Berg) D.Legrand), guabiroba (Campomanesia xanthocarpa (Mart.) O.Berg), and araçá (Psidium cattleyanum Sabine) belong. These fruits are promising sources of phenolic compounds, mainly phenolic acids, flavonoids, and tannins, with high antioxidant capacity and potential health benefits. This integrative review aimed to gather and analyze data on the phenolic composition of these fruits, as well as the analytical methods used for their extraction and characterization. The reviewed literature reveals that there is still a lack of in-depth studies, although some studies have already characterized the phenolic compounds in different parts of the fruits. The efficient extraction of phenolics, especially bound ones, requires techniques such as acid or alkaline hydrolysis. For their identification and quantification, the use of liquid chromatography (LC) coupled to mass spectrometry (MS) with mass analyzers such as triple quadrupole (QqQ) and quadrupole-time-of-flight (QToF), stands out. Knowledge of these fruits contributes to the development of functional ingredients and the conservation and appreciation of Brazilian biodiversity, thereby reinforcing the importance of expanding research on these fruits and exploring potential applications in the food, pharmaceutical, and cosmetic industries. Full article
(This article belongs to the Special Issue Dietary Polyphenols in Foods)
Show Figures

Graphical abstract

16 pages, 574 KB  
Article
In Vitro Evaluation of Aflatoxin B1 Detoxification by Lactobacillus, Pediococcus, and Bacillus Strains
by Sarra Rafai, Ana Moreno, Alessandra Cimbalo, Pilar Vila-Donat, Lara Manyes and Giuseppe Meca
Toxins 2025, 17(8), 403; https://doi.org/10.3390/toxins17080403 - 11 Aug 2025
Viewed by 502
Abstract
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in [...] Read more.
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in the human body once ingested. In this study, the detoxification potential of bacterial strains belonging to the genera Lactobacillus/Pediococcus (n = 10) and Bacillus (n = 10) was evaluated using extracts from naturally contaminated corn flour. Detoxification was assessed after incubation for 12, 24, and 48 h in specific culture media. AFB1 quantification and metabolite profiling were performed at each time point using Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS). The highest detoxification rates were observed with Lactobacillus curvatus 14 (L. curvatus 14) (41.1 ± 19.3%) and Pediococcus pentosaceus 4 (P. pentosaceus 4) (25.4 ± 11.3%) after 48 h, and Bacillus firmus 6 (B. firmus 6) (25.1 ± 12.9%) after 24 h. An in vitro digestion model was also applied to assess detoxification under gastrointestinal conditions. Results showed substantial AFB1 reduction at the colonic stage, reaching 72.26 ± 7.54% for P. pentosaceus 4 and 69.67 ± 9.70% for L. curvatus 14. These findings underscore the potential application of Lactobacillus, Pediococcus, and Bacillus strains in biological detoxification strategies to reduce dietary exposure to AFB1. Full article
(This article belongs to the Special Issue Aflatoxins: Contamination, Analysis and Control)
Show Figures

Figure 1

22 pages, 2511 KB  
Article
Bridging Phytochemistry and Cosmetic Science: Molecular Insights into the Cosmeceutical Promise of Crotalaria juncea L.
by Tanatchaporn Aree, Siripat Chaichit, Jintana Junlatat, Kanokwan Kiattisin and Aekkhaluck Intharuksa
Int. J. Mol. Sci. 2025, 26(16), 7716; https://doi.org/10.3390/ijms26167716 - 9 Aug 2025
Viewed by 290
Abstract
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of [...] Read more.
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of ethanolic extracts from the root, flower, and leaf of C. juncea, focusing on their potential use in cosmetic formulations. Soxhlet extraction with 95% ethanol was employed. Among the extracts, the leaf showed the highest total flavonoid content, while the root contained the highest total phenolic content. The root extract demonstrated the strongest antioxidant activity, as assessed by DPPH, FRAP, and lipid peroxidation assays, along with significant anti-tyrosinase and anti-aging effects via collagenase and elastase inhibition. LC-MS/QTOF analysis identified genistein and kaempferol as the major bioactive constituents in the root extract. Molecular docking confirmed their strong interactions with enzymes associated with skin aging. Additionally, the root extract exhibited notable anti-inflammatory activity. These results suggest that C. juncea root extract is a promising multifunctional natural ingredient for cosmetic applications due to its antioxidant, anti-tyrosinase, anti-aging, and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Biological Research on Plant Bioactive Compounds)
Show Figures

Figure 1

31 pages, 3929 KB  
Article
Application of Multiplatform Mass Spectrometry to the Study of Babesia divergens Metabolism and the Pathogenesis of Human Babesiosis
by Miguel Fernández-García, Luis Miguel Gonzalez, Elena Sevilla, Aitor Gil, Henrique Santos-Oliveira, Belen Revuelta, Coral Barbas, Mª Fernanda Rey-Stolle, Estrella Montero and Antonia García
Int. J. Mol. Sci. 2025, 26(16), 7677; https://doi.org/10.3390/ijms26167677 - 8 Aug 2025
Viewed by 296
Abstract
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in [...] Read more.
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in B. divergens-infected and uninfected red blood cells (RBCs) and their supernatants. Our results indicate alterations in the metabolome caused by B. divergens infection and proliferation within RBCs. These findings are consistent with the major metabolic dependencies of B. divergens, including extracellular glucose, glutamine, and arginine, accompanied by the accumulation of glycolytic and TCA cycle intermediates. We identified altered nucleotide metabolism, pentose phosphate pathway activity, and redox imbalance. Depletion of lysoglycerophospholipids, glucose, arginine, and glutamine, and accumulation of free heme and sphingolipids suggested pathogenic effects. Growth experiments indicate that glucose and glutamine, but not hypoxanthine, are required for parasite growth. We additionally discovered a phosphorylated HEPES derivative (PEPES) produced upon B. divergens infection of RBCs in vitro. Collectively, these findings and their global interpretation provide insights into B. divergens metabolism and metabolic dependencies and host–parasite metabolic interactions and outline potential directions for future studies on human babesiosis diagnosis, prognosis assessment, and treatment. Full article
(This article belongs to the Special Issue Research Progress of Metabolomics in Health and Disease)
Show Figures

Figure 1

24 pages, 1990 KB  
Article
Metabolomic Analysis of Breast Cancer in Colombian Patients: Exploring Molecular Signatures in Different Subtypes and Stages
by Lizeth León-Carreño, Daniel Pardo-Rodriguez, Andrea Del Pilar Hernandez-Rodriguez, Juliana Ramírez-Prieto, Gabriela López-Molina, Ana G. Claros, Daniela Cortes-Guerra, Julian Alberto-Camargo, Wilson Rubiano-Forero, Adrian Sandoval-Hernandez, Mónica P. Cala and Alejandro Ondo-Mendez
Int. J. Mol. Sci. 2025, 26(15), 7230; https://doi.org/10.3390/ijms26157230 - 26 Jul 2025
Viewed by 651
Abstract
Breast cancer (BC) is a neoplasm characterized by high heterogeneity and is influenced by intrinsic molecular subtypes and clinical stage, aspects that remain underexplored in the Colombian population. This study aimed to characterize metabolic alterations associated with subtypes and disease progression in a [...] Read more.
Breast cancer (BC) is a neoplasm characterized by high heterogeneity and is influenced by intrinsic molecular subtypes and clinical stage, aspects that remain underexplored in the Colombian population. This study aimed to characterize metabolic alterations associated with subtypes and disease progression in a group of newly diagnosed, treatment-naive Colombian women using an untargeted metabolomics approach. To improve metabolite coverage, samples were analyzed using LC-QTOF-MS and GC-QTOF-MS, along with amino acid profiling. The Luminal B subtype exhibited elevated levels of long-chain acylcarnitines and higher free fatty acid concentrations than the other subtypes. It also presented elevated levels of carbohydrates and essential glycolytic intermediates, suggesting that this subtype may adopt a hybrid metabolic phenotype characterized by increased glycolytic flux as well as enhanced fatty acid catabolism. Tumor, Node, and Metastasis (TNM) staging analysis revealed progressive metabolic reprogramming of BC. In advanced stages, a sustained increase in phosphatidylcholines and a decrease in lysophosphatidylcholines were observed, reflecting lipid alterations associated with key roles in tumor progression. In early stages (I-II), plasma metabolites with high discriminatory power were identified, such as glutamic acid, ribose, and glycerol, which are associated with dysfunctions in energy and carbohydrate metabolism. These results highlight metabolomics as a promising tool for the early diagnosis, clinical follow-up, and molecular characterization of BC. Full article
(This article belongs to the Special Issue Molecular Crosstalk in Breast Cancer Progression and Therapies)
Show Figures

Graphical abstract

24 pages, 1349 KB  
Review
Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations
by Adnan Amin and SeonJoo Park
Plants 2025, 14(14), 2234; https://doi.org/10.3390/plants14142234 - 19 Jul 2025
Viewed by 987
Abstract
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting [...] Read more.
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting the safe and effective use of plants in herbal medicine. Key secondary metabolites used in chemotaxonomic identification include alkaloids, flavonoids, terpenoids, phenolics, tannins, and plant peptides. Chemotaxonomy also facilitates the discovery of novel compounds with therapeutic potential, contributing to drug development. The integration of chemotaxonomy with genomics and proteomics allows a deeper understanding of plant biosynthesis and the mechanisms behind bioactive compound production. However, challenges due to variability in metabolite profiles and the lack of standardized methods remain, and future research should focus on developing global databases, improving standardization, and incorporating artificial intelligence and machine learning to enhance plant identification and bioactive compound discovery. The integration of chemotaxonomy with personalized medicine offers the potential to tailor plant-based therapies to individual genetic profiles, advancing targeted treatments. This review underscores chemotaxonomy’s importance in bridging traditional knowledge and modern science, offering sustainable solutions for medicinal plant use and drug development. Full article
(This article belongs to the Special Issue Plant Phylogeny, Taxonomy and Evolution)
Show Figures

Figure 1

20 pages, 2360 KB  
Article
Do Preparation Techniques Transform the Metabolite Profile of Platelet-Rich Plasma?
by Bilge Başak Fidan, Emine Koç, Emine Çiftçi Özotuk, Ozan Kaplan, Mustafa Çelebier and Feza Korkusuz
Bioengineering 2025, 12(7), 774; https://doi.org/10.3390/bioengineering12070774 - 17 Jul 2025
Viewed by 634
Abstract
Background: Platelet-rich plasma (PRP) is a widely used therapeutic product in musculoskeletal treatments due to its regenerative and anti-inflammatory properties. However, the lack of standardization in PRP preparation protocols hampers clinical consistency. Methods: In this study, the metabolic profiles of 10 different PRP [...] Read more.
Background: Platelet-rich plasma (PRP) is a widely used therapeutic product in musculoskeletal treatments due to its regenerative and anti-inflammatory properties. However, the lack of standardization in PRP preparation protocols hampers clinical consistency. Methods: In this study, the metabolic profiles of 10 different PRP types were compared using untargeted metabolomics via Q-TOF LC–MS. PRP-G and PRP-S were prepared from six donors to assess inter-individual variability, while the remaining types were obtained from a single donor to isolate the impact of preparation method alone. Multivariate analyses, VIP scores, and pathway enrichment analyses were conducted. Results: PRP formulations exhibited distinct metabolic differences associated with inflammatory signaling, redox homeostasis, steroid metabolism, energy production, and platelet activation. Samples from both single- and multi-donor groups showed high intra-group similarity, indicating that preparation method is a major determinant of PRP’s biochemical composition. Conclusion: Metabolomic profiling reveals that even minor differences in PRP preparation protocols can lead to significant biochemical changes that may affect therapeutic outcomes. This study highlights the need for standardized, indication-specific PRP products and underscores the value of metabolomic analysis in guiding optimal formulation selection in clinical practice. Full article
(This article belongs to the Special Issue Bone Tissue Engineering and Translational Research)
Show Figures

Figure 1

14 pages, 1649 KB  
Article
LC-MS-Based Untargeted Metabolic Profiling in Plasma Following Dapagliflozin Administration in Healthy Volunteers
by Hyeon Ji Kim, Jae Hwa Lee, Ji Seo Park, Jin Ju Park, Hae Won Lee, Heeyoun Bunch, Sook Jin Seong, Mi-Ri Gwon and Young-Ran Yoon
Metabolites 2025, 15(7), 484; https://doi.org/10.3390/metabo15070484 - 17 Jul 2025
Viewed by 716
Abstract
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, treats type 2 diabetes by blocking renal glucose reabsorption and promoting urinary glucose excretion. This mechanism lowers blood glucose concentrations independently of insulin. The resulting caloric loss also contributes to weight reduction. Although these effects are well [...] Read more.
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, treats type 2 diabetes by blocking renal glucose reabsorption and promoting urinary glucose excretion. This mechanism lowers blood glucose concentrations independently of insulin. The resulting caloric loss also contributes to weight reduction. Although these effects are well documented in patients with diabetes, their magnitude and underlying mechanisms in healthy individuals remain poorly understood. Background/Objectives: We investigated metabolic alterations after a single 10 mg dose of dapagliflozin in healthy adults with normal body-mass indices (BMIs) using untargeted metabolomics. Methods: Thirteen healthy volunteers completed this study. Plasma was collected before and 24 h after dosing. Untargeted metabolic profiling was performed with ultra-high-performance liquid chromatography–quadrupole time-of-flight/mass spectrometry. Results: Twenty-five endogenous metabolites were annotated; ten were putatively identified. Eight metabolites increased significantly, whereas two decreased. Up-regulated metabolites included phosphatidylcholine (PC) species (PC O-36:5, PC 36:3), phosphatidylserine (PS) species (PS 40:2, PS 40:3, PS 36:1, PS 40:4), lysophosphatidylserine 22:1, and uridine. Dehydroepiandrosterone sulfate and bilirubin were down-regulated. According to the Human Metabolome Database, these metabolites participate in glycerophospholipid, branched-chain amino acid, pyrimidine, and steroid-hormone metabolism. Conclusions: Dapagliflozin may affect pathways related to energy metabolism and homeostasis beyond glucose regulation. These data provide a reference for future investigations into energy balance and metabolic flexibility in metabolic disorders. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

18 pages, 2450 KB  
Article
Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application
by James Ziemah, Matthias S. Ullrich and Nikolai Kuhnert
Foods 2025, 14(14), 2496; https://doi.org/10.3390/foods14142496 - 16 Jul 2025
Viewed by 498
Abstract
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for [...] Read more.
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for use in sustainable aerosol hygiene technology as an electrostatic bio-disinfectant. The investigation was performed through wipe tests and airborne microbial collection techniques. The upgraded coffee silverskin phytoextract demonstrated superior disinfection potential for various surfaces and airborne microbes compared to the hot trub phytoextract, with an industrial disinfectant serving as the control. Log reduction analyses revealed a more significant killing efficacy (p ≤ 0.05, using the ANOVA test) against Gram-positive organisms (Bacillus subtilis and Listeria monocytogenes) than against Gram-negative organisms (Escherichia coli and Vibrio parahaemolyticus), with the log reductions ranging from 3.08 to 5.56 and 3.72 to 5.81, respectively. Chemical characterization by LC-ESI-QTOF-MS, 1H NMR, and FTIR showed that CGAs and chalcones are the most bioactive compounds in CSS and HT, respectively. The innovation in this work involves an integrated approach that combines waste-derived phytoextracts, advanced chemical profiling, and scalable aerosol disinfection. Furthermore, this research offers a greener, cost-effective, and industrially relevant alternative to synthetic chemical disinfectants. The interdisciplinary approach contributes to the development of bio-based disinfectants for use in the food industry, hospitals, and public health settings. This investigation supports a paradigm shift toward sustainable disinfection practices, thereby improving food and environmental safety. Full article
Show Figures

Figure 1

21 pages, 3187 KB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 651
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 1027 KB  
Article
Enhanced Outer Membrane Vesicle Production in Escherichia coli: From Metabolic Network Model to Designed Strain Lipidomic Profile
by Héctor Alejandro Ruiz-Moreno, Juan D. Valderrama-Rincon, Mónica P. Cala, Miguel Fernández-Niño, Mateo Valderruten Cajiao, María Francisca Villegas-Torres and Andrés Fernando González Barrios
Int. J. Mol. Sci. 2025, 26(14), 6714; https://doi.org/10.3390/ijms26146714 - 13 Jul 2025
Cited by 1 | Viewed by 721
Abstract
Bacterial structures formed from the outer membrane and the periplasm components carry biomolecules to expel cellular material and interact with other cells. These outer membrane vesicles (OMVs) can encapsulate bioactive content, which confers OMVs with high potential as alternative drug delivery vehicles or [...] Read more.
Bacterial structures formed from the outer membrane and the periplasm components carry biomolecules to expel cellular material and interact with other cells. These outer membrane vesicles (OMVs) can encapsulate bioactive content, which confers OMVs with high potential as alternative drug delivery vehicles or as a platform for novel vaccine development. Single-gene mutants derived from Escherichia coli JC8031 were engineered to further enhance OMV production based on metabolic network modelling and in silico gene knockout design (ΔpoxB, ΔsgbE, ΔgmhA, and ΔallD). Mutants were experimentally obtained by genome editing using CRISPR-Cas9 and tested for OMVs recovery observing an enhanced OMV production in all of them. Lipidomic analysis through LC-ESI-QTOF-MS was performed for OMVs obtained from each engineered strain and compared to the wild-type E. coli JC8031 strain. The lipid profile of OMVs from the wild-type E. coli JC8031 did not change significantly confirmed by multivariate statistical analysis when compared to the mutant strains. The obtained results suggest that the vesicle production can be further improved while the obtained vesicles are not altered in their composition, allowing further study for stability and integrity for use in therapeutic settings. Full article
(This article belongs to the Special Issue From Molecular to Systems Biology through Data Integration)
Show Figures

Figure 1

25 pages, 2198 KB  
Article
Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities
by Valentina Masala, Gabriele Serreli, Antonio Laus, Monica Deiana, Adam Kowalczyk and Carlo Ignazio Giovanni Tuberoso
Foods 2025, 14(13), 2365; https://doi.org/10.3390/foods14132365 - 3 Jul 2025
Viewed by 679
Abstract
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, [...] Read more.
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, DPPH, and ABTS•+ assays; and tested ROS scavenging activity in Caco-2 cell cultures. Phenolic compounds were identified by (HR) LC-ESI-QTOF MS/MS and quantified with HPLC-PDA. Furthermore, Keap1-Nrf2, iNOS, and NOX enzymes involved in oxidative stress and antioxidant defences were the targets of molecular docking on key polyphenols. Hydroxycinnamic acids and flavonoids are the most important classes of compounds detected in the extracts. Among these compounds, the most significant was rosmarinic acid, followed by caffeic acid, luteolin glucuronide, and methyl rosmarinate. Although all extracts have shown encouraging results, the ethanolic extract solubilised with water (SEtOHA) was the one with the highest hydroxycinnamic acid content and total phenol content (518.64 ± 5.82 mg/g dw and 106.02 ± 6.02 mg GAE/g dw), as well as the highest antioxidant and antiradical activity. The extracts have shown anti-inflammatory activity by inhibiting NO release in LPS-stimulated Caco-2 cells. Finally, the in silico evaluation against the three selected enzymes showed interesting results for both numerical affinity ranking and predicted ligand binding models. The outcome of this study suggests this by-product as a possible ally in counteracting oxidative stress, as established by its favourable antioxidant compound profile, thus suggesting an interesting future application as a nutraceutical. Full article
Show Figures

Figure 1

21 pages, 599 KB  
Article
Development and Validation of a LC-QTOF-MS/MS Method to Assess the Phenolic Profile of Pulse Flours
by Achilleas Panagiotis Zalidis, Natasa P. Kalogiouri, Ioannis Mourtzinos, Dimitris Sarris and Konstantinos Gkatzionis
Molecules 2025, 30(13), 2730; https://doi.org/10.3390/molecules30132730 - 25 Jun 2025
Viewed by 517
Abstract
Functional flours, defined as flours enriched with health-promoting compounds such as phenolics, fibers, or proteins, are gaining attention as wheat-free alternatives due to the nutritional limitations of wheat flour. This study introduces a novel liquid chromatographic time-of-flight tandem mass spectrometric method (LC-QTOF-MS/MS) to [...] Read more.
Functional flours, defined as flours enriched with health-promoting compounds such as phenolics, fibers, or proteins, are gaining attention as wheat-free alternatives due to the nutritional limitations of wheat flour. This study introduces a novel liquid chromatographic time-of-flight tandem mass spectrometric method (LC-QTOF-MS/MS) to characterize the phenolic profiles of functional flours from different origins and evaluate their potential as flour substitutes in food products. The proposed method was validated and the limits of quantification (LOQs) were calculated over the ranges 0.1–1.0 mg/kg. Calculated recoveries were as low as 82.4%. Repeatability and reproducibility were expressed as intra-day (n = 6) and inter-day (n = 4 × 3) measurements and were lower than 8.1 and 10.9%, respectively. Target and suspect screening findings underscore the potential of pulse flours as nutritionally enriched ingredients for functional food development. Full article
Show Figures

Figure 1

18 pages, 3043 KB  
Article
Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water
by Sonia J. Bailon-Ruiz, Yarilyn Cedeño-Mattei and Luis Alamo-Nole
Micro 2025, 5(3), 31; https://doi.org/10.3390/micro5030031 - 22 Jun 2025
Viewed by 484
Abstract
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced [...] Read more.
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced at a 1% molar ratio. HRTEM images confirmed quasi-spherical morphology and high crystallinity, with particle sizes averaging 2.4 nm (pure) and 3.5 nm (doped). XRD analysis showed a consistent cubic ZnS structure. UV-vis spectra showed strong absorption at 316 nm for both samples, and PL measurements revealed emission quenching upon Fe doping. Photocatalytic tests under UV light demonstrated significantly higher degradation rates of 10 ppm cefalexin with Fe-doped ZnS, reaching near-complete removal within 90 min. Adsorption experiments revealed higher affinity and adsorption capacity of Fe-doped ZnS toward cefalexin compared to pure ZnS, as demonstrated by the Freundlich isotherm analyses, contributing significantly to enhanced photocatalytic degradation performance. High-resolution QTOF LC-MS analysis confirmed the breakdown of the β-lactam and thiazolidine rings of cefalexin and the formation of low-mass degradation products, including fragments at m/z 122.0371, 116.0937, and 318.2241. These findings provide strong evidence for the structural destruction of the antibiotic and validate the enhanced photocatalytic performance of Fe-doped ZnS. Full article
Show Figures

Figure 1

Back to TopTop