Flavonoid and Phenolic Quantification from Açaí (Euterpe oleracea Mart and Euterpe precatoria Mart), Mirití (Mauritia flexuosa L.), and Cupuassu (Theobroma grandiflorum (Wild. Ex Spreng.) Schum) from Vaupés, Colombia, Using LC-QqQ-MS
Abstract
1. Introduction
2. Results and Discussion
2.1. Flavonoid Contents
2.2. Phenolic Acid Content
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Fruit Collection and Sample Preparation
3.3. Extraction Procedures
3.4. Phenolic and Flavonoid Compound Profile by Liquid Chromatography Coupled to Mass Spectrometry with a Triple Quadrupole Analyzer (LC-QqQ-MS)
3.5. Anthocyanin Profile via Untargeted Metabolomic LC-QTOF-MS
3.6. Data Treatment and Metabolite Annotation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DW | Dry weight |
EO | Euterpe oleracea |
EP | Euterpe precatoria |
TG | Theobroma grandiflorum |
MF | Mauritia flexuosa |
nd | No detection |
References
- Stafussa, A.P.; Maciel, G.M.; Bortolini, D.G.; Maroldi, W.V.; Ribeiro, V.R.; Fachi, M.M.; Pontarolo, R.; Bach, F.; Pedro, A.C.; Haminiuk, C.W.I. Bioactivity and Bioaccessibility of Phenolic Compounds from Brazilian Fruit Purees. Future Foods 2021, 4, 100066. [Google Scholar] [CrossRef]
- de Cássia Rodrigues Batista, C.; de Oliveira, M.S.; Araújo, M.E.; Rodrigues, A.M.C.; Botelho, J.R.S.; da Silva Souza Filho, A.P.; Machado, N.T.; Carvalho, R.N. Supercritical CO2 Extraction of Açaí (Euterpe oleracea) Berry Oil: Global Yield, Fatty Acids, Allelopathic Activities, and Determination of Phenolic and Anthocyanins Total Compounds in the Residual Pulp. J. Supercrit. Fluids 2016, 107, 364–369. [Google Scholar] [CrossRef]
- Saini, N.; Anmol, A.; Kumar, S.; Wani, A.W.; Bakshi, M.; Dhiman, Z. Exploring Phenolic Compounds as Natural Stress Alleviators in Plants—A Comprehensive Review. Physiol. Mol. Plant Pathol. 2024, 133, 102383. [Google Scholar] [CrossRef]
- Lisboa, C.R.; de Oliveira, M.D.S.P.; Chisté, R.C.; Carvalho, A.V. Compostos bioativos e potencial antioxidante de diferentes acessos de Euterpe oleracea e Euterpe precatoria do banco ativo de germoplasma de açaí. Res. Soc. Dev. 2022, 11, e428111234824. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Paredes-Moreta, J.G.; Granda-Albuja, G.; Iturralde, G.; González-Paramás, A.M.; Alvarez-Suarez, J.M. Bioactive Compounds, Phenolic Profile, Antioxidant Capacity and Effectiveness against Lipid Peroxidation of Cell Membranes of Mauritia flexuosa L. Fruit Extracts from Three Biomes in the Ecuadorian Amazon. Heliyon 2020, 6, e05211. [Google Scholar] [CrossRef]
- Rodríguez-Cortina, A.; Hernández-Carrión, M. Amazonian Fruits in Colombia: Exploring Bioactive Compounds and Their Promising Role in Functional Food Innovation. J. Food Compos. Anal. 2025, 137, 106878. [Google Scholar] [CrossRef]
- Teixeira, B.; Teixeira, G.; Darnet, E.; Schaller, H.; Rogez, H.; Darnet, S. A Review of the Genus Euterpe: Botanical and Genetic Aspects of Açai, the Purple Gold of the Amazon. Bot. J. Linn. Soc. 2025, 208, 1–13. [Google Scholar] [CrossRef]
- Velasquez-Vasconez, P.A.; Castro-Zambrano, M.I.; Rodríguez-Cabal, H.A.; Castro, D.; Arbelaez, L.; Zambrano, J.C. Exploring Theobroma grandiflorum Diversity to Improve Sustainability in Smallholdings across Caquetá, Colombia. Ital. J. Agron. 2025, 20, 100034. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Feitosa, W.S.C.; Abreu, V.K.G.; de Oliveira Lemos, T.; Gomes, W.F.; Narain, N.; Rodrigues, S. Impact of Fermentation Conditions on the Quality and Sensory Properties of a Probiotic Cupuassu (Theobroma grandiflorum) Beverage. Food Res. Int. 2017, 100, 603–611. [Google Scholar] [CrossRef]
- Barbosa, P.O.; de Souza, M.O.; Pala, D.; Freitas, R.N. Açaí (Euterpe oleracea Martius) as an Antioxidant. In Pathology; Preedy, V.R., Ed.; Academic Press: London, UK, 2020; pp. 127–133. ISBN 978-0-12-815972-9. [Google Scholar]
- Cândido, T.L.N.; Silva, M.R.; Agostini-Costa, T.S. Bioactive Compounds and Antioxidant Capacity of Buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon Biomes. Food Chem. 2015, 177, 313–319. [Google Scholar] [CrossRef]
- Dantas, A.M.; Mafaldo, I.M.; de Lima Oliveira, P.M.; dos Santos Lima, M.; Magnani, M.; Borges, G.D.S.C. Bioaccessibility of Phenolic Compounds in Native and Exotic Frozen Pulps Explored in Brazil Using a Digestion Model Coupled with a Simulated Intestinal Barrier. Food Chem. 2019, 274, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Hernandez, J.C.; Le, M.; Idárraga-Mejía, A.M.; González-Correa, C.H. Flavonoid/Polyphenol Ratio in Mauritia Flexuosa and Theobroma Grandiflorum as an Indicator of Effective Antioxidant Action. Molecules 2021, 26, 6431. [Google Scholar] [CrossRef] [PubMed]
- Bataglion, G.A.; da Silva, F.M.A.; Eberlin, M.N.; Koolen, H.H.F. Simultaneous Quantification of Phenolic Compounds in Buriti Fruit (Mauritia flexuosa L.f.) by Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Food Res. Int. 2014, 66, 396–400. [Google Scholar] [CrossRef]
- Tauchen, J.; Bortl, L.; Huml, L.; Miksatkova, P.; Doskocil, I.; Marsik, P.; Villegas, P.P.P.; Flores, Y.B.; Damme, P.V.; Lojka, B.; et al. Phenolic Composition, Antioxidant and Anti-Proliferative Activities of Edible and Medicinal Plants from the Peruvian Amazon. Rev. Bras. Farmacogn. 2016, 26, 728–737. [Google Scholar] [CrossRef]
- Flor-Unda, O.; Guanochanga, F.; Samaniego, I.; Arias, V.; Ortiz, B.; Rosales, C.; Palacios-Cabrera, H. Physicochemical Characterization and Antioxidant Capacity of Açaí (Euterpe oleracea) in Ecuadorian Region. Foods 2024, 13, 3046. [Google Scholar] [CrossRef]
- Ribbenstedt, A.; Ziarrusta, H.; Benskin, J.P. Development, Characterization and Comparisons of Targeted and Non-Targeted Metabolomics Methods. PLoS ONE 2018, 13, e0207082. [Google Scholar] [CrossRef]
- da Costa, R.S.; dos Santos, O.V.; Lannes, S.C.D.S.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Ribeiro-Costa, R.M.; Converti, A.; Silva Júnior, J.O.C. Bioactive Compounds and Value-Added Applications of Cupuassu (Theobroma grandiflorum Schum.) Agroindustrial by-Product. Food Sci. Technol. 2019, 40, 401–407. [Google Scholar] [CrossRef]
- Garzón, G.A.; Narváez-Cuenca, C.-E.; Vincken, J.-P.; Gruppen, H. Polyphenolic Composition and Antioxidant Activity of Açai (Euterpe oleracea Mart.) from Colombia. Food Chem. 2017, 217, 364–372. [Google Scholar] [CrossRef]
- da Silveira, J.T.; da Rosa, A.P.C.; de Morais, M.G.; Victoria, F.N.; Costa, J.A.V. An Integrative Review of Açaí (Euterpe oleracea and Euterpe precatoria): Traditional Uses, Phytochemical Composition, Market Trends, and Emerging Applications. Food Res. Int. 2023, 173, 113304. [Google Scholar] [CrossRef]
- do Nascimento Silva, N.R.R.; Cavalcante, R.B.M.; da Silva, F.A. Nutritional Properties of Buriti (Mauritia flexuosa) and Health Benefits. J. Food Compos. Anal. 2023, 117, 105092. [Google Scholar] [CrossRef]
- Cuellar-Álvarez, L.; Cuellar-Álvarez, N.; Galeano-García, P.; Suárez-Salazar, J.C. Effect of Fermentation Time on Phenolic Content and Antioxidant Potential in Cupuassu (Theobroma grandiflorum (Willd. ex Spreng.) K.Schum.) Beans. Acta Agronómica 2017, 66, 473–479. [Google Scholar] [CrossRef]
- Benlloch-Tinoco, M.; Nuñez Ramírez, J.M.; García, P.; Gentile, P.; Girón-Hernández, J. Theobroma Genus: Exploring the Therapeutic Potential of T. grandiflorum and T. bicolor in Biomedicine—ScienceDirect. Available online: https://www-sciencedirect-com.ezproxy.uniandes.edu.co/science/article/pii/S2212429224011854 (accessed on 10 July 2025).
- Pacheco-Palencia, L.A.; Duncan, C.E.; Talcott, S.T. Phytochemical Composition and Thermal Stability of Two Commercial Açai Species, Euterpe oleracea and Euterpe precatoria. Food Chem. 2009, 115, 1199–1205. [Google Scholar] [CrossRef]
- Becker, M.M.; Gaëlle Catanantea, G.; Mármol, I.; Rodríguez Yoldi, M.J.; Mishrad, R.K.; Barbosa, S.; Núñez Burcio, O.; Silva Nunes, G.; Marty, J.L. Phenolic Composition, Antioxidant Capacity and Antiproliferative Activity of Ten Exotic Amazonian Fruit. J. Food Sci. Technol. 2020, 5, 49–65. [Google Scholar]
- Leder, P.J.S.; de Castro Junior, H.P.; da Gama Pantoja, L.; da Silva Santanna, J.; de Oliveira, E.M.; Sales, V.H.G. Systematic Review of Scientific Literature on Bioactive Compounds and Antioxidant Potential of Theobroma Grandiflorum. Cuad. Educ. Desarro. 2025, 17, e8734. [Google Scholar] [CrossRef]
- Davies, K.M.; Jibran, R.; Zhou, Y.; Albert, N.W.; Brummell, D.A.; Jordan, B.R.; Bowman, J.L.; Schwinn, K.E. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Front. Plant Sci. 2020, 11, 7. [Google Scholar] [CrossRef]
- Francisconi, A.F.; Cauz-Santos, L.A.; Morales Marroquín, J.A.; van den Berg, C.; Alves-Pereira, A.; de Alencar, L.D.; Picanço-Rodrigues, D.; Zanello, C.A.; Ferreira Costa, M.; Gomes Lopes, M.T.; et al. Complete Chloroplast Genomes and Phylogeny in Three Euterpe Palms (E. edulis, E. oleracea and E. precatoria) from Different Brazilian Biomes. PLoS ONE 2022, 17, e0266304. [Google Scholar] [CrossRef]
- Barros Santos, M.C.; Ribeiro Da Silva Lima, L.; Ramos Nascimento, F.; Pimenta Do Nascimento, T.; Cameron, L.C.; Simões Larraz Ferreira, M. Metabolomic Approach for Characterization of Phenolic Compounds in Different Wheat Genotypes during Grain Development. Food Res. Int. 2019, 124, 118–128. [Google Scholar] [CrossRef]
Compound | Transition (m/z) | RT (min) | EO 1 | EP 2 | TG 3 | MF 4 |
---|---|---|---|---|---|---|
Flavonoids | 8.57 | 7.66 | 6.43 | 10.61 | ||
(+)-Catechin (Hydrate) | 289.0 → 245.0 | 1.32 | 1.35 | 3.39 | 0.56 | 4.86 |
(−)-Epicatechin | 289.0 → 109.0 | 1.50 | 0.33 | 0.13 | 5.75 | |
Rutin | 609.0 → 300.1 | 1.92 | 4.44 | 0.91 | 0.005 | 1.22 |
(+)-Taxifolin | 303.0 → 285.0 | 3.18 | 0.19 | 0.59 | 0.08 | 0.82 |
Naringin | 579.0 → 271.0 | 3.75 | 0.01 | nd | ||
Phloridzin | 435.0 → 273.0 | 5.89 | 0.01 | 0.002 | nd | 0.003 |
Baicalin | 444.9 → 269.0 | 7.79 | 0.01 | 0.004 | 0.01 | |
Luteolin | 284.9 → 133.0 | 10.12 | 0.97 | 1.23 | 0.003 | 1.72 |
Morin | 301.0 → 121.0 | 10.18 | 0.11 | 0.07 | 0.01 | 0.10 |
Quercetin | 300.9 → 121.0 | 10.18 | 0.10 | 0.06 | 0.004 | 0.10 |
(+/−)-Naringenin | 270.9 → 150.9 | 11.37 | 0.29 | 0.34 | nd | 0.51 |
Apigenin | 268.9 → 151.0 | 11.45 | nd | 0.06 | nd | 0.07 |
Phloretin | 273.0 → 167.0 | 11.52 | 0.002 | 0.003 | nd | 0.004 |
Kaempferol | 284.9 → 93.1 | 11.69 | 0.04 | 0.52 | 0.01 | 0.73 |
Diosmetin | 299.0 → 284.1 | 11.77 | 0.72 | 0.35 | 0.001 | 0.47 |
Biochanin A | 282.9 → 268.0 | 14.13 | 0.001 |
Compound | Molecular Formula | Molecular Weight (g/mol) | RT (min) | EO 1 | EP 2 | TG 3 | MF 4 |
---|---|---|---|---|---|---|---|
Procyanidin B2 | C30H26O12 | 578.1424 | 7.35 | 0.21 | 0.26 | 0.11 | |
Cyanidin-O-glucoside | C21H21O11 | 449.1084 | 8.43 | 12.46 | 10.92 | ||
Fisetin | C15H10O6 | 286.0477 | 8.45 | 23.42 | 16.53 | ||
Kaempferol-O-rutinoside | C27H30O15 | 594.1585 | 8.66 | 19.30 | 22.75 | ||
Epigallocatechin gallate | C22H18O11 | 458.0849 | 8.76 | 0.26 | |||
Procyanidin B1 | C30H26O12 | 578.1424 | 9.03 | 0.85 | |||
Rutin | C27H30O16 | 610.1534 | 9.28 | 1.96 | 1.32 | ||
Epicatechin | C15H14O6 | 290.079 | 9.68 | 0.35 | 0.29 | 0.01 | |
Taxifolin | C15H12O7 | 304.0583 | 10.11 | 0.49 | 0.70 | ||
Procyanidin C1 | C45H38O18 | 866.2058 | 10.23 | 0.34 | |||
Manghaslin | C33H40O20 | 756.2113 | 10.50 | 0.01 | 0.02 | 0.30 | |
Isovitexin | C21H20O10 | 432.1057 | 11.94 | 4.38 | 1.21 | 0.04 | |
Hyperoside | C21H20O12 | 464.0955 | 12.35 | 0.45 | 0.11 | 0.31 | |
Kaempferol-O-glucoside | C21H20O11 | 448.1006 | 12.44 | 3.00 | 1.44 | 0.01 | |
Isokaempferide | C16H12O6 | 300.0634 | 13.08 | 0.05 | 0.02 | ||
Methylquercetin | C16H12O7 | 316.0583 | 13.18 | 0.08 | 0.03 | ||
Rhamnetin | C16H12O7 | 316.0583 | 13.18 | 0.01 | |||
Diosmetin | C16H12O6 | 300.0634 | 13.31 | 0.67 | |||
Naringenin-O-glucoside | C21H22O10 | 434.1213 | 13.96 | 0.25 | 0.71 | 0.02 | |
Luteolin | C15H10O6 | 286.0477 | 17.15 | 0.61 | 0.24 | 0.01 | |
Santin | C18H16O7 | 344.0896 | 17.72 | 0.69 | |||
2′,6′-Dihydroxy-4′-methoxydihydrochalcone | C16H16O4 | 272.1049 | 17.93 | 0.47 | |||
Pinocembrin | C15H12O4 | 256.0736 | 18.57 | 0.03 | 0.03 | 0.64 | |
3,7-Dihydroxy-5,3′,4′-trimethoxyflavone | C18H16O7 | 344.0896 | 18.62 | 0.40 | |||
Catechin | C15H14O6 | 290.0790 | 33.91 | 1.05 | 4.00 | 0.43 | 0.01 |
Compound | Transition (m/z) | RT (min) | EO 1 | EP 2 | TG 3 | MF 4 |
---|---|---|---|---|---|---|
Phenolic acids | 612.83 | 422.35 | 17.37 | 577.02 | ||
Gallic acid | 169.0 → 125.0 | 1.01 | 0.13 | 0.10 | 0.07 | 0.15 |
3,5-Dihydroxybenzoic acid | 152.9 → 108.9 | 1.20 | 122.16 | 40.14 | 1.25 | 56.25 |
Chlorogenic acid | 353.0 → 191.0 | 1.20 | 1.38 | 0.05 | 0.08 | 0.07 |
2,3,4-Trihydroxybenzoic acid | 168.9 → 150.9 | 1.29 | 0.86 | 0.34 | nd | 0.47 |
Dihydrocaffeic acid | 180.9 → 136.9 | 1.56 | 0.22 | 0.16 | 0.13 | nd |
4-Hydroxybenzoic acid | 137.0 → 93.0 | 1.64 | 254.34 | 237.02 | 0.49 | 317.83 |
Terephthalic acid | 165.0 → 121.0 | 1.66 | 11.24 | 9.32 | 12.48 | 12.73 |
Caffeic acid | 179.0 → 135.0 | 1.67 | 4.84 | 1.07 | 0.03 | 1.51 |
Syringic acid | 197.0 → 182.0 | 1.74 | 2.90 | 5.62 | 0.54 | 7.89 |
Gentisic acid | 153.0 → 108.0 | 1.74 | 0.09 | 0.10 | nd | 0.16 |
4-Acetocatechol | 151.0 → 108.0 | 1.75 | 1.39 | 0.33 | 0.01 | 0.44 |
Vanillic acid | 167.0 → 151.9 | 1.78 | 29.77 | 32.61 | 0.68 | 45.19 |
2,3-Dihydroxybenzoic acid | 153.0 → 109.0 | 2.05 | 0.18 | 0.04 | 0.01 | 0.05 |
2,4-Dihydroxybenzoic Acid | 153.0 → 109.0 | 2.05 | 0.12 | 0.08 | nd | 0.12 |
p-Coumaric acid | 163.0 → 119.0 | 2.52 | 53.99 | 15.68 | 0.26 | 22.29 |
Hydroferulic acid | 195.0 → 136.0 | 2.60 | 0.32 | 0.08 | 0.04 | 0.15 |
Sinapic acid | 223.0 → 193.0 | 2.80 | 6.30 | 8.60 | 0.09 | 12.13 |
m-Hydrocoumaric acid | 165.0 → 121.0 | 2.90 | 0.07 | 0.03 | nd | 0.04 |
Ferulic acid | 193.0 → 134.0 | 2.94 | 121.52 | 70.48 | 0.60 | 98.98 |
m-Coumaric acid | 163.0 → 119.0 | 3.44 | 0.12 | 0.09 | 0.04 | 0.11 |
Acetylphloroglucinol | 167.0 → 123.0 | 3.89 | nd | 0.10 | nd | 0.13 |
trans-2-Hydroxycinnamic acid | 163.0 → 119.0 | 4.80 | 0.44 | 0.11 | 0.43 | 0.09 |
Salicylic acid | 137.0 → 93.0 | 5.53 | 0.43 | 0.20 | 0.13 | 0.23 |
3,4,5-Trimethoxycinnamic acid | 237.0 → 102.9 | 9.42 | nd | nd | ||
Caffeic acid phenethyl ester | 283.0 → 135.0 | 14.12 | nd | nd | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, M.S.; Martínez León, A.J.; Porras, L.S.; Giraldo, I.A.; Rojas, E.; Lavao, F.E.; Martínez, K. Flavonoid and Phenolic Quantification from Açaí (Euterpe oleracea Mart and Euterpe precatoria Mart), Mirití (Mauritia flexuosa L.), and Cupuassu (Theobroma grandiflorum (Wild. Ex Spreng.) Schum) from Vaupés, Colombia, Using LC-QqQ-MS. Plants 2025, 14, 2632. https://doi.org/10.3390/plants14172632
Rodríguez MS, Martínez León AJ, Porras LS, Giraldo IA, Rojas E, Lavao FE, Martínez K. Flavonoid and Phenolic Quantification from Açaí (Euterpe oleracea Mart and Euterpe precatoria Mart), Mirití (Mauritia flexuosa L.), and Cupuassu (Theobroma grandiflorum (Wild. Ex Spreng.) Schum) from Vaupés, Colombia, Using LC-QqQ-MS. Plants. 2025; 14(17):2632. https://doi.org/10.3390/plants14172632
Chicago/Turabian StyleRodríguez, Manuel Salvador, Aida Juliana Martínez León, Lina Sabrina Porras, Iván Alejandro Giraldo, Esmeralda Rojas, Fredy Eduardo Lavao, and Kaoma Martínez. 2025. "Flavonoid and Phenolic Quantification from Açaí (Euterpe oleracea Mart and Euterpe precatoria Mart), Mirití (Mauritia flexuosa L.), and Cupuassu (Theobroma grandiflorum (Wild. Ex Spreng.) Schum) from Vaupés, Colombia, Using LC-QqQ-MS" Plants 14, no. 17: 2632. https://doi.org/10.3390/plants14172632
APA StyleRodríguez, M. S., Martínez León, A. J., Porras, L. S., Giraldo, I. A., Rojas, E., Lavao, F. E., & Martínez, K. (2025). Flavonoid and Phenolic Quantification from Açaí (Euterpe oleracea Mart and Euterpe precatoria Mart), Mirití (Mauritia flexuosa L.), and Cupuassu (Theobroma grandiflorum (Wild. Ex Spreng.) Schum) from Vaupés, Colombia, Using LC-QqQ-MS. Plants, 14(17), 2632. https://doi.org/10.3390/plants14172632