Development and Validation of a LC-QTOF-MS/MS Method to Assess the Phenolic Profile of Pulse Flours
Abstract
1. Introduction
2. Results and Discussion
2.1. Method Validation Results
2.2. Target Screening Results
2.3. Suspect Screening Results
3. Materials and Methods
3.1. Flour Samples
3.2. Granulometric Analysis
3.3. Chemicals and Standards
3.4. Preparation of Standard Solutions
3.5. Sample Preparation
3.6. Method Validation
3.7. Instrumental Analysis
3.8. Screening Methodology
3.8.1. Target Screening
3.8.2. Suspect Screening
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. In The State of Food and Agriculture 2023: Revealing the True Cost of Food to Transform Agrifood Systems; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Lovis, L.J. Alternatives to wheat flour in baked goods. Cereal Foods World 2003, 48, 61. [Google Scholar]
- Seal, C.J.; Courtin, C.M.; Venema, K.; de Vries, J. Health benefits of whole grain: Effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef] [PubMed]
- Kwak, N.S.; Jukes, D.J. Functional foods. Part 1: The development of a regulatory concept. Food Control 2001, 12, 99–107. [Google Scholar] [CrossRef]
- Bigliardi, B.; Galati, F. Innovation trends in the food industry: The case of functional foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Dereje, B.; Girma, A.; Mamo, D.; Chalchisa, T. Functional properties of sweet potato flour and its role in product development: A review. Int. J. Food Prop. 2020, 23, 1639–1662. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Igwe, V.S.; Echeta, C.K. The functional properties of foods and flours. Int. J. Adv. Acad. Res. 2019, 5, 139–160. [Google Scholar]
- Xu, B.; Chang, S.K.C. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the northern United States. J. Agric. Food Chem. 2010, 58, 1509–1517. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.; Gallagher, E. State of the art in gluten-free research. J. Food Sci. 2014, 79, R1067–R1076. [Google Scholar] [CrossRef]
- Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Masoero, F.; Trevisan, M.; Lucini, L. Evaluation of phenolic profile and antioxidant capacity in gluten-free flours. Food Chem. 2017, 228, 367–373. [Google Scholar] [CrossRef]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-based diets: Considerations for environmental impact, protein quality, and exercise performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed]
- Czubinski, J.; Wroblewska, K.; Czyzniejewski, M.; Górnaś, P.; Kachlicki, P.; Siger, A. Bioaccessibility of defatted lupin seed phenolic compounds in a standardized static in vitro digestion system. Food Res. Int. 2019, 116, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Dueñas, M.; Estrella, I.; Hernández, T.; Martín-Cabrejas, M.A.; Benitez, V.; Esteban, R.M. Phenolic profile and antioxidant capacity of chickpeas (Cicer arietinum L.) as affected by a dehydration process. Plant Foods Hum. Nutr. 2011, 66, 187–195. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Thakur, S.; Tyler, R.T.; Milani, A.; Der, T.; Paliwal, J. The critical role of milling in pulse ingredient functionality. Cereal Foods World 2018, 63, 201–206. [Google Scholar]
- Mittal, R.; Nagi, H.P.S.; Sharma, P.; Sharma, S. Effect of processing on chemical composition and antinutritional factors in chickpea flour. J. Food Sci. Eng. 2012, 2, 180. [Google Scholar]
- Bento, J.A.C.; Ribeiro, P.R.V.; Alexandre, E.; Silva, L.M.; Bassinello, P.Z.; Caliari, M.; Filho, E.G.A.; Júnior, M.S.S.; de Brito, E.S. Chemical profile of colorful bean (Phaseolus vulgaris L) flours: Changes influenced by the cooking method. Food Chem. 2021, 356, 129718. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Quispe, C.; Soriano, M.D.P.C.; Cuello, A.S.; Theoduloz, C.; Pérez, M.J.; Jiménez-Aspée, F.; Isla, M.I. Chilean prosopis mesocarp flour: Phenolic profiling and antioxidant activity. Molecules 2015, 20, 7017–7033. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Alygizakis, N.A.; Aalizadeh, R.; Thomaidis, N.S. Olive oil authenticity studies by target and nontarget LC-QTOF-MS combined with advanced chemometric techniques. Anal. Bioanal. Chem. 2016, 408, 7955–7970. [Google Scholar] [CrossRef]
- Mitsikaris, P.D.; Kostas, S.; Mourtzinos, I.; Menkissoglu-Spiroudi, U.; Papadopoulos, A.; Kalogiouri, N.P. Investigation of Rosa species by an optimized LC-QTOF-MS/MS method using targeted and non-targeted screening strategies combined with multivariate chemometrics. Phytochem. Anal. 2024, 35, 1100–1111. [Google Scholar] [CrossRef]
- Karadimou, C.; Petsa, E.; Ouroumi, N.A.; Menkissoglu-Spiroudi, U.; Mourtzinos, I.; Koundouras, S.; Kontoudakis, N.; Theocharis, S.; Kalogiouri, N.P.; Papadakis, E. Exploration of the anthocyanin and proanthocyanidin profile of Greek red grape skins belonging to Vradiano, Limnio, and Kotsifali cultivars, analyzed by a novel LC-QTOF-MS/MS method. Phytochem. Anal. 2024, 35, 1781–1793. [Google Scholar] [CrossRef]
- Hernández, L.; Afonso, D.; Rodríguez, E.M.; Díaz, C. Phenolic compounds in wheat grain cultivars. Plant Foods Hum. Nutr. 2011, 66, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef]
- Shamanin, V.P.; Tekin-Cakmak, Z.H.; Gordeeva, E.I.; Karasu, S.; Pototskaya, I.; Chursin, A.S.; Pozherukova, V.E.; Ozulku, G.; Morgounov, A.I.; Sagdic, O.; et al. Antioxidant Capacity and Profiles of Phenolic Acids in Various Genotypes of Purple Wheat. Foods 2022, 11, 2515. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Rahim, M.S.; Kumar, P.; Mishra, A.; Sharma, H.; Roy, J. Large-scale identification and characterization of phenolic compounds and their marker–trait association in wheat. Euphytica 2020, 216, 127. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Chen, Q.; Xu, W. The antioxidant properties, metabolism, application and mechanism of ferulic acid in medicine, food, cosmetics, livestock and poultry. Antioxidants 2024, 13, 853. [Google Scholar] [CrossRef]
- Kafali, M.; Finos, M.A.; Tsoupras, A. Vanillin and Its Derivatives: A Critical Review of Their Anti-Inflammatory, Anti-Infective, Wound-Healing, Neuroprotective, and Anti-Cancer Health-Promoting Benefits. Nutraceuticals 2024, 4, 522–561. [Google Scholar] [CrossRef]
- Semwal, R.; Joshi, S.K.; Semwal, R.B.; Semwal, D.K. Health benefits and limitations of rutin-A natural flavonoid with high nutraceutical value. Phytochem. Lett. 2021, 46, 119–128. [Google Scholar] [CrossRef]
- Gallardo, C.; Jiménez, L.; García-Conesa, M.T. Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions. Food Chem. 2006, 99, 455–463. [Google Scholar] [CrossRef]
- van der Kamp, J.W.; Poutanen, K.; Seal, C.J.; Richardson, D.P. The HEALTHGRAIN definition of ‘whole grain’. Food Nutr. Res. 2014, 58, 22100. [Google Scholar] [CrossRef]
- Ahmed, A.R. Influence of chemical properties of wheat-lupine flour blends on cake quality. Am. J. Food Sci. Technol. 2014, 2, 67–75. [Google Scholar] [CrossRef]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 2017, 221, 689–697. [Google Scholar] [CrossRef]
- Luthria, D.L.; Pastor-Corrales, M.A. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J. Food Compost. Anal. 2006, 19, 205–211. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Basu, A. Phenolic compounds potential health benefits and toxicity. In Utilisation of Bioactive Compounds from Agricultural and Food Waste; CRC Press: Boca Raton, FL, USA, 2017; pp. 27–59. [Google Scholar]
- Ingole, A.; Kadam, M.P.; Dalu, A.P.; Kute, S.M.; Mange, P.R.; Theng, V.D.; Lahane, O.R.; Nikas, A.P.; Kawal, Y.V.; Patil, P.A.; et al. A review of the pharmacological characteristics of vanillic acid. J. Drug Deliv. Ther. 2021, 11, 200–204. [Google Scholar] [CrossRef]
- Jain, S.; Vaidya, A. Comprehensive review on pharmacological effects and mechanism of actions of taxifolin: A bioactive flavonoid. Pharmacol. Res. Mod. Chin. Med. 2023, 7, 100240. [Google Scholar] [CrossRef]
- Sanaye, P.M.; Mojaveri, M.R.; Ahmadian, R.; Jahromi, M.S.; Bahramsoltani, R. Apigenin and its dermatological applications: A comprehensive review. Phytochemistry 2022, 203, 113390. [Google Scholar] [CrossRef]
- Singh, A.; Singh, J.; Parween, G.; Khator, R.; Monga, V. A comprehensive review of apigenin a dietary flavonoid: Biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit. Rev. Food Sci. Nutr. 2024, 1–37. [Google Scholar] [CrossRef]
- Huwait, E.; Mobashir, M. Potential and therapeutic roles of Diosmin in human diseases. Biomedicines 2022, 10, 1076. [Google Scholar] [CrossRef]
- Lyu, Y.L.; Zhou, H.F.; Yang, J.; Wang, F.X.; Sun, F.; Li, J.Y. Biological activities underlying the therapeutic effect of quercetin on inflammatory bowel disease. Mediat. Inflamm. 2022, 2022, 5665778. [Google Scholar] [CrossRef]
- Pandi, A.; Kalappan, V.M. Pharmacological and therapeutic applications of Sinapic acid—An updated review. Mol. Biol. Rep. 2021, 48, 3733–3745. [Google Scholar] [CrossRef]
- Gong, D.; Zha, Z. Hydroxybenzoic Acids. In Handbook of Food Bioactive Ingredients; Springer International Publishing: Berlin, Germany, 2022; pp. 1–30. [Google Scholar]
- Gołębiewska, E.; Kalinowska, M.; Samsonowicz, M.; Priebe, W.; Lewandowski, W.; Pietryczuk, A.; Złowodzka, A.B.; Świderski, G.; Świsłocka, R.; Lewandowska, H.; et al. Plant-derived and dietary hydroxybenzoic acids-A comprehensive study of structural, anti-/pro-oxidant, lipophilic, antimicrobial, and cytotoxic activity in MDA-MB-231 and MCF-7 cell lines. Nutrients 2021, 13, 3107. [Google Scholar] [CrossRef]
- Caleja, C.; Barreiro, M.F.; Ribeiro, A.; Ferreira, I.C. Phenolic compounds as nutraceuticals or functional food ingredients. Curr. Pharm. Des. 2017, 23, 2787–2806. [Google Scholar] [CrossRef] [PubMed]
- Dutra, J.M.; Espitia, P.J.; Batista, R.A. Formononetin: Biological effects and uses—A review. Food Chem. 2021, 359, 129975. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Karnpanit, W.; Nasar-Abbas, S.M.; Huma, Z.E.; Jayasena, V. Phytochemical composition and bioactivities of lupin: A review. Int. J. Food Sci. Technol. 2015, 50, 2004–2012. [Google Scholar] [CrossRef]
- Zhao, Z.; Kang, K.; Yue, J.; Ji, X.; Qiao, H.; Fan, P.; Zheng, X. Research progress in biological activities of isochroman derivatives. Eur. J. Med. Chem. 2021, 210, 113073. [Google Scholar] [CrossRef]
- Gao, Y.; Snyder, S.A.; Smith, J.N.; Chen, Y.C. Anticancer properties of baicalein: A review. Med. Chem. Res. 2016, 25, 1515–1523. [Google Scholar] [CrossRef]
- Zhong, L.; Clarke, M.W.; Hodgson, J.M.; Wahlqvist, M.L.; Junaldi, E.; Wu, G.; Fang, Z.; Johnson, S.K. Characterization of polyphenols in Australian sweet lupin (Lupinus angustifolius) seed coat by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2019, 116, 1153–1162. [Google Scholar] [CrossRef]
- Islam, M.N.; Ishita, I.J.; Jung, H.A.; Choi, J.S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem. Toxicol. 2014, 69, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Hernández, T.; Estrella, I.; Fernández, D. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem. 2009, 117, 599–607. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Isoflavones and antioxidant capacity of Peruvian and Brazilian lupin cultivars. J. Food Compost. Anal. 2009, 22, 397–404. [Google Scholar] [CrossRef]
- Das, S.; Sharangi, A.B.; Egbuna, C.; Jeevanandam, J.; Ezzat, S.M.; Adetunji, C.O.; Akram, M.; Adetunji, J.B.; Tijjani, H.; Onyeike, P.C.; et al. Health benefits of isoflavones found exclusively of plants of the fabaceae family. Funct. Foods Nutraceuticals Bioact. Compon. Formul. Innov. 2020, 473–508. [Google Scholar]
- Sofi, S.A.; Singh, J.; Muzaffar, K.; Majid, D.; Dar, B.N. Physicochemical characteristics of protein isolates from native and germinated chickpea cultivars and their noodle quality. Int. J. Gastron. Food Sci. 2020, 22, 100258. [Google Scholar] [CrossRef]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.P.G.; Sganzerla, W.G.; John, O.D.; Marchiosi, R. A comprehensive review of the classification, sources, biosynthesis, and biological properties of hydroxybenzoic and hydroxycinnamic acids. Phytochem. Rev. 2023, 24, 1061–1090. [Google Scholar] [CrossRef]
- Safarova, I.R. Hydroxybenzoic acid derivatives and their biological activity. Process. Petrochem. Oil Refin. 2022, 23, 134–147. [Google Scholar]
- Oliveira, H.; Wu, N.; Zhang, Q.; Wang, J.; Oliveira, J.; de Freitas, V.; He, J.; Wu, N.; Fernandes, I. Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food Funct. 2016, 7, 2462–2468. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Q.; Zhang, Z.; Yang, X.; Man, J.; Wang, D.; Li, X. Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated. Nutrients 2024, 16, 1850. [Google Scholar] [CrossRef]
- AACC. AACC Method 66-20.01. Determination of granularity of semolina and farina: Sieving method. In AACC Approved Methods of Analysis, 11th ed.; American Association of Cereal Chemists International: Saint Paul, MN, USA, 1999. [Google Scholar]
- Harrington, R.A.; Adhikari, V.; Rayner, M.; Scarborough, P. Nutrient composition databases in the age of big data: FoodDB, a comprehensive, real-time database infrastructure. BMJ Open 2019, 9, e026652. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010, 11, 148. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Matsuda, F.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef]
Compound | Molecular Formula | [M − H]− Standard | [M − H]− Experimental CFC | [M − H]− Experimental CFL | Rt (min) | ΔRt | Fragments m/z | Elemental Formula | WFC (SD) mg/kg | WFL (SD) mg/kg | LFC (SD) mg/kg | LFL (SD) mg/kg | CFC (SD) mg/kg | CFL (SD) mg/kg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apigenin | C15H10O5 | 269.0448 | 269.0451 | 269.0451 | 9.04 | +0.02 | 63.0238 65.0027 107.0133 117.0335 149.0237 159.0448 225.0553 | [C5H4]-H− [C4H3O-H]-H− [C6H4O2]-H− [C8H6O]-H− [C8H5O3]− [C10H7O2]− [C14H9O3]− | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Caffeic acid | C9H8O4 | 179.0348 | 179.0351 | 179.0355 | 5.12 | +0.06 | 90.9983 134.0323 134.9878 135.0456 | [C4H2O]-H− [C6H5+2H]− [C8H7O2]-H− [C8H7O2]− | <LOQ | <LOQ | ||||
p-Coumaric acid | C9H8O3 | 163.0400 | 163.0401 | 163.0402 | 5.97 | −0.01 | 65.0389 93.0344 117.0343 119.0501 | [C5H4+H]− [C6H5O]− [C8H7O-H]-H− [C8H7O]− | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Chrysin | C15H10O4 | 253.0510 | 253.0509 | 253.0507 | 10.54 | −0.01 | 63.0238 107.0146 143.0494 209.0609 | [C5H5-H]-H− [C6H4O2]-H− [C10H7O]− [C14H9O2]− | ||||||
Diosmin | C28H32O15 | 607.1669 | 607.1674 | 607.1671 | 7.17 | +0.08 | 151.0397 199.0616 283.0266 284.0331 443.0990 | [C8H7O3]− [C9H12O5]-H− [C15H8O6]-H− [C15H8O6]− [C22H21O10-H]-H− | <LOQ | <LOQ | <LOQ | <LOQ | 0.72 * (0.04) | <LOQ |
Ferulic acid | C10H10O4 | 193.0505 | 193.0509 | 193.0507 | 6.25 | −0.03 | 106.0414 132.0210 133.0301 134.0375 178.0276 | [C7H6O]− [C8H6O2-H]-H− [C8H6O2]-H− [C8H6O2]− [C9H7O4]-H− | <LOQ | <LOQ | 1.67 ** (0.24) | 1.58 ** (0.08) | <LOQ | <LOQ |
Kaempferol | C15H10O6 | 285.0398 | 285.0403 | 285.0410 | 8.92 | 0 | 65.0030 93.0343 117.0344 151.0037 211.0406 229.0509 | [C4H3O-H]-H− [C6H5O]− [C8H5O]− [C7H4O4]-H− [C13H8O3]-H− [C13H9O4]− | <LOQ | <LOQ | <LOQ | <LOQ | ||
Luteolin | C15H10O- | 285.0401 | 285.0402 | 285.0410 | 8.36 | 0 | 65.0036 107.0138 132.0221 151.0038 199.0402 217.0515 241.0504 | [C4H3O-H]-H− [C6H5O2-H]-H− [C8H6O2-H]-H− [C7H4O4]-H− [C12H6O3+H]− [C12H9O4]− [C14H9O4]− | <LOQ | <LOQ | ||||
Naringin | C27H32O14 | 579.1714 | 579.1716 | 579.1715 | 6.78 | −0.15 | 119.0495 151.0035 271.0615 313.0709 | [C8H8O]-H− [C7H3O4]− [C15H11O5]− [C17H13O6]− | <LOQ | <LOQ | <LOQ | <LOQ | ||
Quercetin | C15H10O7 | 301.0350 | 301.0422 | 301.0363 | 8.08 | 0 | 65.0029 83.0137 107.0135 121.0292 151.0034 178.9982 186.0319 | [C4H3O-H]-H− [C4H4O2]-H− [C6H5O2-H]-H− [C7H5O2]− [C7H4O4]-H− [C8H5O5-H]-H− [C11H7O3]-H− | <LOQ | <LOQ | ||||
Quercitrin | C21H20O11 | 447.0930 | 447.0943 | 447.0935 | 7.19 | 0.05 | 151.0040 255.0301 284.0326 285.0409 300.0282 301.0367 327.0529 | [C7H4O4]-H− [C14H9O5-H]-H− [C15H9O6]-H− [C15H9O6]− [C15H9O7]-H− [C15H9O7]− [C17H11O7]− | 0.18 * (0.02) | 0.45 * (0.06) | ||||
Rutin | C27H30O16 | 609.1456 | 609.1462 | 609.1472 | 6.67 | +0.05 | 151.0041 255.0300 271.0250 300.0266 301.0350 | [C7H4O4]-H− [C14H9O5-H]-H− [C14H9O6-H]-H− [C15H9O7]-H− [C15H9O7]− | <LOQ | ND | <LOQ | <LOQ | ||
Sinapic acid | C11H12O5 | 223.0611 | 223.0614 | 223.0615 | 6.26 | −0.02 | 67.0188 68.9981 69.0345 93.0351 121.0307 127.0412 149.0253 181.0492 193.0159 | [C4H4O]-H− [C3H3O2-H]-H− [C4H4O+H]− [C6H6O]-H− [C7H6O2]-H− [C6H8O3]-H− [C8H7O3-H]-H− [C9H6O5]-H− | <LOQ | 0.52 * (0.05) | ||||
Taxifolin | C15H12O7 | ND | 303.0603 | 303.0518 | 6.09 | −0.01 | 57.0339 83.0142 121.0294 123.0450 125.0244 175.0409 217.0504 285.0417 | [C3H3O+2H]− [C4H4O2]-H− [C7H6O2]-H− [C7H6O2+H]− [C6H4O3+H]− [C10H7O3]− [C12H8O4+H]− [C15H11O6-H]-H− | ND | <LOQ | ||||
Vanillin | C8H8O3 | 151.0400 | 151.0403 | 151.0404 | 5.64 | −0.015 | 92.0268 108.0214 136.0165 | [C6H4O]− [C6H4O2]− [C7H5O3]-H− | 0.40 * (0.06) | 0.54 * (0.07) | 0.72 * (0.11) | 2.58 * (0.11) | ||
Vanillic acid | C8H8O4 | 167.0351 | 167.0350 | 167.0351 | 5.13 | 0 | 65.0034 91.0189 108.0217 123.0094 124.0167 152.0117 | [C4H2O]-H− [C6H4O]-H− [C6H4O2]− [C6H5O3-H]-H− [C6H5O3]-H− [C7H5O4]-H− | 0.98 * (0.09) | <LOQ |
Compound | Molecular Formula | [M − H]− Experimental | Rt (min) | Fragments m/z | Elemental Formula | Mass Bank ID |
---|---|---|---|---|---|---|
2,4-dihydroxybenzoic acid | C7H6O4 | 153.0195 | 5.28 | 67.0187 91.0200 109.0286 135.0088 | [C4H4O]-H− [C6H4O]-H− [C6H5O2]− [C7H5O3-H]-H− | BS003106 |
4-hydroxybenzoic acid | C7H6O3 | 137.0245 | 7.32 | 65.0397 93.0345 | [C5H4+H]− [C6H5O]− | PR100596 |
Apigenin-6-C-arabinoside-8-C-hexoside | C26H28O14 | 563.1412 | 6.00 | 191.0345 283.0610 383.0764 563.1384 | PR309300 | |
Apigenin-7-O-neohesperidoside | C27H30O14 | 577.1568 | 6.98 | 269.0077 269.0464 | [C14H8O6-2H]-H− [C15H9O5]− | PR305867 |
Formononetin | C16H12O4 | 443.1416 | 13.16 | 125.0243 195.0458 | [C6H3O3+2H]− [C13H7O2]− | BS003359 |
Isovitexin-2″-O-rhamnoside | C27H30O14 | 577.1580 | 6.98 | 125.0261 269.0465 577.2257 | [C15H9O5]− | PR100821 |
Kaempferol-7-O-sopheroside | C27H30O16 | 609.1813 | 6.95 | 125.0246 164.0117 286.0491 301.0707 | [C6H3O3+2H]− [C8H4O4]− [C15H9O6+H]− [C16H13O6]− | PR307127 |
Methylisoorientin-2″-O-rhamnoside | C28H32O15 | 607.1681 | 7.11 | 255.0322 284.0382 299.0571 607.1674 | [C16H10O6+H]− | |
Nobiletin | C21H22O8 | 401.1200 | 11.83 | 175.1088 307.1011 313.0678 373.1295 | [C20H22O7]-H− | MoNA_0001836 |
Quercetin-3-O-rutinose | C27H30O16 | 609.1828 | 6.95 | 125.0246 242.0591 286.0491 609.1822 | [C6H4O3+H]− [C14H10O4]− [C15H9O6+H]− | PR309250 |
Salicylic acid | C12H16O3 | ND | 10.01 | 109.0285 122.0389 150.0364 207.1025 | [C6H5O2]− [C7H5O2+H]− | BS003127 |
Tricin | C17H14O7 | 329.0677 | 9.10 | 151.0032 161.0250 227.0346 243.0296 299.0214 | [C7H4O4]-H− [C9H4O3+H]− [C13H7O4]− [C13H9O5-H]-H− [C15H8O7]-H− | FIO00747 |
Vicenin-2 (apigenin-6,8-di-C-glucoside) | C27H30O15 | 593.1527 | 6.16 | 312.0661 383.0799 413.0885 473.1109 503.1191 | [C17H11O6+H]− [C20H16O8]-H− [C21H18O9]-H− [C23H22O11]-H− [C24H24O12]-H− | PR309303 |
Compound | Molecular Formula | [M − H]− experimental LFC | Rt (min) | Fragments m/z | Elemental Formula | Mass Bank ID |
---|---|---|---|---|---|---|
2′-Hydroxygenistein 7-O-glucoside | C21H21O11 | 448.0975 | 6.37 | 284.1642 285.0941 413.8154 414.8164 | PN000117 | |
2′-hydroxygenistein | C15H10O6 | 285.0406 | 7.60 | 65.0033 133.0295 175.0403 199.0405 217.0509 | [C4H4O2]-H− [C8H6O2]-H− [C10H7O3]− [C12H6O3+H]− [C12H9O4]− | PN000005 |
Abscisic acid | C15H20O4 | 263.1290 | 7.44 | 136.0533 189.0918 188.0841 204.1157 219.1382 | [C8H10O2-H]-H− [C12H15O2-2H]-H− [C12H15O2-H]-H− [C13H16O2]− [C14H19O2]− | BML00506 |
Apigenin 4′, 7-O-diglucoside | C27H31O15 | 594.1553 | 5.58 | 353.0676 354.0706 473.1129 504.1241 | [C19H15O7-H]-H− [C23H22O11]− [C24H24O12]− | BS003711 |
Apiin | C26H28O14 | 563.1412 | 6.54 | 59.0134 293.0461 311.0562 341.0674 413.0886 | [C2H4O2]-H− [C17H11O5-H]-H− [C17H11O6]− [C18H14O7]-H− [C21H19O9-H]-H− | BS003825 |
Baicalein | C15H10O5 | 269.0454 | 8.54 | 63.0239 132.0216 133.0294 159.0452 | [C5H5-H]-H− [C8H5O2]-H− [C8H5O2]− [C10H6O2+H]− | PR307464 |
Chlorogenic acid | C16H18O9 | 353.1020 | 10.78 | 133.0293 219.0667 285.1136 353.1024 | [C8H7O2-H]-H− [C12H11O4]− | FIO00627 |
Chrysoeriol | C16H12O6 | 299.0566 | 8.67 | 87.0088 227.0346 255.0282 284.0324 | [C13H8O4]-H− [C14H9O5-H]-H− [C15H9O6]-H− | BS003344 |
Cichoriin | C15H16O10 | 355.0602 | 0.88 | 70.9983 178.0479 180.0636 224.0531 | [C6H11O6]-H− [C6H11O6+H]− | |
Dicaffeoylquinic acid | C25H24O12 | 515.1259 | 1.06 | 87.0088 111.0082 154.9988 515.1265 | [C3H3O3]− [C5H5O3-H]-H− [C6H6O5-2H]-H− | PR309023 |
Eriodictyol | C15H12O6 | 287.0562 | 6.77 | 57.0344 65.0033 83.0137 125.0243 152.0117 177.0559 | [C3H3O+2H]− [C4H3O-H]-H− [C4H4O2]-H− [C6H4O3+H]− [C7H4O4]− [C10H9O3]− | PR309310 |
Genistein | C15H10O5 | 269.0454 | 8.54 | 63.0239 107.0136 132.0216 133.0294 159.0452 | [C5H4]-H− [C6H4O2]-H− [C8H6O2-H]-H− [C8H6O2]-H− [C10H7O2]− | PR305516 |
Genistein 6-C-glucoside 1 | C21H21O10 | 432.1085 | 4.01 | 99.0563 254.0790 272.0893 306.0770 | [C12H13O6+H]− [C12H14O7+2H]− [C15H12O7+2H]− | PN000015 |
Genistein C-diglucoside 3 | C27H31O15 | 594.1553 | 5.57 | 353.0676 473.1129 474.1138 | [C19H16O7-2H]-H− [C23H23O11]-H− | PN000054 |
Licodione | C15H12O5 | 271.0702 | 4.13 | 119.0506 142.0669 159.0941 203.0833 | [C8H6O+H]− | PR310754 |
Luteolin 7-O-glucoside | C21H20O11 | 447.0936 | 6.36 | 59.0140 151.0039 217.0518 284.0336 285.0409 | [C2H4O2]-H− [C7H3O4]− [C12H8O4+H]− [C15H9O6]-H− [C15H9O6]− | PR305631 |
Luteolin-4′-O-glucoside | C21H20O11 | 447.0936 | 6.36 | 59.0140 151.0039 217.0518 284.0336 285.0409 | [C2H4O2]-H− [C7H3O4]− [C12H8O4+H]− [C15H9O6]-H− [C15H9O6]− | PR305690 |
Vicenin 2 | C27H30O15 | 593.1509 | 5.56 | 323.0567 353.0658 383.0767 473.1083 503.1198 | [C18H12O6]-H− [C19H14O7]-H− [C20H16O8]-H− [C23H22O11]-H− [C24H24O12]-H− | PR309303 |
Vitexin | C21H20O10 | 431.0985 | 6.89 | 211.0400 239.0355 268.0376 269.0452 267.0309 | [C13H7O3]− [C14H9O4-H]-H− [C15H9O5-H]-H−[C15H9O5]-H− [C15H9O5]− | FIO00915 |
Compound | Molecular Formula | [M − H]− Experimental CFC | Rt (min) | Fragments m/z | Elemental Formula | Mass Bank ID |
---|---|---|---|---|---|---|
(Epi)afzelechin | C15H14O5 | 273.0769 | 7.02 | 65.0393 93.0349 109.0304 137.0250 165.0198 | [C5H4+H]− [C6H5O]− [C6H4O2+H]− [C7H6O3]-H− [C8H7O4-H]-H− | QTOF007573 |
Apigenin-6-C-glucoside | C21H20O10 | 431.1181 | 3.64 | 93.0332 137.0227 299.0761 | [C6H5O]− [C13H14O8+H]− | PR302849 |
Benzoic acid | C7H6O2 | 121.0294 | 6.59 | 77.0391 93.0338 | [C6H5]− [C6H4O+H]− | KO000320 |
Biochanin A 7-O-β-D-glucopyranoside | C22H22O10 | 445.1148 | 8.47 | 165.0202 267.0316 268.0383 283.0613 | [C8H6O4]-H− [C15H8O5]-H− [C15H8O5]− [C16H11O5]− | PR302874 |
Biochanin B | C16H12O4 | 267.0665 | 9.633.2 | 91.0181 132.0219 195.0452 223.0403 252.0426 | [C6H4O]-H− [C8H5O2]-H− [C13H7O2]− [C14H9O3-H]-H− [C15H9O4]-H− | BS003040 |
Daidzein | C15H10O4 | 253.0509 | 10.53 | 63.0243 145.0308 209.0609 | [C5H4]-H− [C9H6O2]-H− [C14H9O2]− | PR309180 |
Gallic acid hexoside | C13H16O10 | 331.0675 | 2.26 | 123.0086 124.0163 125.0244 149.9959 168.0066 313.0575 | [C6H5O3-H]-H− [C6H5O3]-H− [C6H5O3]− [C7H4O4-H]-H− [C7H5O5]-H− [C13H15O9-H]-H− | PR309053 |
Genistein | C15H10O5 | 269.0451 | 9.06 | 63.0239 107.0136 132.0216 133.0294 159.0452 | [C5H4]-H− [C6H4O2]-H− [C8H6O2-H]-H− [C8H6O2]-H− [C10H7O2]− | PR305516 |
Kaempferol 3-O-rutinoside | C27H30O15 | 593.1521 | 7.21 | 285.0418 284.0339 533.3009 | [C15H9O6]-H− [C15H9O6]− | PR306656 |
Malvidin | C17H15O7 | 330.0741 | 9.93 | 96.0212 139.1129 172.1062 212.1365 | [C5H5O2]-H− | PR020010 |
Myricetin-3-O-rhamnoside | C21H20O12 | 463.0891 | 6.71 | 151.0038 271.0250 301.0362 300.0289 | [C7H4O4]-H− [C14H9O6-H]-H− [C15H9O7]-H− [C15H9O7]− | PT209290 |
Naringenin | C15H12O5 | 271.0706 | 4.02 | 74.0246 116.0504 142.0662 159.0928 203.0825 225.0660 | PR309309 | |
p-hydroxybenzoic acid | C7H6O3 | 137.0243 | 2.30 | 65.0394 93.0343 | [C5H4+H]− [C6H5O]− | R100596 |
Pratensein/Kaemferide | C16H12O6 | 299.0566 | 8.81 | 107.0128 148.0161 227.0354 255.0311 284.0327 | [C6H4O2]-H− [C8H5O3]-H− [C13H8O4]-H− [C14H9O5-H]-H− [C15H9O6]-H− | BML01860 |
Prunin [naringenin 7-O-β-D-glucopyranoside] | C21H22O10 | 433.1262 | 3.66 | 93.0346 137.0246 263.0729 | [C6H5O]− [C7H3O3+2H]− | PR040149 |
Quercetin-3-O-galactoside | C21H20O12 | 463.0886 | 6.69 | 179.0000 255.0308 271.0243 300.0280 301.0359 | [C8H4O5]-H− [C14H9O5-H]-H− [C14H9O6-H]-H− [C15H9O7]-H− [C15H9O7]− | PR309229 |
Quercetin-3-O-rhamnoside | C21H20O11 | 447.1140 | 4.18 | 108.0214 152.0107 163.0399 315.0725 447.1125 | [C6H5O2]-H− [C7H4O4]− [C9H5O3+2H]− [C13H14O9+H]− | PR305653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalidis, A.P.; Kalogiouri, N.P.; Mourtzinos, I.; Sarris, D.; Gkatzionis, K. Development and Validation of a LC-QTOF-MS/MS Method to Assess the Phenolic Profile of Pulse Flours. Molecules 2025, 30, 2730. https://doi.org/10.3390/molecules30132730
Zalidis AP, Kalogiouri NP, Mourtzinos I, Sarris D, Gkatzionis K. Development and Validation of a LC-QTOF-MS/MS Method to Assess the Phenolic Profile of Pulse Flours. Molecules. 2025; 30(13):2730. https://doi.org/10.3390/molecules30132730
Chicago/Turabian StyleZalidis, Achilleas Panagiotis, Natasa P. Kalogiouri, Ioannis Mourtzinos, Dimitris Sarris, and Konstantinos Gkatzionis. 2025. "Development and Validation of a LC-QTOF-MS/MS Method to Assess the Phenolic Profile of Pulse Flours" Molecules 30, no. 13: 2730. https://doi.org/10.3390/molecules30132730
APA StyleZalidis, A. P., Kalogiouri, N. P., Mourtzinos, I., Sarris, D., & Gkatzionis, K. (2025). Development and Validation of a LC-QTOF-MS/MS Method to Assess the Phenolic Profile of Pulse Flours. Molecules, 30(13), 2730. https://doi.org/10.3390/molecules30132730