Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations
Abstract
1. Introduction
2. Concept of Chemotaxonomy and Medicinal Plant Identification
3. Primary and Secondary Metabolites in Medicinal Plants
4. Chemotaxonomy vs. Traditional Morphological Taxonomy
5. Applications of Chemotaxonomy in the Herbal and Medicinal Plant Sciences
6. Analytical Methods Used for Compound Identification
6.1. HPLC
6.2. GC-MS
6.3. LC-MS-Qtof
6.4. MALDI-TOF MS
6.5. Nuclear Magnatic Resoanace (NMR)
7. Current Trends in the Identification of Medicinal Plants
7.1. Integrating Molecular Techniques with Chemotaxonomy
7.1.1. DNA Barcoding
7.1.2. Metabolomics
7.2. Multivariate Analysis in Chemotaxonomy
7.2.1. Principal Component Analyses (PCA)
7.2.2. Cluster Analysis (CA)
8. The Role of AI in Chemotaxonomy
8.1. Data Analysis and Pattern Recognition
8.2. Automation of Plant Identification
8.3. Integration of Multi-Omics Data
8.4. Predicting Bioactivity and Medicinal Potential
8.5. Advancements in AI Algorithms and Chemotaxonomy
9. Limitations of Chemotaxonomy
9.1. Variability in Secondary Metabolite Profiles
9.2. Standardization Issues
9.3. Lack of Comprehensive Databases
9.4. Accessibility and High Costs of Analytical Techniques
9.5. Ethnobotanical Knowledge
10. Challenges in Chemotaxonomic Identification
11. Future Directions in Chemotaxonomy
11.1. Integration of Multi-Omics Approaches
11.2. Application of AI and ML
11.3. Development of Comprehensive Chemotaxonomic Databases
11.4. Digital Herbarium Platforms with Integrated Chemoprofiling
11.5. Synthetic Biology for Metabolic Pathway Validation
11.6. Chemotaxonomy in Conservation and Drug Discovery
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kunhikannan, C.; Anju, M.V.; Prasanna, R. Taxonomy: Importance, Relevance and Application. In Textbook of Forest Science; Springer: Berlin/Heidelberg, Germany, 2025; pp. 65–85. [Google Scholar]
- Rouhan, G.; Gaudeul, M. Plant taxonomy: A historical perspective, current challenges, and perspectives. In Molecular Plant Taxonomy: Methods and Protocols, 2nd ed.; Humana Press: Totowa, NJ, USA, 2021; pp. 1–38. [Google Scholar]
- Zink, R.M.; Klicka, L.B. The taxonomic basis of subspecies listed as threatened and endangered under the endangered species act. Front. Conserv. Sci. 2022, 3, 971280. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Gong, X.; Yang, M.; He, C.N.; Bi, Y.Q.; Zhang, C.H.; Li, M.H.; Xiao, P.G. Plant pharmacophylogeny: Review and future directions. Chin. J. Integr. Med. 2022, 28, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Demilie, W.B. Plant disease detection and classification techniques: A comparative study of the performances. J. Big Data 2024, 11, 5. [Google Scholar] [CrossRef]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lal, R. DNA barcoding, an effective tool for species identification: A review. Mol. Biol. Rep. 2023, 50, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lin, H.; Lin, H.; Du, P.; Zhang, S. From species to varieties: How modern sequencing technologies are shaping Medicinal Plant Identification. Genes 2024, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Zaman, W.; Ayaz, A.; Park, S. Integrating morphological and molecular data in plant taxonomy. Pak. J. Bot. 2025, 57, 1453–1466. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Kumar, K.J. Standardization of Herbal Medicines for Lifestyle Diseases. In Role of Herbal Medicines: Management of Lifestyle Diseases; Springer: Berlin/Heidelberg, Germany, 2024; pp. 545–557. [Google Scholar]
- Intharuksa, A.; Phrutivorapongkul, A.; Thongkhao, K. Integrating DNA barcoding, microscopic, and chemical analyses for precise identification of Plumbago indica L., A prominent medicinal plant. Microchem. J. 2024, 199, 110038. [Google Scholar] [CrossRef]
- Erdtman, G. Pollen Morphology and Plant Taxonomy: Angiosperms (An Untroduction to Palynology); Brill: Leiden, The Netherlands, 2023. [Google Scholar]
- Chac, L.D.; Thinh, B.B. Species identification through DNA barcoding and its applications: A review. Biol. Bull. 2023, 50, 1143–1156. [Google Scholar] [CrossRef]
- Shen, S.; Zhan, C.; Yang, C.; Fernie, A.R.; Luo, J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol. Plant 2023, 16, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Waris, M.; Kocak, E.; Gonulalan, E.M.; Demirezer, L.O.; Kır, S.; Nemutlu, E. Metabolomics analysis insight into medicinal plant science. TrAC Trends Anal. Chem. 2022, 157, 116795. [Google Scholar] [CrossRef]
- Zhu, W.; Li, W.; Zhang, H.; Li, L. Big data and artificial intelligence-aided crop breeding: Progress and prospects. J. Integr. Plant Biol. 2025, 67, 722–739. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.; Yadav, R.; Gauttam, V.; Sawale, J. An Updated Review on Taxonomy and Chemotaxonomy. Toxicol. Int. 2023, 30, 121–129. [Google Scholar] [CrossRef]
- Huymann, L.R.; Hannecker, A.; Giovanni, T.; Liimatainen, K.; Niskanen, T.; Probst, M.; Peintner, U.; Siewert, B. Revised taxon definition in European Cortinarius subgenus Dermocybe based on phylogeny, chemotaxonomy, and morphology. Mycol. Prog. 2024, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, L.-E.; Hu, Y.; Wu, X.; Wang, Z.; Miao, Y.; Sun, H.; Nie, Z.; Tan, N. Integrating morphology, molecular phylogeny and chemotaxonomy for the most effective authentication in Chinese Rubia with insights into origin and distribution of characteristic Rubiaceae-type cyclopeptides. Ind. Crops Prod. 2023, 191, 115775. [Google Scholar] [CrossRef]
- Lawson, P.A.; Patel, N.B. The strength of chemotaxonomy. In Trends in the Systematics of Bacteria and Fungi; CABI Publishing: Wallingford, UK, 2021; pp. 141–167. [Google Scholar]
- Wu, Q.; Tong, W.; Zhao, H.; Ge, R.; Li, R.; Huang, J.; Li, F.; Wang, Y.; Mallano, A.I.; Deng, W. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. Plant J. 2022, 111, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.-K.; Lynch, J.H.; Matos, J.O.; Dudareva, N. Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nat. Chem. Biol. 2021, 17, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Kowsalya, K.; Halka, J.; Ramalashmi, K.; Anand, A.V.; Razia, M.; Anand, M.; Begam, A.K.U.; Arun, M. Molecular Marker-Assisted Breeding in Medicinal Plants for Enhanced Secondary Metabolites Production. In Biotechnology, Multiple Omics, and Precision Breeding in Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2025; pp. 160–176. [Google Scholar]
- Peters, K.; Blatt-Janmaat, K.L.; Tkach, N.; van Dam, N.M.; Neumann, S. Untargeted metabolomics for integrative taxonomy: Metabolomics, DNA marker-based sequencing, and phenotype bioimaging. Plants 2023, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- Rebiai, A.; Hemmami, H.; Zeghoud, S.; Ben Seghir, B.; Kouadri, I.; Eddine, L.S.; Elboughdiri, N.; Ghareba, S.; Ghernaout, D.; Abbas, N. Current application of chemometrics analysis in authentication of natural products: A review. Comb. Chem. High Throughput Screen. 2022, 25, 945–972. [Google Scholar] [CrossRef] [PubMed]
- Parastar, H.; Tauler, R. Big (bio) chemical data mining using chemometric methods: A need for chemists. Angew. Chem. 2022, 134, e201801134. [Google Scholar] [CrossRef]
- Umoh, O.T. Chemotaxonomy: The role of phytochemicals in chemotaxonomic delineation of taxa. taxon 2020, 13, 14. [Google Scholar] [CrossRef]
- Gershenzon, J.; Mabry, T.J. Secondary metabolites and the higher classification of angiosperms. Nord. J. Bot. 1983, 3, 5–34. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Bocso, N.-S.; Butnariu, M. The biological role of primary and secondary plants metabolites. J. Nutr. Food Process. 2022, 5, 1–7. [Google Scholar]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 2023, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Arshad, M.; Khan, M.Z.; Amjad, M.S.; Sadaf, H.M.; Riaz, I.; Sabir, S.; Ahmad, N. Secondary metabolites and their multidimensional prospective in plant life. J. Pharmacogn. Phytochem. 2017, 6, 205–214. [Google Scholar]
- Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A.; Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Plant secondary metabolites and their general function in plants. In Lessons on Caffeine, Cannabis & Co: Plant-Derived Drugs and Their Interaction with Human Receptors; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–17. [Google Scholar]
- Rai, S.K.; Chauhan, R. Phytochemicals in drug discovery. In Phytochemicals in Medicinal Plants: Biodiversity, Bioactivity and Drug Discovery; De Gruyter: Berlin, Germany, 2023; 331p. [Google Scholar]
- Ekiert, H.M.; Szopa, A. Biological activities of natural products. Molecules 2020, 25, 5769. [Google Scholar] [CrossRef] [PubMed]
- Hounsome, N.; Hounsome, B.; Lobo, M.G. Biochemistry of Vegetables: Major Classes of Primary Metabolites (Carbohydrates, Amino Acids, Vitamins, Organic Acids, and Fatty Acids). In Handbook of Vegetables and Vegetable Processing; Wiley: Hoboken, NJ, USA, 2018; pp. 25–46. [Google Scholar]
- Kandar, C.C. Secondary metabolites from plant sources. In Bioactive Natural Products for Pharmaceutical Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 329–377. [Google Scholar]
- Simsek, M.; Whitney, K. Examination of primary and secondary metabolites associated with a plant-based diet and their impact on human health. Foods 2024, 13, 1020. [Google Scholar] [CrossRef] [PubMed]
- Cope, J.S.; Corney, D.; Clark, J.Y.; Remagnino, P.; Wilkin, P. Plant species identification using digital morphometrics: A review. Expert Syst. Appl. 2012, 39, 7562–7573. [Google Scholar] [CrossRef]
- Duminil, J.; Di Michele, M. Plant species delimitation: A comparison of morphological and molecular markers. Plant Biosyst. 2009, 143, 528–542. [Google Scholar] [CrossRef]
- Rouhan, G.; Gaudeul, M. Plant taxonomy: A historical perspective, current challenges, and perspectives. In Molecular Plant Taxonomy: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2014; pp. 1–37. [Google Scholar]
- Hadacek, F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 2002, 21, 273–322. [Google Scholar] [CrossRef]
- Julier, A.C.M.; Jardine, P.E.; Coe, A.L.; Gosling, W.D.; Lomax, B.H.; Fraser, W.T. Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen. Rev. Palaeobot. Palynol. 2016, 235, 140–147. [Google Scholar] [CrossRef]
- Marne, P.A.; Pawar, A.T.; Tagalpallewar, A.A.; Baheti, A.M. Comparative Phytochemistry and Chemotaxonomy. In Pharmacognosy and Phytochemistry: Principles, Techniques, and Clinical Applications; Wiley: Hoboken, NJ, USA, 2025; pp. 333–346. [Google Scholar]
- Şentürk, B.; Aytar, E.C.; Durmaz, A.; İşler, S.; Deniz, İ.G.; Kömpe, Y.Ö. Morphological and chemical characteristics of Fritillaria species: Species differentiation through morphometric measurements and GC-MS analysis. Plant Genet. Resour. 2025, 23, 217–227. [Google Scholar] [CrossRef]
- Abdelfattah, H.M.E.; Hussein, H.A.; Teleb, S.S.; El-Demerdash, M.M.; George, N.M. Chemotaxonomy compared to morphological and anatomical taxonomy of five Hibiscus species. J. Plant Res. 2024, 137, 967–984. [Google Scholar] [CrossRef] [PubMed]
- Bagul, V.S.; Bafna, P.S.; Patil, D.M.; Mutha, R.E. Classification of Crude Drugs of Natural Origin. In Pharmacognosy and Phytochemistry: Principles, Techniques, and Clinical Applications; Wiley: Hoboken, NJ, USA, 2025; pp. 17–44. [Google Scholar]
- Chaudhary, M.K.; Misra, A.; Kumar, B.; Srivastava, S. Chemotaxonomy-Guided Effective Herbal Product Development: Asustainable Model For Ayush Industries. In Traditional Medicines in Drug Discovery and Development; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2024. [Google Scholar]
- Li, Y.; Cheng, Y.; Zhang, Y.; Nan, H.; Lin, N.; Chen, Q. Quality markers of Polygala fallax Hemsl decoction based on qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. Phytochem. Anal. 2024, 35, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Parekh, N.; Kaur, G.; Sharma, S.; Buttar, H.S.; Chauhan, R.; Kaur, D.; Tuli, H.S.; Jairoun, A.A.; Shahwan, M. Chemometric perspective on herbal medicine evaluation: Tools, techniques, and trends. J. Appl. Pharm. Sci. 2025, 15, 085–093. [Google Scholar] [CrossRef]
- Singhal, A.; Saini, U.; Chopra, B.; Dhingra, A.K.; Jain, A.; Chaudhary, J. Uv-visible spectroscopy: A review on its pharmaceutical and bio-allied sciences applications. Curr. Pharm. Anal. 2024, 20, 161–177. [Google Scholar] [CrossRef]
- Lestari, N.B.; Sulistyaningsih, Y.C.; Umar, A.H.; Ratnadewi, D. Distribution and FTIR-based fingerprint of secondary metabolites in different organs of ant-plant (Myrmecodia tuberosa). Biodiversitas J. Biol. Divers. 2024, 25, 3. [Google Scholar] [CrossRef]
- Halder, M.; Kundu, A.; Jha, S. Secondary Metabolites Identification Techniques of the Current Era. In Plant Specialized Metabolites: Phytochemistry, Ecology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–41. [Google Scholar]
- Bajo-Fernández, M.; Souza-Silva, É.A.; Barbas, C.; Rey-Stolle, M.F.; García, A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: Applications in health and disease. A review. Front. Mol. Biosci. 2024, 10, 1295955. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Chattopadhaya, A.; Gupta, P.; Tiwari, H.; Singh, S.; Kumar, L.; Gautam, V. Integration of Hyphenated Techniques for Characterizing and Chemical Profiling of Natural Products. Chem. Biodivers. 2025, e202500234, early view. [Google Scholar] [CrossRef] [PubMed]
- Marston, A. Role of advances in chromatographic techniques in phytochemistry. Phytochemistry 2007, 68, 2786–2798. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules 2022, 27, 3863. [Google Scholar] [CrossRef] [PubMed]
- Šibul, F.; Orčić, D.; Vasić, M.; Anačkov, G.; Nađpal, J.; Savić, A.; Mimica-Dukić, N. Phenolic profile, antioxidant and anti-inflammatory potential of herb and root extracts of seven selected legumes. Ind. Crops Prod. 2016, 83, 641–653. [Google Scholar] [CrossRef]
- Ganzera, M.; Krüger, A.; Wink, M. Determination of quinolizidine alkaloids in different Lupinus species by NACE using UV and MS detection. J. Pharm. Biomed. Anal. 2010, 53, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dadmohammadi, Y.; Abbaspourrad, A. Flavor components, precursors, formation mechanisms, production and characterization methods: Garlic, onion, and chili pepper flavors. Crit. Rev. Food Sci. Nutr. 2022, 62, 8265–8287. [Google Scholar] [CrossRef] [PubMed]
- Gui, Z.-Q.; Yuan, X.-L.; Yang, J.; Du, Y.-M.; Zhang, P. An updated review on chemical constituents from Nicotiana tabacum L.: Chemical diversity and pharmacological properties. Ind. Crops Prod. 2024, 214, 118497. [Google Scholar] [CrossRef]
- Shinyuy, L.M.; Loe, G.E.; Jansen, O.; Mamede, L.; Ledoux, A.; Noukimi, S.F.; Abenwie, S.N.; Ghogomu, S.M.; Souopgui, J.; Robert, A. Secondary metabolites isolated from Artemisia afra and Artemisia annua and their anti-malarial, anti-inflammatory and immunomodulating properties—Pharmacokinetics and pharmacodynamics: A review. Metabolites 2023, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F. Phytochemistry, Mechanisms, and Preclinical Studies of Echinacea Extracts in Modulating Immune Responses to Bacterial and Viral Infections: A Comprehensive Review. Antibiotics 2024, 13, 947. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Mohammadin, K.; Shafique, Z.; Amjad, S.T.; Asad, M.H.H. Citrus flavonoids as potential therapeutic agents: A review. Phytother. Res. 2022, 36, 1417–1441. [Google Scholar] [CrossRef] [PubMed]
- López-Parra, M.B.; Gómez-Domínguez, I.; Iriondo-DeHond, M.; Villamediana Merino, E.; Sánchez-Martín, V.; Mendiola, J.A.; Iriondo-DeHond, A.; Del Castillo, M.D. The impact of the drying process on the antioxidant and anti-inflammatory potential of dried ripe coffee cherry pulp soluble powder. Foods 2024, 13, 1114. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Shankar, S.R.; Murthy, P.S. Impact of different varieties and mature stages on phytochemicals from Coffea arabica and Coffea robusta leaves. Biochem. Syst. Ecol. 2023, 110, 104699. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules 2021, 26, 3625. [Google Scholar] [CrossRef] [PubMed]
- Hemida, M.H.S. Portable liquid chromatography for on-site analysis. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 2021. [Google Scholar]
- Marittimo, N.; Grasselli, G.; Arigò, A.; Famiglini, G.; Agostini, M.; Renzoni, C.; Palma, P.; Cappiello, A. Liquid electron ionization-mass spectrometry as a novel strategy for integrating normal-phase liquid chromatography with low and high-resolution mass spectrometry. Analyst 2024, 149, 2664–2670. [Google Scholar] [CrossRef] [PubMed]
- Dathe, B.; Otto, M. Library search for HPLC diode array detection based on spectral interpolation. Chromatographia 1993, 37, 31–36. [Google Scholar] [CrossRef]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. Bioactive (poly) phenols, volatile compounds from vegetables, medicinal and aromatic plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Osarieme Imade, R.; Adesina Ayinde, B.; Alam, A. GC-MS Analysis and In Vitro Cytotoxic Effects of Ocimum gratissimum (Lamiaceae) Volatile Oil and Thymol on Cancer Cells. Pharm. Biomed. Res. 2023, 9, 115–124. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Z.; Liu, Z.; Zhu, R.; Zhang, F.; Liu, Z.; Si, X. Botanical discrimination and classification of Mentha plants applying two-chiral column tandem GC–MS analysis of eight menthol enantiomers. Food Res. Int. 2022, 162, 112035. [Google Scholar] [CrossRef] [PubMed]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus vulgaris essential oil and its biological activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wei, L.; Xie, B.; Li, J.; Lyu, J.; Wang, S.; Khan, M.A.; Xiao, X.; Yu, J. Characterization of volatile profile from different coriander (Coriandrum sativum L.) varieties via HS-SPME/GC–MS combined with E-nose analyzed by chemometrics. Food Chem. 2024, 457, 140128. [Google Scholar] [CrossRef] [PubMed]
- Sevindik, E.; Aydın, S.; Sujka, M.; Apaydın, E.; Yıldırım, K.; Palas, G. GC-MS analysis and evaluation of antibacterial and antifungal activity of essential oils extracted from fruit Peel of Citrus aurantium L. (Rutaceae) Grown in the West Anatolian Area. Erwerbs-Obstbau 2021, 63, 135–142. [Google Scholar] [CrossRef]
- Al-Busaidi, Y.S.A. Aroma Profile Characterization of Selected Types of Omani Honey by Gas Chromatography-Mass Spectrometry and Electronic Nose. Ph.D. Thesis, Sultan Qaboos University, Seeb, Oman, 2024. [Google Scholar]
- Tufariello, M.; Pati, S.; Palombi, L.; Grieco, F.; Losito, I. Use of multivariate statistics in the processing of data on wine volatile compounds obtained by HS-SPME-GC-MS. Foods 2022, 11, 910. [Google Scholar] [CrossRef] [PubMed]
- Asmaey, M.A. Utilizing GC-MS and UPLC-MS for rapid metabolomic analysis in medicinal plants. In Propagation to Pharmacopeia; CRC Press: Boca Raton, FL, USA, 2024; pp. 361–378. [Google Scholar]
- Nengovhela, N. Investigation of Biochemical Strategies Leading to Metabolome Complexity of Two Closely Related Coccinia Species Through LC-QTOF-MS-based Metabolite Fingerprinting. Master’s Thesis, University of Venda, South Africa, 2021. [Google Scholar]
- Li, L.; He, L.; Su, X.; Amu, H.; Li, J.; Zhang, Z. Chemotaxonomy of Aster species from the Qinghai-Tibetan Plateau based on metabolomics. Phytochem. Anal. 2022, 33, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E. Phytochemicals from Phillyrea latifolia L. leaves and fruit extracted with various solvents: Their identification and quantification by LC-MS and antihyperglycemic effects. Folia Hortic. 2023, 35, 233–242. [Google Scholar] [CrossRef]
- Kandyliari, A.; Potsaki, P.; Bousdouni, P.; Kaloteraki, C.; Christofilea, M.; Almpounioti, K.; Moutsou, A.; Fasoulis, C.K.; Polychronis, L.V.; Gkalpinos, V.K. Development of dairy products fortified with plant extracts: Antioxidant and phenolic content characterization. Antioxidants 2023, 12, 500. [Google Scholar] [CrossRef] [PubMed]
- Mahboubifar, M.; Zidorn, C.; Farag, M.A.; Zayed, A.; Jassbi, A.R. Chemometric-based drug discovery approaches from natural origins using hyphenated chromatographic techniques. Phytochem. Anal. 2024, 35, 990–1016. [Google Scholar] [CrossRef] [PubMed]
- Cong, W. Identification of Compounds that Impact Whole Wheat Bread Flavor Liking Using LC-MS Flavoromics. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2021. [Google Scholar]
- Munyoki, N.M. Phytochemical Characterization and Biopesticidal Activity of Aqueous Plant Extracts Against French Bean thrips and Aphids. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2023. [Google Scholar]
- Goya, L.; de Pascual-Teresa, S. Effects of polyphenol-rich foods on chronic diseases. Nutrients 2023, 15, 4134. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, J.; Wang, C.; Zheng, T.; Di, S.; Wang, Y.; Fei, W.; Liang, W.; Wang, L. Ameliorative effect of ethanolic echinacea purpurea against hyperthyroidism-induced oxidative stress via AMRK and PPAR signal pathway using transcriptomics and network pharmacology analysis. Int. J. Mol. Sci. 2022, 24, 187. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.; Tello, E.; Simons, C.T.; Peterson, D.G. Identification of non-volatile compounds that impact flavor disliking of whole wheat bread made with aged flours. Molecules 2022, 27, 1331. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Lc-ms/ms-qtof screening and identification of phenolic compounds from australian grown herbs and their antioxidant potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Schnaubelt, M.; Chen, L.; Zhang, B.; Hoang, T.; Lih, T.M.; Zhang, Z.; Zhang, H. MS-PyCloud: A cloud computing-based pipeline for proteomic and glycoproteomic data analyses. Anal. Chem. 2024, 96, 10145–10151. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.F.; Li, M.; Mao, R.S. Design and implementation of mass spectrometer database. In Proceedings of the 13th International Beam Instrumentation Conference, Beijing, China, 9–13 September 2024; pp. 439–443. [Google Scholar]
- Alaribe, S.C.; Titilayo, B.E.; Ikpatt, U.N.; Oladipupo, A.R.; Alabi, F.A.; Ikwugbado, R.I. Computational methods for advanced mass spectrometry—A review. Phys. Sci. Rev. 2025. [Google Scholar] [CrossRef]
- Agarwal, V.; Bajpai, M. Imaging and Non-imaging Analytical Techniques Used for Drug Nanosizing and their Patents: An Overview. Recent Pat. Nanotechnol. 2024, 18, 494–518. [Google Scholar] [CrossRef] [PubMed]
- Bonatto, C.C.; Silva, L.P. A MALDI-TOF mass spectrometry-based approach for molecular profiling of leaves from pasture and feed forages species. Biochem. Syst. Ecol. 2021, 94, 104215. [Google Scholar] [CrossRef]
- Mejía-Morales, C.; Rodríguez-Macías, R.; Salcedo-Pérez, E.; Zamora-Natera, J.F.; Rodríguez-Zaragoza, F.A.; Molina-Torres, J.; Délano-Frier, J.P.; Zañudo-Hernández, J. Contrasting metabolic fingerprints and seed protein profiles of Cucurbita foetidissima and C. Radicans fruits from feral plants sampled in central Mexico. Plants 2021, 10, 2451. [Google Scholar] [CrossRef] [PubMed]
- Greene, L.A.; Isaac, I.; Gray, D.E.; Schwartz, S.A. Streamlining plant sample preparation: The use of high-throughput robotics to process echinacea samples for biomarker profiling by MALDI-TOF mass spectrometry. J. Biomol. Tech. 2007, 18, 238–244. [Google Scholar] [PubMed]
- Hicks, J.C.E.; Dávila, A.A.C.; Villarruel, D.S.-A. Insights into Nuclear Magnetic Resonance Spectroscopy as a Tool for Metabolic Markers in Pre-and PostHarvest Sustainable Production of Food Crops. In Food Security, Safety, and Sustainability; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 145–163. [Google Scholar]
- Brigante, F.I.; Solovyev, P.; Bontempo, L. Nuclear magnetic resonance applications in Fermented Foods and Plant-based beverages: Challenges and opportunities. Food Rev. Int. 2024, 40, 3370–3397. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Shaheen, H.M.; Elhawary, E.A.; Mostafa, N.M.; Eldahshan, O.A.; Sabatier, J.-M. Phytochemical constituents, folk medicinal uses, and biological activities of genus angelica: A review. Molecules 2022, 28, 267. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Jalil, T.Z.; Ibrahim, R.M.; Nassir, Z.S. Extraction, isolation and structure elucidation of two phenolic acids from aerial parts of celery and coriander. Biomed. Pharmacol. J. 2023, 16, 2315–2332. [Google Scholar] [CrossRef]
- Wang, Z.-F.; You, Y.-L.; Li, F.-F.; Kong, W.-R.; Wang, S.-Q. Research progress of NMR in natural product quantification. Molecules 2021, 26, 6308. [Google Scholar] [CrossRef] [PubMed]
- Otify, A.M.; Serag, A.; Porzel, A.; Wessjohann, L.A.; Farag, M.A. NMR Metabolome-based classification of Cymbopogon species: A prospect for phyto-equivalency of its different accessions using chemometric tools. Food Anal. Methods 2022, 15, 2095–2106. [Google Scholar] [CrossRef]
- Fabry, P.; Weber, S.; Teipel, J.; Richling, E.; Walch, S.G.; Lachenmeier, D.W. Quantitative NMR Spectrometry of Phenylpropanoids, including Isoeugenol in Herbs, Spices, and Essential Oils. Foods 2024, 13, 720. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, M.; Lee, J.; Ali, Z.; Khan, I.A. Characterization, Differentiation, and Adulteration Detection of Peppermint Essential Oil: An NMR Approach. J. Pharm. Biomed. Anal. 2025, 263, 116941. [Google Scholar] [CrossRef] [PubMed]
- Alberts, P.S.F.; Meyer, J.J.M. Integrating chemotaxonomic-based metabolomics data with DNA barcoding for plant identification: A case study on south-east African Erythroxylaceae species. South Afr. J. Botany. 2022, 146, 174–186. [Google Scholar] [CrossRef]
- Sawhney, G.; Sharma, M.; Agrawal, N. DNA-RNA Barcoding and Gene Sequencing. In Computation in BioInformatics: Multidisciplinary Applications; Wiley: Hoboken, NJ, USA, 2021; pp. 165–227. [Google Scholar]
- Khan, S. Genome-based Barcoding for the Authentication of Medicinal Plants and Their Products. In Omics Studies of Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2023; pp. 123–136. [Google Scholar]
- Letsiou, S.; Madesis, P.; Vasdekis, E.; Montemurro, C.; Grigoriou, M.E.; Skavdis, G.; Moussis, V.; Koutelidakis, A.E.; Tzakos, A.G. DNA Barcoding as a Plant Identification Method. Appl. Sci. 2024, 14, 1415. [Google Scholar] [CrossRef]
- Gostel, M.R.; Kress, W.J. The expanding role of DNA barcodes: Indispensable tools for ecology, evolution, and conservation. Diversity 2022, 14, 213. [Google Scholar] [CrossRef]
- Caesar, L.K.; Montaser, R.; Keller, N.P.; Kelleher, N.L. Metabolomics and genomics in natural products research: Complementary tools for targeting new chemical entities. Nat. Prod. Rep. 2021, 38, 2041–2065. [Google Scholar] [CrossRef] [PubMed]
- Peltomaa, E.; Asikainen, H.; Blomster, J.; Pakkanen, H.; Rigaud, C.; Salmi, P.; Taipale, S. Phytoplankton group identification with chemotaxonomic biomarkers: In combination they do better. Phytochemistry 2023, 209, 113624. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.A.L.; Del Fueyo, G.M.; D’Angelo, J.A.; Carrizo, M.A. How much does Chemotaxonomy help to resolve the overrepresented Cycadolepis Saporta (Bennettitales)? A case study of the Cretaceous of Patagonia, Argentina. Rev. Palaeobot. Palynol. 2021, 293, 104489. [Google Scholar] [CrossRef]
- Lau, H.; Tan, L.H.; Ee, L.Y.; Dayal, H.; Lim, S.Y.; Liu, F.; Li, S.F.Y. Application of 1H-NMR-and LC-MS based Metabolomic analysis for the evaluation of celery preservation methods. LWT 2022, 169, 113938. [Google Scholar] [CrossRef]
- Lee, N.; Yoo, H.; Yang, H. Cluster analysis of medicinal plants and targets based on multipartite network. Biomolecules 2021, 11, 546. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Shen, S.; Yang, C.; Liu, Z.; Fernie, A.R.; Graham, I.A.; Luo, J. Plant metabolic gene clusters in the multi-omics era. Trends Plant Sci. 2022, 27, 981–1001. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wei, F.; Cai, Z.; Wei, Y.; Khan, A.; Miao, J.; Wei, K. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Dev. Genes Evol. 2021, 231, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lin, P.; Wang, K.; Gu, C.-C.; Kusari, S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends Cancer 2022, 8, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Nandan, S.; Zaidi, A.; Samani, A.S.; Shukla, V.; Aslam, H.; Srivastava, A.; Maurya, P.; Khan, M.A.; Khan, M.F. Artificial Intelligence Driven Applications in Analytical Chemistry, Drug Discovery, and Food Science: Advancements, Outlook, and Challenges. ChemistrySelect 2025, 10, e202404446. [Google Scholar] [CrossRef]
- Dey, B.; Ferdous, J.; Ahmed, R.; Hossain, J. Assessing deep convolutional neural network models and their comparative performance for automated medicinal plant identification from leaf images. Heliyon 2024, 10, e23655. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Li, L.; Wang, Y.-Z. Applications of chemical fingerprints and machine learning in plant ecology: Recent progress and future perspectives. Microchem. J. 2024, 206, 111447. [Google Scholar] [CrossRef]
- Chi, J.; Shu, J.; Li, M.; Mudappathi, R.; Jin, Y.; Lewis, F.; Boon, A.; Qin, X.; Liu, L.; Gu, H. Artificial intelligence in metabolomics: A current review. TrAC Trends Anal. Chem. 2024, 178, 117852. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Pereira, D.M. The chemical space of terpenes: Insights from data science and AI. Pharmaceuticals 2023, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Ko, E.; Mersha, T.B. A roadmap for multi-omics data integration using deep learning. Brief. Bioinform. 2022, 23, bbab454. [Google Scholar] [CrossRef] [PubMed]
- Vahabi, N.; Michailidis, G. Unsupervised multi-omics data integration methods: A comprehensive review. Front. Genet. 2022, 13, 854752. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.; Singh, R.; Chandel, S. Understanding LC/MS-Based Metabolomics: A Detailed Reference for Natural Product Analysis. Proteom. Clin. Appl. 2025, 19, e202400048. [Google Scholar] [CrossRef] [PubMed]
- Bajorath, J.; Chávez-Hernández, A.L.; Duran-Frigola, M.; Fernández-de Gortari, E.; Gasteiger, J.; López-López, E.; Maggiora, G.M.; Medina-Franco, J.L.; Méndez-Lucio, O.; Mestres, J. Chemoinformatics and artificial intelligence colloquium: Progress and challenges in developing bioactive compounds. J. Cheminformatics 2022, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, C.; Shi, X.; Wang, W. MLP-based regression prediction model for compound bioactivity. Front. Bioeng. Biotechnol. 2022, 10, 946329. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, M.; Aamir, M.; Ahmad, F.; M Mebed, A.; Elshahat, S. Machine learning-assisted prediction of the biological activity of aromatase inhibitors and data mining to explore similar compounds. ACS Omega 2022, 7, 48139–48149. [Google Scholar] [CrossRef] [PubMed]
- Pérez Santín, E.; Rodríguez Solana, R.; González García, M.; García Suárez, M.D.M.; Blanco Díaz, G.D.; Cima Cabal, M.D.; Moreno Rojas, J.M.; López Sánchez, J.I. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley WIREs Comput. Mol. Sci. 2021, 11, e1516. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Druzhilovskiy, D.S.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Dmitriev, A.V.; Pogodin, P.V.; Poroikov, V.V. Computer-aided prediction of biological activity spectra for chemical compounds: Opportunities and limitations. Biomed. Chem. Res. Methods 2018, 1, e00004. [Google Scholar] [CrossRef]
- Dial, K. Democratising Deep Learning In Microbial Metabolites Research. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2023. [Google Scholar]
- Soylu, N.N.; Sefer, E. DeepPTM: Protein post-translational modification prediction from protein sequences by combining deep protein language model with vision transformers. Curr. Bioinform. 2024, 19, 810–824. [Google Scholar] [CrossRef]
- Moldwin, A.; Shehu, A. Foundation Models for AI-Enabled Biological Design. arXiv 2025, arXiv:2505.11610. [Google Scholar]
- Singh, R. Chemotaxonomy of medicinal plants: Possibilities and limitations. In Natural Products and Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–136. [Google Scholar]
- Spring, O. Chemotaxonomy based on metabolites from glandular trichomes. Adv. Bot. Res. 2000, 31, 153–174. [Google Scholar]
- Alston, R.E.; Mabry, T.J.; Turner, B.L. Perspectives in Chemotaxonomy: Studies of secondary compounds in plants may provide knowledge of phylogenetic relationships. Science 1963, 142, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Ramawat, K.G. Biodiversity and Chemotaxonomy; Springer: Berlin/Heidelberg, Germany, 2019; Volume 24. [Google Scholar]
- Wink, M.; Botschen, F.; Gosmann, C.; Schäfer, H.; Waterman, P.G. Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. In Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism; Wiley: Hoboken, NJ, USA, 2010; pp. 364–433. [Google Scholar]
- Issaq, H.J.; Van, Q.N.; Waybright, T.J.; Muschik, G.M.; Veenstra, T.D. Analytical and statistical approaches to metabolomics research. J. Sep. Sci. 2009, 32, 2183–2199. [Google Scholar] [CrossRef] [PubMed]
- Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Miralles, A.; Bruy, T.; Wolcott, K.; Scherz, M.D.; Begerow, D.; Beszteri, B.; Bonkowski, M.; Felden, J.; Gemeinholzer, B.; Glaw, F. Repositories for taxonomic data: Where we are and what is missing. Syst. Biol. 2020, 69, 1231–1253. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S.; Komal; Ramchiary, N.; Singh, P. Role of traditional ethnobotanical knowledge and indigenous communities in achieving sustainable development goals. Sustainability 2021, 13, 3062. [Google Scholar] [CrossRef]
- Campbell, M.M.; Sederoff, R.R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 1996, 110, 3. [Google Scholar] [CrossRef] [PubMed]
- Polatoglu, K. “Chemotypes”–a fact that should not be ignored in natural product studies. Nat. Prod. J. 2013, 3, 10–14. [Google Scholar] [CrossRef]
- Hegeman, A.D. Plant metabolomics—Meeting the analytical challenges of comprehensive metabolite analysis. Brief. Funct. Genom. 2010, 9, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. [Google Scholar] [CrossRef] [PubMed]
- Rosita, A.S.; Shivani, J.; Saji, A.; Sundar, M.B.; Begum, T.N.; Thilagavathi, G.; Sumithra, A.; Anand, A.V. Bioinformatics Tools for Research on Plant Secondary Metabolites. In Biotechnology, Multiple Omics, and Precision Breeding in Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2025; pp. 177–195. [Google Scholar]
- Marco-Ramell, A.; Palau-Rodriguez, M.; Alay, A.; Tulipani, S.; Urpi-Sarda, M.; Sanchez-Pla, A.; Andres-Lacueva, C. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Zammit, G.; Zammit, M.G.; Buttigieg, K.G. Emerging technologies for the discovery of novel diversity in cyanobacteria and algae and the elucidation of their valuable metabolites. Diversity 2023, 15, 1142. [Google Scholar] [CrossRef]
- Nazarenko, D.V.; Kharyuk, P.V.; Oseledets, I.V.; Rodin, I.A.; Shpigun, O.A. Machine learning for LC–MS medicinal plants identification. Chemom. Intell. Lab. Syst. 2016, 156, 174–180. [Google Scholar] [CrossRef]
- Pomyen, Y.; Wanichthanarak, K.; Poungsombat, P.; Fahrmann, J.; Grapov, D.; Khoomrung, S. Deep metabolome: Applications of deep learning in metabolomics. Comput. Struct. Biotechnol. J. 2020, 18, 2818–2825. [Google Scholar] [CrossRef] [PubMed]
- Afendi, F.M.; Okada, T.; Yamazaki, M.; Hirai-Morita, A.; Nakamura, Y.; Nakamura, K.; Ikeda, S.; Takahashi, H.; Altaf-Ul-Amin, M.; Darusman, L.K. KNApSAcK family databases: Integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol. 2012, 53, e1. [Google Scholar] [CrossRef] [PubMed]
- Lephatsi, M.M. Metabolomics and 4IR Technologies for Natural Products Research: Characterization of the Phytochemistry and Biochemistry of Helichrysum Species with Potential Anti-Cancer Activities. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2024. [Google Scholar]
- James, S.A.; Soltis, P.S.; Belbin, L.; Chapman, A.D.; Nelson, G.; Paul, D.L.; Collins, M. Herbarium data: Global biodiversity and societal botanical needs for novel research. Appl. Plant Sci. 2018, 6, e1024. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, C.S.; Misa, J.; Tang, Y.; Billingsley, J.M. Biosynthesis and synthetic biology of psychoactive natural products. Chem. Soc. Rev. 2021, 50, 6950–7008. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Wuzhang, K.; Peng, B.; Chen, T.; Zhang, Y.; Liu, H.; Li, L.; Fu, X.; Tang, K. Engineering the expression of plant secondary metabolites-genistein and scutellarin through an efficient transient production platform in Nicotiana benthamiana L. Front. Plant Sci. 2022, 13, 994792. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Saberidokht, B.; Subramaniam, S.; Grama, A. Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst. Biol. 2015, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.-C.; Xiao, P.-G. Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evol. Bioinform. 2015, 11, EBO-S31326. [Google Scholar] [CrossRef] [PubMed]
Metabolite Type | Metabolite Class | Occurrence in Plant Part | Metabolite Role | References |
---|---|---|---|---|
Primary metabolite | Carbohydrates | Leaves | Energy source, essential for respiration. | [30,36] |
Primary metabolite | Amino Acids | Leaves, Roots | Building blocks of proteins, crucial for plant growth. | [30,36] |
Primary metabolite | Fatty Acids | Seeds, Leaves | Vital for membrane structure and energy storage. | [30,36] |
Primary metabolite | Chlorophyll | Leaves | Key for photosynthesis, converting light into energy. | [30,36] |
Secondary metabolite | Alkaloids | Roots, Seeds | Defensive compounds, deter herbivores and pathogens. | [37,38] |
Secondary metabolite | Flavonoids | Flowers, Leaves | Provide UV protection, antioxidant properties, and pigmentation. | [37,38] |
Secondary metabolite | Terpenoids | Leaves, Roots | Involved in plant defense. | [37,38] |
Secondary metabolite | Phenolics, Tannins | Roots, Leaves | Play roles in defense, antioxidation, and stress response. | [37,38] |
Feature | Morphological Identification | Chemotaxonomical Identification | Citations |
---|---|---|---|
Basis of classification | Observable physical traits (leaf shape, flower structure, stem, etc.) | Chemical composition, mainly secondary metabolites and other biochemical markers | [44,45] |
Attributes for examination | External features (e.g., leaves, flowers) | Secondary metabolites and primary compounds | [44,46] |
Ecological impact | High (traits may vary due to climate, soil, etc.) | Low (compounds are more stable) | |
Tools required | Microscope, visual inspection | Chromatography, spectroscopy | [44,46] |
Resolution | precise due to phenotypic Often limited at intraspecific level (varieties, subspecies) | Can distinguish species and intraspecific taxa | [44,45,46] |
Part used | Leaf shape, flower color, stem structure | Alkaloids, flavonoids, composition of plant part (terpenoids, amino acids) | [44,46] |
Use in modern taxonomy | Foundational, and widely used in conjunction with molecular methods | Widely used in conjunction with molecular methods | [44,46] |
Speed and accessibility | Relatively quick and low cost, can be carried out in the field | More time-consuming and costly, requires laboratory equipment | [44,45,46] |
Cryptic species | Phenotype plasticity Difficulties in identification of cryptic Species | Requires specialized equipment and expertise More effective; can detect biochemical differences in cryptic species | [44,46] |
Analytical Technique | Typical Uses | Accuracy/Precision | Types of Secondary Metabolites | Citations |
---|---|---|---|---|
UV-Vis Spectroscopy | Quantification | Moderate accuracy, ideal for fast and non-destructive quantification. | Flavonoids, phenolic compounds, carotenoids, alkaloids | [51] |
FTIR | Identification of functional groups and molecular structures | Good resolution for functional group identification. Lower sensitivity compared to MS-based techniques. | Terpenoids, alkaloids, flavonoids, phenolic acids, lipids | [52] |
HPLC | Separation and quantification of compounds, particularly in mixtures | High accuracy in separating complex mixtures. Precision depends on column and mobile phase. | Alkaloids, flavonoids, phenolic acids, glycosides, terpenoids | [53] |
GCMS | Identifying and quantifying volatile compounds, especially in complex mixtures | High sensitivity and precision for volatile organic compounds, good for trace analysis. | Volatile terpenes, essential oils, fatty acids, aldehydes | [53,54] |
LCMS-QTOF | Comprehensive profiling of metabolites and complex biomolecules | Very high sensitivity and accuracy, capable of accurate molecular mass determination, used for complex samples. | Alkaloids, flavonoids, peptides, lipids, steroids, phenolic compounds | [53,55] |
MALDI-TOF MS | High-throughput analysis of biomolecules, especially proteins and peptides | High sensitivity for large biomolecules like proteins, peptides, and lipids. Excellent for high-throughput applications. | Peptides, proteins, lipids, alkaloids | [53,55] |
NMR | Structural elucidation, identification of compounds, and quantification in small to medium-sized molecules | High accuracy for molecular structure determination. Limited sensitivity compared to MS techniques, but excellent for structural analysis. | Alkaloids, flavonoids, terpenoids, phenolic compounds, saponins | [53] |
Limitation | Description | Possible Alternate | Citations |
---|---|---|---|
Variability in Secondary Metabolite Profiles | Variability due to environmental, genetic, or developmental factors. | Use DNA barcoding or meta barcoding as an alternative. | [135] |
Standardization Issues | No standardized methodology for metabolite analysis. | Standardize techniques like mass spectrometry or NMR. | [135,136] |
Lack of Comprehensive Databases | Chemotaxonomic databases are often incomplete. | Collaborate to build comprehensive chemotaxonomic databases. | [135,137] |
Accessibility and High Costs of Analytical Techniques | High costs and specialized expertise needed for advanced techniques. | Utilize portable, low-cost devices for on-site analysis. | [135] |
Challenges in Chemotaxonomic Identification | Overlapping chemical profiles make accurate identification difficult. | Use multi-omics approaches for more accurate identification. | [27,135,138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, A.; Park, S. Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations. Plants 2025, 14, 2234. https://doi.org/10.3390/plants14142234
Amin A, Park S. Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations. Plants. 2025; 14(14):2234. https://doi.org/10.3390/plants14142234
Chicago/Turabian StyleAmin, Adnan, and SeonJoo Park. 2025. "Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations" Plants 14, no. 14: 2234. https://doi.org/10.3390/plants14142234
APA StyleAmin, A., & Park, S. (2025). Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations. Plants, 14(14), 2234. https://doi.org/10.3390/plants14142234