Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = LC–ESI–MS/MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2382 KiB  
Article
Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application
by James Ziemah, Matthias S. Ullrich and Nikolai Kuhnert
Foods 2025, 14(14), 2496; https://doi.org/10.3390/foods14142496 - 16 Jul 2025
Viewed by 84
Abstract
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for [...] Read more.
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for use in sustainable aerosol hygiene technology as an electrostatic bio-disinfectant. The investigation was performed through wipe tests and airborne microbial collection techniques. The upgraded coffee silverskin phytoextract demonstrated superior disinfection potential for various surfaces and airborne microbes compared to the hot trub phytoextract, with an industrial disinfectant serving as the control. Log reduction analyses revealed a more significant killing efficacy (p ≤ 0.05, using the ANOVA test) against Gram-positive organisms (Bacillus subtilis and Listeria monocytogenes) than against Gram-negative organisms (Escherichia coli and Vibrio parahaemolyticus), with the log reductions ranging from 3.08 to 5.56 and 3.72 to 5.81, respectively. Chemical characterization by LC-ESI-QTOF-MS, 1H NMR, and FTIR showed that CGAs and chalcones are the most bioactive compounds in CSS and HT, respectively. The innovation in this work involves an integrated approach that combines waste-derived phytoextracts, advanced chemical profiling, and scalable aerosol disinfection. Furthermore, this research offers a greener, cost-effective, and industrially relevant alternative to synthetic chemical disinfectants. The interdisciplinary approach contributes to the development of bio-based disinfectants for use in the food industry, hospitals, and public health settings. This investigation supports a paradigm shift toward sustainable disinfection practices, thereby improving food and environmental safety. Full article
Show Figures

Figure 1

24 pages, 2320 KiB  
Article
Glucoselipid Biosurfactant Biosynthesis Operon of Rouxiella badensis DSM 100043T: Screening, Identification, and Heterologous Expression in Escherichia coli
by Andre Fahriz Perdana Harahap, Chantal Treinen, Leonardo Joaquim Van Zyl, Wesley Trevor Williams, Jürgen Conrad, Jens Pfannstiel, Iris Klaiber, Jakob Grether, Eric Hiller, Maliheh Vahidinasab, Elvio Henrique Benatto Perino, Lars Lilge, Anita Burger, Marla Trindade and Rudolf Hausmann
Microorganisms 2025, 13(7), 1664; https://doi.org/10.3390/microorganisms13071664 - 15 Jul 2025
Viewed by 196
Abstract
Rouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we [...] Read more.
Rouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we performed a function-based library screening from a R. badensis DSM 100043T genome library to identify responsible genes for biosynthesis of this glucoselipid. The identified open reading frames (ORFs) were cloned into several constructs in Escherichia coli for gene permutation analysis and the individual products were analyzed using high-performance thin-layer chromatography (HPTLC). Products of interest from positive expression strains were purified and analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) for further structure elucidation. Function-based screening of 5400 clones led to the identification of an operon containing three ORFs encoding acetyltransferase GlcA (ORF1), acyltransferase GlcB (ORF2), and phosphatase/HAD GlcC (ORF3). E. coli pCAT2, with all three ORFs, resulted in the production of identical R. badensis DSM 100043T glucosedilipid with Glu-C10:0-C12:1 as the main congener. ORF2-deletion strain E. coli pAFP1 primarily produced glucosemonolipids, with Glu-C10:0,3OH and Glu-C12:0 as the major congeners, predominantly esterified at the C-2 position of the glucose moiety. Furthermore, fed-batch bioreactor cultivation of E. coli pCAT2 using glucose as the carbon source yielded a maximum glucosedilipid titer of 2.34 g/L after 25 h of fermentation, which is 55-fold higher than that produced by batch cultivation of R. badensis DSM 100043T in the previous study. Full article
Show Figures

Figure 1

21 pages, 3187 KiB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 222
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Enhanced Outer Membrane Vesicle Production in Escherichia coli: From Metabolic Network Model to Designed Strain Lipidomic Profile
by Héctor Alejandro Ruiz-Moreno, Juan D. Valderrama-Rincon, Mónica P. Cala, Miguel Fernández-Niño, Mateo Valderruten Cajiao, María Francisca Villegas-Torres and Andrés Fernando González Barrios
Int. J. Mol. Sci. 2025, 26(14), 6714; https://doi.org/10.3390/ijms26146714 - 13 Jul 2025
Viewed by 219
Abstract
Bacterial structures formed from the outer membrane and the periplasm components carry biomolecules to expel cellular material and interact with other cells. These outer membrane vesicles (OMVs) can encapsulate bioactive content, which confers OMVs with high potential as alternative drug delivery vehicles or [...] Read more.
Bacterial structures formed from the outer membrane and the periplasm components carry biomolecules to expel cellular material and interact with other cells. These outer membrane vesicles (OMVs) can encapsulate bioactive content, which confers OMVs with high potential as alternative drug delivery vehicles or as a platform for novel vaccine development. Single-gene mutants derived from Escherichia coli JC8031 were engineered to further enhance OMV production based on metabolic network modelling and in silico gene knockout design (ΔpoxB, ΔsgbE, ΔgmhA, and ΔallD). Mutants were experimentally obtained by genome editing using CRISPR-Cas9 and tested for OMVs recovery observing an enhanced OMV production in all of them. Lipidomic analysis through LC-ESI-QTOF-MS was performed for OMVs obtained from each engineered strain and compared to the wild-type E. coli JC8031 strain. The lipid profile of OMVs from the wild-type E. coli JC8031 did not change significantly confirmed by multivariate statistical analysis when compared to the mutant strains. The obtained results suggest that the vesicle production can be further improved while the obtained vesicles are not altered in their composition, allowing further study for stability and integrity for use in therapeutic settings. Full article
(This article belongs to the Special Issue From Molecular to Systems Biology through Data Integration)
Show Figures

Figure 1

17 pages, 3528 KiB  
Article
Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery
by Xue-Mei Zhang, Shi-Zhong Yang, Homely Isaya Mtui and Bo-Zhong Mu
Processes 2025, 13(7), 2159; https://doi.org/10.3390/pr13072159 - 7 Jul 2025
Viewed by 289
Abstract
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have [...] Read more.
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have been less researched due to concerns regarding their interfacial performance. In this study, a novel series of PUFA-based zwitterionic surfactants with strong interfacial activity was synthesized from waste vegetable oils via an eco-friendly three-step process, optimized through an orthogonal experimental design. The structures and conversion rates of the surfactants were confirmed using GC-MS, LC-MS, and ESI-MS. At 0.5 g/L and 3.0 g/L (typical concentrations often used in most oil fields), the bio-based surfactants derived from waste soybean oil (PUFA-to-MUFA ratio ≈ 2.11, C18:2, and C18:1 in large contents) could reduce the interfacial tension between Daqing crude oil and simulated formation groundwater to an ultra-low level of ~10−3 mN/m. These results confirm our hypothesis that bio-based zwitterionic surfactants derived from PUFA-rich feedstocks possess excellent interfacial activity, providing a potential sustainable option to be considered for chemically enhanced oil recovery. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Graphical abstract

25 pages, 2198 KiB  
Article
Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities
by Valentina Masala, Gabriele Serreli, Antonio Laus, Monica Deiana, Adam Kowalczyk and Carlo Ignazio Giovanni Tuberoso
Foods 2025, 14(13), 2365; https://doi.org/10.3390/foods14132365 - 3 Jul 2025
Viewed by 368
Abstract
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, [...] Read more.
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, DPPH, and ABTS•+ assays; and tested ROS scavenging activity in Caco-2 cell cultures. Phenolic compounds were identified by (HR) LC-ESI-QTOF MS/MS and quantified with HPLC-PDA. Furthermore, Keap1-Nrf2, iNOS, and NOX enzymes involved in oxidative stress and antioxidant defences were the targets of molecular docking on key polyphenols. Hydroxycinnamic acids and flavonoids are the most important classes of compounds detected in the extracts. Among these compounds, the most significant was rosmarinic acid, followed by caffeic acid, luteolin glucuronide, and methyl rosmarinate. Although all extracts have shown encouraging results, the ethanolic extract solubilised with water (SEtOHA) was the one with the highest hydroxycinnamic acid content and total phenol content (518.64 ± 5.82 mg/g dw and 106.02 ± 6.02 mg GAE/g dw), as well as the highest antioxidant and antiradical activity. The extracts have shown anti-inflammatory activity by inhibiting NO release in LPS-stimulated Caco-2 cells. Finally, the in silico evaluation against the three selected enzymes showed interesting results for both numerical affinity ranking and predicted ligand binding models. The outcome of this study suggests this by-product as a possible ally in counteracting oxidative stress, as established by its favourable antioxidant compound profile, thus suggesting an interesting future application as a nutraceutical. Full article
Show Figures

Figure 1

16 pages, 6224 KiB  
Article
Proteoform Patterns in Hepatocellular Carcinoma Tissues: Aspects of Oncomarkers
by Elena Zorina, Natalia Ronzhina, Olga Legina, Nikolai Klopov, Victor Zgoda and Stanislav Naryzhny
Proteomes 2025, 13(3), 27; https://doi.org/10.3390/proteomes13030027 - 1 Jul 2025
Viewed by 272
Abstract
Background: Human proteins exist in numerous modifications—proteoforms—which are promising targets for biomarker studies. In this study, we aimed to generate comparative proteomics data, including proteoform patterns, from hepatocellular carcinoma (HCC) and nonmalignant liver tissues. Methods: To investigate protein profiles and proteoform patterns, we [...] Read more.
Background: Human proteins exist in numerous modifications—proteoforms—which are promising targets for biomarker studies. In this study, we aimed to generate comparative proteomics data, including proteoform patterns, from hepatocellular carcinoma (HCC) and nonmalignant liver tissues. Methods: To investigate protein profiles and proteoform patterns, we employed a panoramic, integrative top-down proteomics approach: two-dimensional gel electrophoresis (2DE) coupled with liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS). Results: We visualized over 2500 proteoform patterns per sample type, enabling the identification of distinct protein signatures and common patterns differentiating nonmalignant and malignant liver cells. Among these, 1270 protein patterns were uniformly observed across all samples. Additionally, 38 proteins—including pyruvate kinase PKM (KPYM), annexin A2 (ANXA2), and others—exhibited pronounced differences in proteoform patterns between nonmalignant and malignant tissues. Conclusions: Most proteoform patterns of the same protein were highly similar, with the dominant peak corresponding to theoretical (unmodified) protein parameters. However, certain proteins displayed altered proteoform patterns and additional proteoforms in cancer compared to controls. These proteins were prioritized for further characterization. Full article
Show Figures

Figure 1

26 pages, 14037 KiB  
Article
Nuclear Fraction Proteome Analyses During rAAV Production of AAV2-Plasmid-Transfected HEK-293 Cells
by Susanne K. Golm, Raimund Hoffrogge and Kristian M. Müller
Int. J. Mol. Sci. 2025, 26(13), 6315; https://doi.org/10.3390/ijms26136315 - 30 Jun 2025
Viewed by 342
Abstract
Recombinant adeno-associated virus (rAAV) is the leading vector for gene replacement therapy; however, the roles and regulation of host proteins in rAAV production remain incompletely understood. In this comparative proteomic analysis, we focused on proteins in the nucleus, the epicenter of DNA uptake, [...] Read more.
Recombinant adeno-associated virus (rAAV) is the leading vector for gene replacement therapy; however, the roles and regulation of host proteins in rAAV production remain incompletely understood. In this comparative proteomic analysis, we focused on proteins in the nucleus, the epicenter of DNA uptake, transcription, capsid assembly, and packaging. HEK-293 cells were analyzed under the following three conditions: (i) untransfected, (ii) mock-transfected with the ITR and an unrelated plasmid, and (iii) triple-transfected with rAAV2 production plasmids. Cells were harvested at 24 and 72 h post-transfection, and nuclear fractions were processed using filter-aided sample preparation (FASP) followed by nano-scale liquid chromatography–tandem mass spectrometry (nLC-Orbitrap MS/MS). Across all samples, we identified 3384 proteins, revealing significant regulatory changes associated with transfection and rAAV production. Transfection alone accounted for some of the most substantial proteomic shifts, while rAAV production induced diverse regulatory changes linked to cell cycle control, structure, and metabolism. STRING analysis of significantly regulated proteins also identified an enrichment of those associated with the Gene Ontology (GO) term ‘response to virus’. Additionally, we examined proteins with reported relation to adenoviral components. Our findings help to unravel the complexity of rAAV production, identify interesting targets for further investigation, and may contribute to improving rAAV yield. Full article
Show Figures

Figure 1

19 pages, 2306 KiB  
Article
Effect of Soil-Applied Metabolic Modulators on the Accumulation of Specialized Metabolites in Chelidonium majus L.
by Maria Stasińska-Jakubas, Sławomir Dresler, Maciej Strzemski, Magdalena Wójciak, Katarzyna Rubinowska and Barbara Hawrylak-Nowak
Molecules 2025, 30(13), 2782; https://doi.org/10.3390/molecules30132782 - 27 Jun 2025
Viewed by 245
Abstract
Various metabolic modulators have been widely used in recent years to increase the accumulation of desired secondary metabolites in medicinal plants, although most studies to date have focused on in vitro systems. Although simpler and cheaper, their potential application in vivo is still [...] Read more.
Various metabolic modulators have been widely used in recent years to increase the accumulation of desired secondary metabolites in medicinal plants, although most studies to date have focused on in vitro systems. Although simpler and cheaper, their potential application in vivo is still limited. Therefore, the aim of this study was to compare the effect of three chemically different elicitors (150 mg/L chitosan lactate—ChL; 10 mg/L selenium as selenite—Se; 100 mg/L salicylic acid—SA) applied to the soil substrate on some aspects of the secondary metabolism and physiological responses of Chelidonium majus L. Using HPLC-DAD, six isoquinoline alkaloids were identified and quantified in shoot extracts. LC-ESI-TOF-MS analysis confirmed the molecular identity of all target alkaloids, supporting the identification. The strongest stimulatory effect on the accumulation of protopine, berberine, and allocryptopine was observed with the Se and SA treatment, whereas ChL was less effective. In turn, the dominant alkaloids (coptisine and chelidonine) remained unaffected. There was also an increase in total phenolic compounds, but not in soluble flavonols. The elicitor treatments caused an increase in the antioxidant activity of the plant extracts obtained. Regardless of the metabolic modulator type, the strongest effect was generally observed on days 7 and 10 after application. No visual signs of toxicity and no effect on shoot biomass were found, although some elicitor-induced changes in the oxidative status (increased H2O2 accumulation and enhanced lipid peroxidation) and free proline levels in leaves were observed. We suggest that Se or SA can be applied to C. majus grown in a controlled pot culture to obtain high-quality raw material and extracts with increased contents of valuable specialized metabolites and enhanced antioxidant capacity. Full article
Show Figures

Graphical abstract

14 pages, 631 KiB  
Article
Phytochemical Profile and Selective Anticancer Activity of Parietaria judaica L. Extracts
by Izabela Bielecka, Dorota Natorska-Chomicka, Wioleta Dołomisiewicz, Arlindo Rodrigues Fortes and Katarzyna Dos Santos Szewczyk
Molecules 2025, 30(13), 2739; https://doi.org/10.3390/molecules30132739 - 25 Jun 2025
Viewed by 263
Abstract
Parietaria judaica L. (alfavaca-de-cobra) was investigated as a potential source of anticancer compounds. Leaf extracts obtained using solvents of different polarities were evaluated for their phytochemical profiles and cytotoxic activities against a panel of human cancer cell lines (glioblastoma LN-229, lung NCI-H1563, breast [...] Read more.
Parietaria judaica L. (alfavaca-de-cobra) was investigated as a potential source of anticancer compounds. Leaf extracts obtained using solvents of different polarities were evaluated for their phytochemical profiles and cytotoxic activities against a panel of human cancer cell lines (glioblastoma LN-229, lung NCI-H1563, breast MDA-MB-231, liver HepG2, renal 769-P, cervical HeLa, and melanoma A-375) and a noncancerous HEK-293 cell line. LC-ESI-MS/MS analysis confirmed that the extracts are rich in polyphenols, including phenolic acids and flavonoids. Cytotoxicity was assessed via MTT and SRB assays, demonstrating dose-dependent antiproliferative effects. Among the extracts, the ethanolic fraction (PJ-E) exhibited the strongest cytotoxicity, with an IC50 of 11.82 µg/mL against HeLa cells, while displaying a significantly higher IC50 (139.42 µg/mL) against HEK-293, indicating tumor selectivity. The water extract (PJ-W) showed selective activity against lung cancer cells (IC50 = 87.69 µg/mL), with minimal toxicity toward normal cells. The methanol/acetone extract (PJ-M) displayed intermediate activity, whereas the hexane extract (PJ-H) was the least effective. These findings highlight P. judaica, particularly its ethanolic extract, as a promising source of natural anticancer agents. Further research focusing on the isolation of active constituents, formulation development, and in vivo validation is warranted to support its therapeutic potential. Full article
Show Figures

Graphical abstract

28 pages, 1754 KiB  
Article
Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes
by Katelene Lima, Maryam Malmir, Shabnam Sabiha, Rui Pinto, Isabel Moreira da Silva, Maria Eduardo Figueira, João Rocha, Maria Paula Duarte and Olga Silva
Pharmaceuticals 2025, 18(6), 913; https://doi.org/10.3390/ph18060913 - 18 Jun 2025
Viewed by 384
Abstract
Background/Objectives: Periploca chevalieri Browicz (Apocynaceae), an endemic species of the Cabo Verde archipelago, is commonly used in traditional medicine for the treatment of diabetes. The aim of this study was to characterize the chemical profiles of the aqueous and hydroethanolic [...] Read more.
Background/Objectives: Periploca chevalieri Browicz (Apocynaceae), an endemic species of the Cabo Verde archipelago, is commonly used in traditional medicine for the treatment of diabetes. The aim of this study was to characterize the chemical profiles of the aqueous and hydroethanolic (70%) extracts of the P. chevalieri dried aerial parts (PcAE and PcEE) and evaluate their potential to modulate postprandial glycemia and inhibit key carbohydrate-hydrolyzing enzymes. Methods: The chemical characterization was performed by LC/UV-DAD-ESI/MS/MS. An in vivo evaluation of postprandial glycemia modulation was conducted on healthy CD1 mice submitted to an oral sucrose tolerance test. In vitro enzymatic inhibition was performed for the α-amylase, α-glucosidase, and DPP4 enzymes. Additionally, antioxidant and antiglycation activities were also assessed. Results: Phenolic acid derivatives, flavanols, proanthocyanidins, and flavonols were the major classes of secondary metabolites identified. PcEE at 170 mg/kg of body weight significantly (p < 0.05) reduced the postprandial glycemia peak in CD1 mice submitted to sucrose overload. Regarding the enzymatic inhibition, both extracts showed concentration-dependent inhibitory potential against the α-amylase, α-glucosidase, and DPP4 enzymes. Both extracts inhibited α-glucosidase more effectively than acarbose. Conclusions: The obtained results supports the traditional use of P. chevalieri and suggest the potential for further pharmacological investigation. Full article
Show Figures

Graphical abstract

15 pages, 2003 KiB  
Article
Enhancing the Detection and Identification Sensitivity of Organophosphorus Pesticide-Related Phenols via Derivatization and LC-ESI-MS/MS: A Straightforward Approach to Identify the Specific Pesticide Involved in Exposure
by Avi Weissberg, Tamar Shamai Yamin, Avital Shifrovitch, Adi Tzadok, Merav Blanca and Moran Madmon
Environments 2025, 12(6), 193; https://doi.org/10.3390/environments12060193 - 8 Jun 2025
Viewed by 518
Abstract
Organophosphorus (OP) pesticides are a class of chemicals that are extensively used worldwide. The exposure to and use of organophosphates can be assessed by analyzing their metabolites and degradation products, such as dialkyl phosphate (DAP), dialkyl thiophosphate (DATP), and dialkyl dithiophosphate (DADTP). However, [...] Read more.
Organophosphorus (OP) pesticides are a class of chemicals that are extensively used worldwide. The exposure to and use of organophosphates can be assessed by analyzing their metabolites and degradation products, such as dialkyl phosphate (DAP), dialkyl thiophosphate (DATP), and dialkyl dithiophosphate (DADTP). However, since these metabolites/hydrolysis products can result from the metabolism or breakdown of several organophosphorus pesticide families, they serve as nonspecific biomarkers and do not indicate the specific pesticide involved in exposure. In an earlier study, chemical derivatization using N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) was described to improve the signal intensity of numerous organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) analysis. In the present study, CAX-B was employed to derivatize a set of seven phenolic compounds corresponding to the complementary portion of OP pesticides. The derivatization process using CAX-B was performed in acetonitrile with potassium carbonate at 50 °C for 30 min. LC-Orbitrap-ESI-MS/MS was used to analyze the resulting phenol derivatives and their fragmentation patterns were studied. Notably, the derivatized phenols were markedly more sensitive than the underivatized phenols when LC-ESI-MS/MS was used in MRM technique, without being affected by the sample matrix (soil or plant extracts). This derivatization technique aids in identifying OP pesticides, offers insights into their subfamily, and pinpoints a specific compound through the analysis of corresponding phenol derivative. Full article
Show Figures

Figure 1

21 pages, 8360 KiB  
Article
Subcritical Water and Pressurised Ethanol Extractions for Maximum Recovery of Antioxidants from Orange Peel Herbal Dust with Evaluation of Its Pharmacological Potential Using In Silico and In Vitro Analysis
by Slađana Krivošija, Ana Ballesteros-Gómez, Mire Zloh, Nataša Milić, Aleksandra Popović, Nataša Nastić and Senka Vidović
Antioxidants 2025, 14(6), 638; https://doi.org/10.3390/antiox14060638 - 26 May 2025
Viewed by 702
Abstract
This research explored the potential of pressurised liquid extraction techniques for valorising herbal orange peel dust (OPD) waste from the filter tea industry. A series of experiments were conducted, varying the temperature (120–220 °C) and solvent (water and 50% (v/v [...] Read more.
This research explored the potential of pressurised liquid extraction techniques for valorising herbal orange peel dust (OPD) waste from the filter tea industry. A series of experiments were conducted, varying the temperature (120–220 °C) and solvent (water and 50% (v/v) ethanol), while pressure and time were kept constant. Afterward, the obtained extracts were analysed by LC-ESI-MS/MS for determining the chemical composition. The highest concentrations of the most dominant compounds, the antioxidants hesperidin (662.82 ± 22.11 mg/L) and naringin (62.37 ± 2.05 mg/L), were found at specific temperatures using subcritical water extraction. In silico studies indicated that these compounds could interact with sirtuin-1 and growth factor beta receptors, suggesting potential anti-ageing benefits for skin. In vitro experiments on rat hepatoma cells (H4IIE) revealed that OPD extracts had antitumor potential, inhibiting cell proliferation and altering cell morphology. These findings underscore the importance of temperature and extraction technique in obtaining antioxidant-rich extracts with pharmacological potential. The resulting extracts, obtained using green solvents, show promise for cosmetic applications, though further in vivo studies are needed to confirm their therapeutic efficacy. Full article
Show Figures

Graphical abstract

20 pages, 1174 KiB  
Article
From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.)
by Antonella Smeriglio, Martina Imbesi, Mariarosaria Ingegneri, Rossana Rando, Manuela Mandrone, Ilaria Chiocchio, Ferruccio Poli and Domenico Trombetta
Antioxidants 2025, 14(6), 625; https://doi.org/10.3390/antiox14060625 - 23 May 2025
Viewed by 437
Abstract
Borlotto bean pods, a by-product of Phaseolus vulgaris processing, represent a promising yet underexplored source of bioactive compounds. This study aimed to characterize the nutritional composition, phytochemical profile, and biological properties of a food-grade extract obtained from borlotto bean pods (BPE). Nutritional parameters [...] Read more.
Borlotto bean pods, a by-product of Phaseolus vulgaris processing, represent a promising yet underexplored source of bioactive compounds. This study aimed to characterize the nutritional composition, phytochemical profile, and biological properties of a food-grade extract obtained from borlotto bean pods (BPE). Nutritional parameters were assessed using standard AOAC methods, while primary and secondary metabolites were identified and semi-quantified via 1H-NMR and LC-DAD-ESI-MS/MS. Antioxidant activity was evaluated through six complementary assays: DPPH, TEAC, FRAP, ORAC, ferrous ion-chelating activity, and β-carotene bleaching inhibition. Anti-inflammatory potential was assessed in vitro by evaluating the inhibition of bovine serum albumin (BSA) denaturation and protease activity. BPE showed significant antioxidant capacity across all assays, indicating both hydrogen atom transfer and electron transfer mechanisms, along with metal chelation and lipid peroxidation inhibition. Additionally, BPE inhibited protein denaturation and protease activity in a concentration-dependent manner. These results highlight the potential of borlotto bean pods as a sustainable source of nutritionally and functionally relevant compounds. Future studies should focus on the bioavailability of active constituents, formulation into delivery systems, and in vivo validation to support potential nutraceutical applications. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Graphical abstract

23 pages, 2903 KiB  
Article
A Mechanistic Insight into the Anti-Staphylococcal Mode of Action of (+)-Usnic Acid and Its Synergy with Norfloxacin Against Methicillin-Resistant Staphylococcus aureus
by Bhavana Gangwar, Santosh Kumar, Parmanand Kumar, Anirban Pal and Mahendra P. Darokar
Biomolecules 2025, 15(6), 750; https://doi.org/10.3390/biom15060750 - 22 May 2025
Viewed by 538
Abstract
In this study, a global response analysis was performed to explore the mechanism of action of Usnic acid and its synergy with Norfloxacin, a well-known quinolone antibiotic to which MRSA clinical isolates showed resistance (MIC, 500 µg/mL). A microdilution assay, a growth kinetics [...] Read more.
In this study, a global response analysis was performed to explore the mechanism of action of Usnic acid and its synergy with Norfloxacin, a well-known quinolone antibiotic to which MRSA clinical isolates showed resistance (MIC, 500 µg/mL). A microdilution assay, a growth kinetics analysis, a microscopic analysis, and cell-based assays consistently showed that Usnic acid possesses strong anti-staphylococcal activity (MIC, 7.8 µg/mL), causes cell leakage, modulates efflux pump activity, and synergizes with Norfloxacin against the multi-drug-resistant clinical isolate MRSA 2071. Whole-cell proteome profiling using gel-free proteomics-based nano-LC-ESI-QTOF-MS/MS revealed several proteins whose expression was significantly modulated by Usnic acid and Norfloxacin alone or in combination. Usnic acid downregulated the abundance of RNA polymerase subunits (RpoB and RpoC), carbamoyl phosphate synthase large subunit (PyrAB), chaperone (GroEL), and adenylosuccinate synthetase (PurA). Interestingly, proteins found to be upregulated in the presence of Usnic acid and Norfloxacin included oxidative-stress-related proteins such as peroxidase (Tpx), alkyl hydroperoxide reductase (AphC), and general stress protein (UspA). This study clearly shows that Usnic acid affects numerous cellular targets and can potentiate the action of Norfloxacin. Furthermore, an in vivo study showed that UA at low concentrations prevents body weight gain, but changes in other tested toxicological parameters were found to be within normal limits. Thus, UA at low doses appears to be a promising candidate for repurposing old antibiotics through combination therapy against MRSA infections. Full article
Show Figures

Graphical abstract

Back to TopTop