Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes
Abstract
:1. Introduction
2. Results
2.1. Chemical Studies
2.1.1. Drug–Extract Ratio (DER)
2.1.2. HPLC/UV-DAD-ESI/MS/MS Chemical Profile
2.1.3. Quantification of the Main Marker Secondary Metabolites
2.2. Effects of P. chevalieri on Posprandial Glycemia and Enzymatic Inhibition
2.2.1. Modulation of Postprandial Glycemia
Clinical Signs
Body Weight and Food Intake Variation
Oral Sucrose Tolerance Test
Biochemical Parameter Analyses
2.2.2. Inhibition of the α-Amylase, α-Glucosidase, and DPP4 Enzymes
2.3. In Vitro Antioxidant Activity
2.4. Evaluation of the Antiglycation Capacity
3. Discussion
4. Materials and Methods
4.1. Chemicals, Reference Items, and Reagents
4.2. Plant Material Collection and Preparation of Extracts
4.3. Chromatographic Conditions
4.4. Quantification of the Main Classes of Secondary Metabolites
4.5. In Vivo Antihyperglycemic Potential
4.5.1. Animals
4.5.2. Experimental Protocol
Repeated Administration (14 Days)
- Normoglycemic group—animals were treated orally with the vehicle (distilled water) for 14 days, and on the last day, the vehicle was administered instead of sucrose;
- Hyperglycemic group—animals were treated with the vehicle for 14 days, and on the last day, a solution of sucrose (3 g/kg) was administered by gastric gavage;
- PcE-D1 group—animals were treated orally with PcEE (40 mg/kg BW) for 14 days, and on the last day, a solution of sucrose (3 g/kg) was administered by gastric gavage;
- PcE-D2 group—animals were treated orally with PcEE (170 mg/kg BW) for 14 days, and on the last day, a solution of sucrose (3 g/kg) was administered by gastric gavage;
- PcE-D3 group—animals were treated orally with PcEE (300 mg/kg BW) for 14 days, and on the last day, a solution of sucrose (3 g/kg) was administered by gastric gavage;
- Acarbose group—animals were treated orally with acarbose (50 mg/kg BW) for 14 days, and on the last day, a solution of sucrose (3 g/kg) was administered by gastric gavage.
Experimental Oral Sucrose Tolerance Test (OSTT)
4.5.3. Blood Collection, Necropsy, and Biochemical Analysis
4.6. In Vitro Antihyperglycemc Potential
4.6.1. α-Amylase Enzyme Inhibition Assay
4.6.2. α-Glucosidase Enzyme Inhibition Assay
4.6.3. DPP4 Enzyme Inhibition Assay
4.7. Antioxidant Capacity
4.7.1. CUPRAC Assay
4.7.2. FRAP Assay
4.7.3. DPPH Radical Scavenging Assay
4.7.4. Superoxide Anion Radical Scavenging Assay
4.8. Bovine Serum Albumin Glycation Inhibitory Assay
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- WHO. World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- Ekpor, E.; Osei, E.; Akyirem, S. Prevalence and Predictors of Traditional Medicine Use among Persons with Diabetes in Africa: A Systematic Review. Int. Health 2024, 16, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Hairani, R.; Chavasiri, W. A New Series of Chrysin Derivatives as Potent Non-Saccharide ⍺-Glucosidase Inhibitors. Fitoterapia 2022, 163, 105301. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.A.; Mahmud, A.F.; Lawal, M.; Alkali, Y.I. Nigerian Medicinal Plants with in Vivo Anti Diabetic Activity: A Systematic Review and Meta-Analysis. Int. J. Pharm. Res. Dev. 2019, 1, 10–14. [Google Scholar] [CrossRef]
- AlFaris, N.A.; Alshammari, G.M.; Alsayadi, M.M.; AlFaris, M.A.; Yahya, M.A. Antidiabetic and Antihyperlipidemic Effect of Duvalia Corderoyi in Rats with Streptozotocin-Induced Diabetes. Saudi J. Biol. Sci. 2020, 27, 925–934. [Google Scholar] [CrossRef]
- Han, D.G.; Cho, S.S.; Kwak, J.H.; Yoon, I.S. Medicinal Plants and Phytochemicals for Diabetes Mellitus: Pharmacokinetic Characteristics and Herb-Drug Interactions. J. Pharm. Investig. 2019, 49, 603–612. [Google Scholar] [CrossRef]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Cañizo-Gómez, F.J. del Update on the Treatment of Type 2 Diabetes Mellitus. World J. Diabetes 2016, 7, 354. [Google Scholar] [CrossRef]
- Piya, M.K.; Tahrani, A.A.; Barnett, A.H. Emerging Treatment Options for Type 2 Diabetes. Br. J. Clin. Pharmacol. 2010, 70, 631–644. [Google Scholar] [CrossRef]
- Encarnação, S.; De Mello-Sampayo, C.; Carrapiço, B.; São Braz, B.; Jordão, A.P.; Peleteiro, C.; Catarino, L.; Silva, I.B.M.d.; Gouveia, L.F.; Lima, B.S.; et al. Anacardium Occidentale Bark as an Antidiabetic Agent. Plants 2022, 11, 2637. [Google Scholar] [CrossRef]
- Mondal, P.; Das, S.; Junejo, J.A.; Borah, S.; Zaman, K. Evaluations of Antidiabetic Potential of the Hydro-Alcoholic Extract of the Stem Bark of Plumeria Rubra a Traditionally Used Medicinal Source in North-East India. Int. J. Green Pharm. 2016, 10, 252–260. [Google Scholar] [CrossRef]
- Ma, W.; Xiao, L.; Liu, H.; Hao, X. Hypoglycemic Natural Products with in Vivo Activities and Their Mechanisms: A Review. Food Sci. Hum. Wellness 2022, 11, 1087–1100. [Google Scholar] [CrossRef]
- Dobrică, E.C.; Găman, M.A.; Cozma, M.A.; Bratu, O.G.; Stoian, A.P.; Diaconu, C.C. Polypharmacy in Type 2 Diabetes Mellitus: Insights from an Internal Medicine Department. Medicina 2019, 55, 436. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, O.; Xu, Q.; Fan, T.P. Why Is Research on Herbal Medicinal Products Important and How Can We Improve Its Quality? J. Tradit. Complement. Med. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Okoduwa, S.I.R.; Mhya, D.H.; Abdulwaliyu, I.; Igiri, B.E.; Okoduwa, U.J.; Arthur, D.E.; Laleye, A.O.; Osang, G.J.; Onaleye, O.L.; Nathyns-Pepple, E. Phytomedicine Approach for Management of Diabetes Mellitus: An Overview of Scientifically Confirmed Medicinal Plants with Hypoglycaemic Properties and Their Probable Mechanism of Action. Phytochem. Rev. 2024, 24, 1691–1751. [Google Scholar] [CrossRef]
- Omale, S.; Amagon, K.I.; Johnson, T.O.; Bremner, S.K.; Gould, G.W. A Systematic Analysis of Anti-Diabetic Medicinal Plants from Cells to Clinical Trials. PeerJ 2023, 11, e14639. [Google Scholar] [CrossRef]
- Willcox, M.L.; Elugbaju, C.; Al-Anbaki, M.; Lown, M.; Graz, B. Effectiveness of Medicinal Plants for Glycaemic Control in Type 2 Diabetes: An Overview of Meta-Analyses of Clinical Trials. Front. Pharmacol. 2021, 12, 777561. [Google Scholar] [CrossRef]
- Naveen, Y.P.; Urooj, A.; Byrappa, K. A Review on Medicinal Plants Evaluated for Anti-Diabetic Potential in Clinical Trials: Present Status and Future Perspective. J. Herb. Med. 2021, 28, 100436. [Google Scholar] [CrossRef]
- El-Abhar, H.S.; Schaalan, M.F. Phytotherapy in Diabetes: Review on Potential Mechanistic Perspectives. World J. Diabetes 2014, 5, 176–197. [Google Scholar] [CrossRef]
- Fageyinbo, M.S.; Akindele, A.J.; Adenekan, S.O.; Agbaje, E.O. Evaluation of In-Vitro and in-Vivo Antidiabetic, Antilipidemic and Antioxidant Potentials of Aqueous Root Extract of Strophanthus Hispidus DC (Apocynaceae). J. Complement. Integr. Med. 2019, 16, 1–20. [Google Scholar] [CrossRef]
- Bharti, S.K.; Krishnan, S.; Kumar, A.; Kumar, A. Antidiabetic Phytoconstituents and Their Mode of Action on Metabolic Pathways. Ther. Adv. Endocrinol. Metab. 2018, 9, 81–100. [Google Scholar] [CrossRef]
- Sadeghi, M.; Miroliaei, M. The Antiglycation Ability of Typical Medicinal Plants, Natural and Synthetic Compounds: A Review. Iran. J. Diabetes Obes. 2022, 14, 55–61. [Google Scholar] [CrossRef]
- Lankatillake, C.; Huynh, T.; Dias, D.A. Understanding Glycaemic Control and Current Approaches for Screening Antidiabetic Natural Products from Evidence-Based Medicinal Plants. Plant Methods 151 2019, 15, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Romeiras, M.M.; Essoh, A.P.; Catarino, S.; Silva, J.; Lima, K.; Varela, E.; Moura, M.; Gomes, I.; Duarte, M.P.C.; Duarte, M.P.C. Diversity and Biological Activities of Medicinal Plants of Santiago Island (Cabo Verde). Heliyon 2023, 9, e14651. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.C.; Romeiras, M.M. Cape Verde Islands. In Encyclopedia of Islands; Gillespie, R.G., Clague, D.A., Eds.; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 2009; pp. 143–148. [Google Scholar]
- Brochmann, C.; Rustan, Ø.H.; Lobin, W.; Kilian, N. The Endemic Vascular Plants of the Cape Verde Islands, W Africa. Sommerfeltia 1997, 24, 1–363. [Google Scholar] [CrossRef]
- POWO Apocynaceae Juss. | Plants of the World Online | Kew Science. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30000008-2 (accessed on 19 February 2025).
- Venter, H.J.T. A Revision of Periploca (Periplocaceae). S. Afr. J. Bot. 1997, 63, 123–128. [Google Scholar] [CrossRef]
- Sherwani, N.; Saif, K.; Moqbali, A. Evaluation of Antioxidant and Activities of Periploca aphylla. Int. J. Pharm. Res. 2020, 12, 4767–4777. [Google Scholar]
- Venter, H.J.T.; Verhoeven, R.L. Diversity and Relationships within the Periplocoideae (Apocynaceae). Ann. Mo. Bot. Gard. 2001, 88, 550–568. [Google Scholar] [CrossRef]
- Siciliano, T.; Bader, A.; De Tommasi, N.; Morelli, I.; Braca, A. Sulfated Pregnane Glycosides from Periploca graeca. J. Nat. Prod. 2005, 68, 1164–1168. [Google Scholar] [CrossRef]
- Huang, M.; Shen, S.; Luo, C.; Ren, Y. Genus Periploca (Apocynaceae): A Review of Its Classification, Phytochemistry, Biological Activities and Toxicology. Molecules 2019, 24, 2749. [Google Scholar] [CrossRef]
- Iqbal, J.; Zaib, S.; Farooq, U.; Khan, A.; Bibi, I.; Suleman, S. Antioxidant, Antimicrobial, and Free Radical Scavenging Potential of Aerial Parts of Periploca aphylla and Ricinus communis. ISRN Pharmacol. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Aziz, M.A.; Adnan, M.; Khan, A.H.; Shahat, A.A.; Al-Said, M.S.; Ullah, R. Traditional Uses of Medicinal Plants Practiced by the Indigenous Communities at Mohmand Agency, FATA, Pakistan. J. Ethnobiol. Ethnomed. 2018, 14, 2. [Google Scholar] [CrossRef]
- Roque, S.; Duarte, I.; Graziani, P.; Nascimento, M.; Ramos, N. Usos Medicinais e Tradicionais da Flora Endémica, Indígena e Exótica do Monte Gordo; São Nicolau, 2008; Projecto Áreas Protegidas CVI/02/G31/A/1G/99/2006; Ministério do Ambiente e Agricultura: São Nicolau, Cabo Verde, 2008. [Google Scholar]
- Gomes, S. Plantas Endémicas Medicnais de Cabo Verde; Departamento de Ciência do Ambiente. Instituto Nacional de Investigação e Desenvolvimento Agrário. Cabo Verde. 2015. Available online: https://eciencia.cv/items/11125c35-a098-4f7a-9b01-b22a8c4a8808 (accessed on 3 June 2025).
- Gomes, A.; Vasconcelos, T.; Almeida, M.H. Plantas Na Medicina Tradicional de Cabo Verde. In Proceedings of the Workshop Plantas Medicinais e Fitoterapêuticas nos Trópicos. Instituto de Investigação Científica Tropical/Centro Científico e Cultural de Macau, Lisboa, Portugal, 29–31 October 2008; pp. 1–13. [Google Scholar]
- Chansriniyom, C.; Nooin, R.; Nuengchamnong, N.; Wongwanakul, R.; Petpiroon, N.; Srinuanchai, W.; Chantarasuwan, B.; Pitchakarn, P.; Temviriyanukul, P.; Nuchuchua, O. Tandem Mass Spectrometry of Aqueous Extract from Ficus dubia Sap and Its Cell-Based Assessments for Use as a Skin Antioxidant. Sci. Rep. 2021, 11, 16899. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chandra, P.; Bajpai, V.; Singh, A.; Srivastava, M.; Mishra, D.K.; Kumar, B. Rapid Qualitative and Quantitative Analysis of Bioactive Compounds from Phyllanthus amarus Using LC/MS/MS Techniques. Ind. Crops Prod. 2015, 69, 143–152. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ke, X.; Sun, C.; Huang, X.; Jiang, P.; Feng, F.; Liu, W.; Zhang, J. Chemical Profiling and the Potential Active Constituents Responsible for Wound Healing in Periploca forrestii Schltr. J. Ethnopharmacol. 2018, 224, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Willems, J.L.; Khamis, M.M.; Mohammed Saeid, W.; Purves, R.W.; Katselis, G.; Low, N.H.; El-Aneed, A. Analysis of a Series of Chlorogenic Acid Isomers Using Differential Ion Mobility and Tandem Mass Spectrometry. Anal. Chim. Acta 2016, 933, 164–174. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Guyot, S.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Contreras-Esquivel, J.C.; Aguilar, C.N. Structural Characterization of Native and Oxidized Procyanidins (Condensed Tannins) from Coffee Pulp (Coffea Arabica) Using Phloroglucinolysis and Thioglycolysis-HPLC-ESI-MS. Food Chem. 2021, 340, 127830. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Kumar, B. LC-MS Identification of Proanthocyanidins in Bark and Fruit of Six Terminalia Species. Nat. Prod. Commun. 2018, 13, 555–560. [Google Scholar] [CrossRef]
- Jaiswal, R.; Jayasinghe, L.; Kuhnert, N. Identification and Characterization of Proanthocyanidins of 16 Members of the Rhododendron Genus (Ericaceae) by Tandem LC-MS. J. Mass Spectrom. 2012, 47, 502–515. [Google Scholar] [CrossRef]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and Quantification of Flavonoid Glycosides in the Prunus Genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2018, 25, 1622–1631. [Google Scholar] [CrossRef]
- Ghareeb, M.; Saad, A.; Ahmed, W.; Refahy, L.; Nasr, S. HPLC-DAD-ESI-MS/MS Characterization of Bioactive Secondary Metabolites from Strelitzia nicolai Leaf Extracts and Their Antioxidant and Anticancer Activities In Vitro. Pharmacogn. Res. 2018, 10, 368–378. [Google Scholar] [CrossRef]
- Lee, J.; Ebeler, S.E.; Zweigenbaum, J.A.; Mitchell, A.E. UHPLC-(ESI)QTOF MS/MS Profiling of Quercetin Metabolites in Human Plasma Postconsumption of Applesauce Enriched with Apple Peel and Onion. J. Agric. Food Chem. 2012, 60, 8510–8520. [Google Scholar] [CrossRef]
- Díaz-Román, M.A.; Acevedo-Fernández, J.J.; Ávila-Villarreal, G.; Negrete-León, E.; Aguilar-Guadarrama, A.B. Phytochemical Analysis and Antihyperglycemic Activity of Castilleja arvensis. Fitoterapia 2024, 174, 105839. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Kim, M.J.; Lee, H.Y.; Jang, D.J.; Park, S. Scientific Validation of Traditionally Used Omija (Schisandra chinensis) Extract Mixture for Postprandial Glucose Regulation. J. Ethn. Foods 2025, 12, 15. [Google Scholar] [CrossRef]
- Tang, D.; Liu, L.; Ajiakber, D.; Ye, J.; Xu, J.; Xin, X.; Aisa, H.A. Anti-Diabetic Effect of Punica Granatum Flower Polyphenols Extract in Type 2 Diabetic Rats: Activation of Akt/GSK-3β and Inhibition of IRE1α-XBP1 Pathways. Front. Endocrinol. 2018, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Siwak, J.; Lewinska, A.; Wnuk, M.; Bartosz, G. Protection of Flavonoids against Hypochlorite-Induced Protein Modifications. Food Chem. 2013, 141, 1227–1241. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Hayes, A.W.; Pressman, P.; Dhawan, G.; Kapoor, R.; Agathokleous, E.; Calabrese, V. Flavonoids Commonly Induce Hormetic Responses. Arch. Toxicol. 2024, 98, 1237–1240. [Google Scholar] [CrossRef]
- Ghorbani, A. Phytotherapy for Diabetic Dyslipidemia: Evidence from Clinical Trials. Clin. Lipidol. 2013, 8, 311–319. [Google Scholar] [CrossRef]
- Abo-EL-Sooud, K.; Ahmed, F.A.; El-Toumy, S.A.; Yaecob, H.S.; Eltantawy, H.M. Phytochemical, Anti-Inflammatory, Anti-Ulcerogenic and Hypoglycemic Activities of Periploca angustifolia L Extracts in Rats. Clin. Phytoscience 2018, 4, 6–13. [Google Scholar] [CrossRef]
- Rashid, U.; Rashid Khan, M.; Khan, M.R. Phytochemicals of Periploca aphylla Dcne. Ameliorated Streptozotocin-Induced Diabetes in Rat. Environ. Health Prev. Med. 2021, 26, 38. [Google Scholar] [CrossRef]
- Magaji, U.F.; Sacan, O.; Yanardag, R. Alpha Amylase, Alpha Glucosidase and Glycation Inhibitory Activity of Moringa oleifera Extracts. S. Afr. J. Bot. 2020, 128, 225–230. [Google Scholar] [CrossRef]
- Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-Amylase/α-Glucosidase Inhibitory Activities of Plant-Derived Phenolic Compounds: A Virtual Screening Perspective for the Treatment of Obesity and Diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef]
- Saini, K.; Sharma, S.; Khan, Y. DPP-4 Inhibitors for Treating T2DM—Hype or Hope? An Analysis Based on the Current Literature. Front. Mol. Biosci. 2023, 10, 1130625. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Kim, H.Y.; Choi, I.; Kim, J.B.; Jin, C.H.; Han, A.R. DPP-IV Inhibitory Potentials of Flavonol Glycosides Isolated from the Seeds of Lens Culinaris: In Vitro and Molecular Docking Analyses. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 1998. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Lee, E.J.; Ahmad, K.; Ahmad, S.S.; Lim, J.H.; Choi, I. A Comprehensive Review and Perspective on Natural Sources as Dipeptidyl Peptidase-4 Inhibitors for Management of Diabetes. Pharmaceuticals 2021, 14, 591. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Hannon-Fletcher, M.P.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Effects of 22 Traditional Anti-Diabetic Medicinal Plants on DPP-IV Enzyme Activity and Glucose Homeostasis in High-Fat Fed Obese Diabetic Rats. Biosci. Rep. 2021, 41, BSR20203824. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef]
- Ortega-Castro, J.; Adrover, M.; Frau, J.; Donoso, J.; Muñoz, F. Cu2+ Complexes of Some AGEs Inhibitors. Chem. Phys. Lett. 2009, 475, 277–284. [Google Scholar] [CrossRef]
- Arif, B.; Arif, Z.; Ahmad, J.; Perveen, K.; Bukhari, N.A.; Ashraf, J.M.; Moinuddin; Alam, K. Attenuation of Hyperglycemia and Amadori Products by Aminoguanidine in Alloxan-Diabetic Rabbits Occurs via Enhancement in Antioxidant Defenses and Control of Stress. PLoS ONE 2022, 17, e0262233. [Google Scholar] [CrossRef]
- Bennici, G.; Almahasheer, H.; Alghrably, M.; Valensin, D.; Kola, A.; Kokotidou, C.; Lachowicz, J.; Jaremko, M. Mitigating Diabetes Associated with Reactive Oxygen Species (ROS) and Protein Aggregation through Pharmacological Interventions. RSC Adv. 2024, 14, 17448–17460. [Google Scholar] [CrossRef]
- García-Díez, G.; Ramis, R.; Mora-Diez, N. Theoretical Study of the Copper Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. ACS Omega 2020, 5, 14502–14512. [Google Scholar] [CrossRef] [PubMed]
- García-Díez, G.; Mora-Diez, N. Theoretical Study of the Iron Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. Antioxidants 2020, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.J.; Hsia, S.M.; Lee, W.H.; Wu, C.H. Polyphenols with Antiglycation Activity and Mechanisms of Action: A Review of Recent Findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, T.; Sang, S.; Lv, L. Quercetin Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal and Glyoxal. J. Agric. Food Chem. 2014, 62, 12152–12158. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.I.; Mitsuhashi, S.; Sigetomi, K.; Ubukata, M. Quercetin Inhibits Advanced Glycation End Product Formation via Chelating Metal Ions, Trapping Methylglyoxal, and Trapping Reactive Oxygen Species. Biosci. Biotechnol. Biochem. 2017, 81, 882–890. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, H.; Chen, J.; Ma, S.; Wang, M.; Zhou, X. The Mechanism of In Vitro Non-Enzymatic Glycosylation Inhibition by Tartary Buckwheat’s Rutin and Quercetin. Food Chem. 2023, 406, 134956. [Google Scholar] [CrossRef]
- Dias, D.T.M.; Palermo, K.R.; Motta, B.P.; Kaga, A.K.; Lima, T.F.O.; Brunetti, I.L.; Baviera, A.M. Rutin Inhibits the in Vitro Formation of Advanced Glycation Products and Protein Oxidation More Efficiently than Quercetin. Rev. Ciências Farm. Básica Apl. 2021, 42, 1–13. [Google Scholar] [CrossRef]
- Fernandez-Gomez, B.; Ullate, M.; Picariello, G.; Ferranti, P.; Mesa, M.D.; Del Castillo, M.D. New Knowledge on the Antiglycoxidative Mechanism of Chlorogenic Acid. Food Funct. 2015, 6, 2081–2090. [Google Scholar] [CrossRef]
- Rhizlan, A.; Amine, E.; Ouassou, H.; Elrherabi, A.; Berraaouan, A.; Legssyer, A.; Ziyyat, A.; Mekhfi, H.; Bnouham, M. In Vitro Study on Antioxidant and Antiglycation Activities, and Molecular Docking of Moroccan Medicinal Plants for Diabetes. Curr. Tradit. Med. 2023, 10, 201–214. [Google Scholar] [CrossRef]
- Khan, M.W.A.; Otaibi, A.A.; Alsukaibi, A.K.D.; Alshammari, E.M.; Al-Zahrani, S.A.; Sherwani, S.; Khan, W.A.; Saha, R.; Verma, S.R.; Ahmed, N. Biophysical, Biochemical, and Molecular Docking Investigations of Anti-Glycating, Antioxidant, and Protein Structural Stability Potential of Garlic. Molecules 2022, 27, 1868. [Google Scholar] [CrossRef]
- Naeem, S.; Hylands, P.; Barlow, D. Docking Studies of Chlorogenic Acid against Aldose Redutcase by Using Molgro Virtual Docker Software. J. Appl. Pharm. Sci. 2013, 3, 013–020. [Google Scholar] [CrossRef]
- Lima, K.; Malmir, M.; Camões, S.P.; Hasan, K.; Gomes, S.; Moreira da Silva, I.; Figueira, M.E.; Miranda, J.P.; Serrano, R.; Duarte, M.P.; et al. Quality, Safety and Biological Studies on Campylanthus glaber Aerial Parts. Pharmaceuticals 2023, 16, 1373. [Google Scholar] [CrossRef] [PubMed]
- Sabiha, S.; Hasan, K.; Lima, K.; Malmir, M.; Serrano, R.; Moreira da Silva, I.; Rocha, J.; Islam, N.; Silva, O. Quality Studies on Cynometra iripa Leaf and Bark as Herbal Medicines. Molecules 2024, 29, 2629. [Google Scholar] [CrossRef] [PubMed]
- Malú, Q.; Lima, K.; Malmir, M.; Pinto, R.; da Silva, I.M.; Catarino, L.; Duarte, M.P.; Serrano, R.; Rocha, J.; Lima, B.S.; et al. Contribution to the Preclinical Safety Assessment of Lannea velutina and Sorindeia juglandifolia Leaves. Plants 2023, 12, 130. [Google Scholar] [CrossRef]
- Grácio, M.; Rocha, J.; Pinto, R.; Boavida Ferreira, R.; Solas, J.; Eduardo-Figueira, M.; Sepodes, B.; Ribeiro, A.C. A Proposed Lectin-Mediated Mechanism to Explain the In Vivo Antihyperglycemic Activity of γ-Conglutin from Lupinus albus Seeds. Food Sci. Nutr. 2021, 9, 5980–5996. [Google Scholar] [CrossRef]
- Rouzbehan, S.; Moein, S.; Homaei, A.; Moein, M.R. Kinetics of α-Glucosidase Inhibition by Different Fractions of Three Species of Labiatae Extracts: A New Diabetes Treatment Model. Pharm. Biol. 2017, 55, 1483–1488. [Google Scholar] [CrossRef]
- Lima, K.; Silva, O.; Figueira, M.E.M.E.; Pires, C.; Cruz, D.; Gomes, S.; Maurício, E.M.E.M.; Duarte, M.P.M.P. Influence of the In Vitro Gastrointestinal Digestion on the Antioxidant Activity of Artemisia gorgonum Webb and Hyptis pectinata (L.) Poit. Infusions from Cape Verde. Food Res. Int. 2019, 115, 150–159. [Google Scholar] [CrossRef]
- Miceli, N.; Trovato, A.; Dugo, P.; Cacciola, F.; Donato, P.; Marino, A.; Bellinghieri, V.; La Barbera, T.M.; Güvenç, A.; Taviano, M.F. Comparative Analysis of Flavonoid Profile, Antioxidant and Antimicrobial Activity of the Berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. J. Agric. Food Chem. 2009, 57, 6570–6577. [Google Scholar] [CrossRef]
- Maurício, E.M.; Branco, P.; Araújo, A.L.B.; Roma-Rodrigues, C.; Lima, K.; Duarte, M.P.; Fernandes, A.R.; Albergaria, H. Evaluation of Biotechnological Active Peptides Secreted by Saccharomyces cerevisiae with Potential Skin Benefits. Antibiotics 2024, 13, 881. [Google Scholar] [CrossRef]
- Ferron, L.; Colombo, R.; Mannucci, B.; Papetti, A. A New Italian Purple Corn Variety (Moradyn) Byproduct Extract: Antiglycative and Hypoglycemic In Vitro Activities and Preliminary Bioaccessibility Studies. Molecules 2020, 25, 1958. [Google Scholar] [CrossRef]
Peak | tR (min) | UV λmax (nm) | [M+H]+ | [M−H]− | MS/MS Fragment Ions m/z (Relative Abundance) | Proposed Identity | Class |
---|---|---|---|---|---|---|---|
1 | 6.2 | 273.2 | 193 | 191 | 191 (31); 127 (15); 93 (27); 87 (26); 85 (100) (25); 59 (22); 45 (24) | Quinic acid | Phenolic acid |
2 | 8.5 | 279.1 | 307 | 305 | 222 (18), 184 (23), 183 (20), 167 (33), 139 (31), 137(22), 125 (100) | (+)-Gallocatechin | Flavan-3-ol |
3 | 9.6 | 276.8 | 595 | 593 | 593 (28); 425 (40); 407 (95); 360 (79); 289 (91); 177 (90); 125 (100) | (Epi)gallocatechin (epi)catechin | Proanthocyanidin |
4 | 12.2 | 276.8 | 595 | 593 | 595 (50); 451(47); 425 (91); 407 (87); 289 (85); 177 (91); 125 (100) | (Epi)gallocatechin (epi)catechin | Proanthocyanidin |
5 | 13.2 | 278 | 899 | 897 | 897 (11); 611(9); 593 (25);305 (100); 289 (3); 125 (5) | (Epi)gallocatechin (epi)gallocatechin (epi)catechin | Proanthocyanidin |
6 | 18.3 | 325.3 | 355 | 353 | 191 (100); 179 (75), 161 (5); 155 (4); 135 (41) | 3-O-caffeoyilquinic acid 1 (neochlorogenic acid) | Phenolic acid |
7 | 19.2 | 280.3; 314.7 | 579 | 577 | 425 (32); 407 (68); 289 (89); 206 (27); 125 (100); 123 (25) | (Epi)catechin (epi)catechin | Proanthocyanidin |
8 | 20.8 | 279.1; 317.0 | 579 | 577 | 407 (51);385 (100); 289 (45); 223 (40); 125 (52) | (Epi)catechin (epi)catechin | Proanthocyanidin |
9 | 21.6 | 282.7; 313:5 | 883 | 881 | 881 (18); 611 (15); 593 (22): 577 (11); 515 (5); 305 (100); 289 (3); 125 (4) | (Epi)gallocatechin (epi)catechin (epi)catechin | Proanthocyanidin |
10 | 22.1 | 280.3 | 307 | 305 | 219 (11), 177 (11), 167 (16), 165 (10), 139 (21), 137(22), 125 (100) | (−)Epigallocatechin | Flavan-3-ol |
11 | 24.8 | 279.1 | 291 | 289 | 298 (41); 289 (11); 203 (50); 125 (87); 123 (55); 109(100) | (+)-Catechin 1 | Flavan-3-ol |
12 | 28.9 | 241; 326.5 | 355 | 353 | 191 (72); 179 (72); 173 (100); 135 (45) | 4-O-caffeoyilquinic acid (cryptochlorogenic acid) | Phenolic acid |
13 | 30.7 | 326.5 | 355 | 353 | 191 (100); 179 (2); 173 (2); 161 (1) | 5-O-caffeoyilquinic acid 1 (chlorogenic acid) | Phenolic acid |
14 | 35.8 | 279.1 | 291 | 289 | 289 (15); 151 (48); 149 (33); 125 (100); 124 (85); 123 (62);109 (74) | (−)-Epicatechin 1 | Flavan-3-ol |
15 | 47.4 | 255.6; 355.1 | 757 | 755 | 757 (38); 611 (75); 465, (21); 303 (100) | Quercetin 3-O-(2″,6″-di-O-rhamnosyl) galactoside | Flavonol |
16 | 47.6 | 256.7; 355.1 | 757 | 755 | 757 (38); 611 (66); 465, (21); 303 (100) | Quercetin 3-O-(2″,6″-di-O-rhamnosyl) glucoside | Flavonol |
17 | 50.3 | 256.7; 356.3 | 611 | 609 | 610 (5) 609(100); 301(11); 300 (12) | Quercetin-3-O-rutinoside 1 (rutin) | Flavonol |
18 | 50.3 | 256.7; 356.3 | 479 | 477 | 302(3); 301 (100); 300(2); 179 (3); 151 (5); 113 (4) | Quercetin-3-O-glucuronide | Flavonol |
19 | 50.3 | 256.7; 356.3 | 465 | 463 | 463 (22); 301(72); 300(100);271;227; 151;146 | Quercetin-3-O-galactoside 1 (hyperoside) | Flavonol |
20 | 50.8 | 328 | 517 | 515 | 353 (100); 179 (58); 173 (82); 191 (17) | 1,4-dicaffeoylquinic acid | Phenolic acid |
Plant Extracts | DER | Phenolic Content (mg GAEs/g) | Flavonoid Content (mg CEs/g) | Condensed Tannin Content (mg CCEs/g) |
---|---|---|---|---|
PcAE | 15:1 | 212.1 a ± 3.7 | 122.6 a ± 3.2 | 17.43 a ± 0.09 a |
PcEE | 2.9:1 | 415.2 b ± 1.1 | 229.1 b ± 3.1 | 35.74 b ± 0.03 b |
Parameters | Groups | ||||
---|---|---|---|---|---|
Control (vehicle) | Dose 1 (40 mg/kg) | Dose 2 (170 mg/kg) | Dose 3 (300 mg/kg) | Acarbose (50 mg/kg) | |
Initial weight (g) | 34.2 ± 3.6 | 34.2 ± 3.5 | 33.9 ± 5.0 | 33.6 ± 3.5 | 34.6 ± 4.2 |
Final weight (g) | 34.9 ± 3.0 | 35.4 ± 3.4 | 31.5 ± 3.6 | 31.9 ± 4.5 | 34.8 ± 4.2 |
Body weight variation (%) | 1.0 ± 2.7 | 3.0 ± 1.4 #¥ | −3.4 ± 5.8 * | −2.1 ± 1.8 | 0.7 ± 2.3 |
Mean food intake per animal (g/day) | 5.44 ± 1.96 | 5.13 ± 1.63 | 4.4 ± 1.82 | 4.35 ± 1.66 | 5.08 ± 1.78 |
Samples | α-Amylase IC50 (µg/mL) | α-Glucosidase IC50 (µg/mL) | DPP4 IC50 (µg/mL) |
---|---|---|---|
PcAE | 97.7 c ± 1.5 | 17.7 b ± 0.3 | 1828.2 b ± 3.6 |
PcEE | 19.1 b ± 0.5 | 7.8 a ± 0.2 | 1611.9 a ± 9.3 |
Acarbose | 11.4 a ± 0.1 | 350.3 c ± 15.3 | - |
Sitagliptin | - | - | 0.0154 ± 0.0003 |
Samples | CUPRAC (mg AA/g) | FRAP (mg AA/g) | DPPH• IC50 (µg/mL) | O2•− IC50 (µg/mL) |
---|---|---|---|---|
PcAE | 438.9 a ± 3.1 | 238.1 a ± 5.1 | 49.0 c ± 0.7 | 15.7 b ± 1.4 |
PcEE | 941.9 b ± 38.0 | 498.1 b ± 1.5 | 23.9 b ± 0.5 | 7.0 a ± 1.0 |
Ascorbic acid | - | - | 17.3 a ± 0.3 | - |
Gallic acid | - | - | - | 16.0 c ± 3.1 |
Samples | BSA-FRU IC50 (µg/mL) | BSA-GLU IC50 (µg/mL) |
---|---|---|
PcAE | 23.0 ± 0.5 b | 24.3 ± 0.1 b |
PcEE | 11.0 ± 0.2 a | 19.7 ± 0.1 a |
Aminoguanidine | 136.6 ± 2.1 c | 76.2 ± 0.6 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, K.; Malmir, M.; Sabiha, S.; Pinto, R.; Silva, I.M.d.; Figueira, M.E.; Rocha, J.; Duarte, M.P.; Silva, O. Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes. Pharmaceuticals 2025, 18, 913. https://doi.org/10.3390/ph18060913
Lima K, Malmir M, Sabiha S, Pinto R, Silva IMd, Figueira ME, Rocha J, Duarte MP, Silva O. Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes. Pharmaceuticals. 2025; 18(6):913. https://doi.org/10.3390/ph18060913
Chicago/Turabian StyleLima, Katelene, Maryam Malmir, Shabnam Sabiha, Rui Pinto, Isabel Moreira da Silva, Maria Eduardo Figueira, João Rocha, Maria Paula Duarte, and Olga Silva. 2025. "Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes" Pharmaceuticals 18, no. 6: 913. https://doi.org/10.3390/ph18060913
APA StyleLima, K., Malmir, M., Sabiha, S., Pinto, R., Silva, I. M. d., Figueira, M. E., Rocha, J., Duarte, M. P., & Silva, O. (2025). Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes. Pharmaceuticals, 18(6), 913. https://doi.org/10.3390/ph18060913