Subcritical Water and Pressurised Ethanol Extractions for Maximum Recovery of Antioxidants from Orange Peel Herbal Dust with Evaluation of Its Pharmacological Potential Using In Silico and In Vitro Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Pressurised Liquid Extraction
2.3. Determination of Extraction Yield and Total Phenol Content in the OPD Extracts
2.4. LC-ESI-MS/MS Analysis of OPD Extracts
2.5. In Silico Studies
2.6. Cell Culture
2.7. Preparation of Extract Solution for Treatment
2.8. H4IIE Cell Viability Measurement
2.9. Morphological Observation
2.10. Colony Formation Assay (Long-Term Cell Survival Assay)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield and Total Phenolic Content of Obtained OPD Extracts
3.2. LC-ESI-MS/MS Profiling of Liquid OPD Extracts
3.3. In Silico Evaluation of Skin Anti-Ageing Potential
3.4. In Vitro Evaluation of Antitumor Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colegate, S.M.; Molyneux, R.J. Bioactive Natural Products: Detection, Isolation, and Structural Determination, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Vidović, S.; Vladić, J.; Nastić, N.; Jokić, S. Subcritical and supercritical extraction in food by-product and food waste valorization. In Innovative Food Processing Technologies: A Comprehensive Review; Muthukumarappan, K., Knoerzer, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 705–721. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical Water Extraction of Natural Products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef] [PubMed]
- Vladić, J.; Jakovljević, M.; Molnar, M.; Vidović, S.; Tomić, M.; Drinić, Z.; Jokić, S. Valorization of Yarrow (Achillea millefolium L.) by-Product through Application of Subcritical Water Extraction. Molecules 2020, 25, 1878. [Google Scholar] [CrossRef] [PubMed]
- Vidović, S.; Nastić, N.; Gavarić, A.; Cindrić, M.; Vladić, J. Development of green extraction process to produce antioxidant-rich extracts from purple coneflower. Sep. Sci. Technol. 2019, 54, 1174–1181. [Google Scholar] [CrossRef]
- Vladić, J.; Canli, O.; Pavlić, B.; Zeković, Z.; Vidović, S.; Kaplan, M. Optimization of Satureja Montana Subcritical Water Extraction Process and Chemical Characterization of Volatile Fraction of Extracts. J. Supercrit. Fluids 2017, 120, 86–94. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Brown, A.B.; Mudhoo, A.; Timko, M.T.; Rostagno, M.A.; Forster-Carneiro, T. Applications of Subcritical and Supercritical Water Conditions for Extraction, Hydrolysis, Gasification, and Carbonization of Biomass: A Critical Review. Biofuel Res. J. 2017, 4, 611–626. [Google Scholar] [CrossRef]
- Ciftci, D.; Saldaña, M.D.A. Hydrolysis of Sweet Blue Lupin Hull Using Subcritical Water Technology. Bioresour. Technol. 2015, 194, 75–82. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical Water Extraction of Bioactive Compounds from Waste Onion Skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Monrad, J.K.; Howard, L.R.; King, J.W.; Srinivas, K.; Mauromoustakos, A. Subcritical Solvent Extraction of Anthocyanins from Dried Red Grape Pomace. J. Agric. Food Chem. 2010, 58, 2862–2868. [Google Scholar] [CrossRef]
- Marcus, Y. Extraction by Subcritical and Supercritical Water, Methanol, Ethanol and Their Mixtures. Separations 2018, 5, 4. [Google Scholar] [CrossRef]
- Rahmana Putra, N.; Nur Rizkiyah, D.; Idham, Z.; Abbas Ahmad Zaini, M.; Azizi Che Yunus, M.; Hazim Abdul Aziz, A. Optimization and Solubilization of Interest Compounds from Roselle in Subcritical Ethanol Extraction (See). Alex. Eng. J. 2023, 65, 59–74. [Google Scholar] [CrossRef]
- Mufari, J.R.; Rodríguez-Ruiz, A.C.; Bergesse, A.E.; Miranda-Villa, P.P.; Nepote, V.; Velez, A.R. Bioactive Compounds Extraction from Malted Quinoa Using Water-Ethanol Mixtures under Subcritical Conditions. LWT 2021, 138, 110574. [Google Scholar] [CrossRef]
- Chiou, T.-Y.; Neoh, T.L.; Kobayashi, T.; Adachi, S. Properties of Extract Obtained from Defatted Rice Bran by Extraction with Aqueous Ethanol under Subcritical Conditions. FSTR 2012, 18, 37–45. [Google Scholar] [CrossRef]
- Li, Y.; Qi, Y.; Li, H.; Chen, Z.; Xu, B. Improving the Cold Water Swelling Properties of Oat Starch by Subcritical Ethanol-Water Treatment. Int. J. Biol. Macromol. 2022, 194, 594–601. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.R.C.; Stefanov, S.; Bombardelli, M.C.M.; Corazza, M.L.; Stateva, R.P. Assessment of Composition and Biological Activity of Arctium Lappa Leaves Extracts Obtained with Pressurized Liquid and Supercritical CO2 Extraction. J. Supercrit. Fluids 2019, 152, 104573. [Google Scholar] [CrossRef]
- Tangkhavanich, B.; Kobayashi, T.; Adachi, S. Effects of Repeated Treatment on the Properties of Rice Stem Extract Using Subcritical Water, Ethanol, and Their Mixture. J. Ind. Eng. Chem. 2014, 20, 2610–2614. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit Statistical Compendium 2020; FAO: Rome, Italy, 2021. [Google Scholar]
- Kanaze, F.I.; Termentzi, A.; Gabrieli, C.; Niopas, I.; Georgarakis, M.; Kokkalou, E. The Phytochemical Analysis and Antioxidant Activity Assessment of Orange Peel (Citrus sinensis) Cultivated in Greece—Crete Indicates a New Commercial Source of Hesperidin. Biomed. Chromatogr. 2009, 23, 239–249. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Citrus Processing Wastes: Environmental Impacts, Recent Advances, and Future Perspectives in Total Valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Orrego-Alzate, C.E.; Acosta-Medina, C.D.; Cardona-Alzate, C.A. Integral Use of Orange Peel Waste through the Biorefinery Concept: An Experimental, Technical, Energy, and Economic Assessment. Biomass Conv. Bioref. 2021, 11, 645–659. [Google Scholar] [CrossRef]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of Vegetable Waste into Value Added Products. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of Main Phenolic Compounds in Sweet and Bitter Orange Peel Using CE–MS/MS. Food Chem. 2009, 116, 567–574. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus Flavonoids: Molecular Structure, Biological Activity and Nutritional Properties: A Review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Yi, L.; Ma, S.; Ren, D. Phytochemistry and Bioactivity of Citrus Flavonoids: A Focus on Antioxidant, Anti-Inflammatory, Anticancer and Cardiovascular Protection Activities. Phytochem. Rev. 2017, 16, 479–511. [Google Scholar] [CrossRef]
- Apraj, V.; Pandita, N. Evaluation of Skin Anti-Aging Potential of Citrus Reticulata Blanco Peel. Pharmacogn. Res. 2016, 8, 160–168. [Google Scholar] [CrossRef]
- Stanisic, D.; Liu, L.H.B.; Dos Santos, R.V.; Costa, A.F.; Durán, N.; Tasic, L. New Sustainable Process for Hesperidin Isolation and Anti-Ageing Effects of Hesperidin Nanocrystals. Molecules 2020, 25, 4534. [Google Scholar] [CrossRef]
- Şahin, D.; Çağlar, E.Ş.; Boran, T.; Karadağ, A.E.; Özhan, G.; Üstündağ Okur, N. Development, Characterization of Naringenin-Loaded Promising Microemulsion Formulations, and Demonstration of Anti-Aging Efficacy by in Vitro Enzyme Activity and Gene Expression. J. Drug Deliv. Sci. Technol. 2023, 84, 104422. [Google Scholar] [CrossRef]
- Nastić, N.; Vasić, A.; Šoronja Simović, D.; Vladić, J.; Jokić, S.; Aladić, K.; Vidović, S. Underutilized Rosa Canina Herbal Dust as an Innovative Natural Functional and Health Promoting Ingredient: A Proposal of Two-Novel Approaches. Waste Biomass Valor. 2023, 14, 1207–1217. [Google Scholar] [CrossRef]
- Živković, J.; Vladić, J.; Naffati, A.; Nastić, N.; Šavikin, K.; Tomić, M.; Vidović, S. Comparative Chemical Profiling of Underexploited Arctostaphylos Uva-Ursi l. Herbal Dust Extracts Obtained by Conventional, Ultrasound-Assisted and Subcritical Water Extractions. Waste Biomass Valor. 2022, 13, 4147–4155. [Google Scholar] [CrossRef]
- Sulejmanović, M.; Milić, N.; Mourtzinos, I.; Nastić, N.; Kyriakoudi, A.; Drljača, J.; Vidović, S. Ultrasound-assisted and subcritical water extraction techniques for maximal recovery of phenolic compounds from raw ginger herbal dust toward in vitro biological activity investigation. Food Chem. 2024, 437, 137774. [Google Scholar] [CrossRef]
- Sánchez-Vallejo, C.; Ballesteros-Gómez, A.; Rubio, S. Tailoring Composition and Nanostructures in Supramolecular Solvents: Impact on the Extraction Efficiency of Polyphenols from Vegetal Biomass. Sep. Purif. Technol. 2022, 292, 120991. [Google Scholar] [CrossRef]
- Popovic, A.; Drljaca, J.; Popovic, M.; Miljkovic, D.; Marinovic, J.; Ljubkovic, M.; Kladar, N.; Capo, I. Mitochondrial Energy Metabolism in Baby Hamster Kidney (BHK-21/C13) Cells Treated with Karnozin Extra®. Int. J. Morphol. 2022, 40, 91–97. [Google Scholar] [CrossRef]
- Crowley, L.C.; Christensen, M.E.; Waterhouse, N.J. Measuring Survival of Adherent Cells with the Colony-Forming Assay. Cold Spring Harb. Protoc. 2016, 2016, pdb.prot087171. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, L.; Sugiura, M.; Kato, M. Citrus and Health. In The Genus Citrus; Elsevier: Amsterdam, The Netherlands, 2020; pp. 495–511. ISBN 9780128121634. [Google Scholar]
- Ignat, I.; Volf, I.; Popa, V.I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Oboh, G.; Ademosun, A.O. Characterization of the Antioxidant Properties of Phenolic Extracts from Some Citrus Peels. J. Food Sci. Technol. 2012, 49, 729–736. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Barreira, J.C.M.; Sousa, M.J.; Carvalho, A.M.; Ferreira, I.C.F.R. Targeting Excessive Free Radicals with Peels and Juices of Citrus Fruits: Grapefruit, Lemon, Lime and Orange. Food Chem. Toxicol. 2010, 48, 99–106. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Benito-Román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Subcritical Water Extraction of Phenolic Compounds from Onion Skin Wastes (Allium Cepa Cv. Horcal): Effect of Temperature and Solvent Properties. Antioxidants 2020, 9, 1233. [Google Scholar] [CrossRef]
- Brezo-Borjan, T.; Švarc-Gajić, J.; Morais, S.; Delerue-Matos, C.; Rodrigues, F.; Lončarević, I.; Pajin, B. Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water. Processes 2023, 11, 1766. [Google Scholar] [CrossRef]
- Razola-Díaz, M.D.C.; Guerra-Hernández, E.J.; Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; García-Villanova, B.; Verardo, V. Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange by-Products. Foods 2021, 10, 1120. [Google Scholar] [CrossRef]
- Krivošija, S.; Jerković, I.; Nastić, N.; Zloh, M.; Jokić, S.; Banožić, M.; Aladić, K.; Vidović, S. Green Pathway for Utilisation of Orange Peel Dust and In Silico Evaluation of Pharmacological Potential. Microchem. J. 2023, 193, 109132. [Google Scholar] [CrossRef]
- M’hiri, N.; Irina, I.; Cédric, P.; Ghoul, M.; Boudhrioua, N. Antioxidants of Maltease Orange Peel: Comparative Investigation of the Efficiency of Four Extraction Methods. J. Appl. Pharm. Sci. 2017, 7, 126–135. [Google Scholar] [CrossRef]
- Londoño-Londoño, J.; Lima, V.R.D.; Lara, O.; Gil, A.; Pasa, T.B.C.; Arango, G.J.; Pineda, J.R.R. Clean Recovery of Antioxidant Flavonoids from Citrus Peel: Optimizing an Aqueous Ultrasound-Assisted Extraction Method. Food Chem. 2010, 119, 81–87. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Torres-Mayanga, P.C.; Ávila, P.F.; Tompsett, G.A.; Marostica, M.; Goldbeck, R.; Timko, M.T.; Rostagno, M.; Martinez, J.; et al. Sequential Subcritical Water Process Applied to Orange Peel for the Recovery Flavanones and Sugars. J. Supercrit. Fluids 2020, 160, 104789. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; Barbosa, P.D.P.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of Phenolic Compounds from Citrus By-Products Using Pressurized Liquids—An Application to Orange Peel. Food Bioprod. Process 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Ahmad Nayik, G. Citrus Peel as a Source of Functional Ingredient: A Review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Kim, H.-J.; Ko, M.-J.; Chung, M.-S. Recovery of Hesperidin and Narirutin from Waste Citrus Unshiu Peel Using Subcritical Water Extraction Aided by Pulsed Electric Field Treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef]
- Chen, R.; Qi, Q.-L.; Wang, M.-T.; Li, Q.-Y. Therapeutic Potential of Naringin: An Overview. Phar Biol. 2016, 54, 3203–3210. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Lozano, M.V.; Rodríguez-Robledo, V.; González-Fuentes, J.; Marcos, P.; Villaseca, N.; Arroyo-Jiménez, M.M.; Santander-Ortega, M.J. Pressurized Extraction as an Opportunity to Recover Antioxidants from Orange Peels: Heat Treatment and Nanoemulsion Design for Modulating Oxidative Stress. Molecules 2021, 26, 5928. [Google Scholar] [CrossRef]
- Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity. Fitoterapia 2015, 101, 179–187. [Google Scholar] [CrossRef]
- Bielach-Bazyluk, A.; Zbroch, E.; Mysliwiec, H.; Rydzewska-Rosolowska, A.; Kakareko, K.; Flisiak, I.; Hryszko, T. Sirtuin 1 and Skin: Implications in Intrinsic and Extrinsic Aging—A Systematic Review. Cells 2021, 10, 813. [Google Scholar] [CrossRef]
- Han, K.-H.; Choi, H.-R.; Won, C.-H.; Chung, J.-H.; Cho, K.-H.; Eun, H.-C.; Kim, K.-H. Alteration of the TGF-β/SMAD Pathway in Intrinsically and UV-Induced Skin Aging. Mech. Ageing Dev. 2005, 126, 560–567. [Google Scholar] [CrossRef]
- Gellibert, F.; Woolven, J.; Fouchet, M.-H.; Mathews, N.; Goodland, H.; Lovegrove, V.; Laroze, A.; Nguyen, V.-L.; Sautet, S.; Wang, R.; et al. Identification of 1,5-Naphthyridine Derivatives as a Novel Series of Potent and Selective Tgf-β Type i Receptor Inhibitors. J. Med. Chem. 2004, 47, 4494–4506. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, Antioxidant and Anti-Inflammatory Activities of Kaempferol and Its Corresponding Glycosides and the Enzymatic Preparation of Kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Zhao, Y.; Lu, C.; Zhao, R. Citric Acid Enhances the Activities of Astilbin on Psoriasis via Down-Regulation of p -Glycoprotein. Mol. Pharm. 2023, 20, 1964–1974. [Google Scholar] [CrossRef]
- Yang, Z.; Teng, Y.; Wang, H.; Hou, H. Enhancement of Skin Permeation of Bufalin by Limonene via Reservoir Type Transdermal Patch: Formulation Design and Biopharmaceutical Evaluation. Int. JPharm 2013, 447, 231–240. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hamuel, J.D. The Occurrence, Properties and Significance of Citrinin Mycotoxin. J. Plant Pathol. Microbiol. 2015, 6, 2. [Google Scholar] [CrossRef]
- Al Qaisi, Y.; Alfarrayeh, I.; Alsarayreh, A.; Khleifat, K.; Abu-Nwas, N. Assessment of Antioxidant Potential, Cytotoxicity, and Anticancer Activity of Methanolic Extracts from Selected Wild Medicinal Plants. Phytomed. Plus 2024, 4, 100534. [Google Scholar] [CrossRef]
- Barzegarparay, F.; Najafzadehvarzi, H.; Pourbagher, R.; Parsian, H.; Ghoreishi, S.M.; Mortazavi-Derazkola, S. Green Synthesis of Novel Selenium Nanoparticles Using Crataegus Monogyna Extract (Senps@cm) and Investigation of Its Toxicity, Antioxidant Capacity, and Anticancer Activity against MCF-7 as a Breast Cancer Cell Line. Biomass Conv. Bioref. 2024, 14, 25369–25378. [Google Scholar] [CrossRef]
- Jongrungraungchok, S.; Madaka, F.; Wunnakup, T.; Sudsai, T.; Pongphaew, C.; Songsak, T.; Pradubyat, N. In Vitro Antioxidant, Anti-Inflammatory, and Anticancer Activities of Mixture Thai Medicinal Plants. BMC Complement. Med. Ther. 2023, 23, 43. [Google Scholar] [CrossRef]
- Rani, D.M.; Wongso, H.; Purwoko, R.Y.; Winarto, N.B.; Shalas, A.F.; Triatmoko, B.; Pratama, A.N.W.; Keller, P.A.; Nugraha, A.S. Anti-Cancer Bioprospecting on Medicinal Plants from Indonesia: A Review. Phytochemistry 2023, 216, 113881. [Google Scholar] [CrossRef]
- Chen, Z.-T.; Chu, H.-L.; Chyau, C.-C.; Chu, C.-C.; Duh, P.-D. Protective Effects of Sweet Orange (Citrus sinensis) Peel and Their Bioactive Compounds on Oxidative Stress. Food Chem. 2012, 135, 2119–2127. [Google Scholar] [CrossRef]
- Banjerdpongchai, R.; Wudtiwai, B.; Khaw-on, P.; Rachakhom, W.; Duangnil, N.; Kongtawelert, P. Hesperidin from Citrus Seed Induces Human Hepatocellular Carcinoma HepG2 Cell Apoptosis via Both Mitochondrial and Death Receptor Pathways. Tumor Biol. 2016, 37, 227–237. [Google Scholar] [CrossRef]
- Bansal, K.; Bhati, H.; Vanshita; Bajpai, M. New Insights into Therapeutic Applications and Nanoformulation Approaches of Hesperidin: An Updated Review. Pharmacol. Res.-Mod. Chin. Med. 2024, 10, 100363. [Google Scholar] [CrossRef]
- Zangade, S.B.; Dhulshette, B.S.; Patil, P.B. Flavonoid-Metal Ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review. Mini-Rev. Med. Chem. 2024, 24, 1046–1060. [Google Scholar] [CrossRef]
- Hasnat, H.; Shompa, S.A.; Islam, M.M.; Alam, S.; Richi, F.T.; Emon, N.U.; Ashrafi, S.; Ahmed, N.U.; Chowdhury, M.N.R.; Fatema, N.; et al. Flavonoids: A Treasure House of Prospective Pharmacological Potentials. Heliyon 2024, 10, e27533. [Google Scholar] [CrossRef]
- Puteri, A.R.; Huda, H.B. Flavonoids and Their Role As Anti-Inflammatory Agents. Biomed. J. Indones. 2024, 10, 42–48. [Google Scholar] [CrossRef]
- Lobo, C.L.; Prabhu, P.P.; Dubey, A.; Shetty, A.; Mahadev, M. Exploring the Potential of Hesperidin and Synergistic Formulations in Breast Cancer Management: A Comprehensive Review. Int. J. Pharm. Investig. 2024, 14, 1122–1130. [Google Scholar] [CrossRef]
- Deng, R.; Liu, Y.; Wu, X.; Zhao, N.; Deng, J.; Pan, T.; Cao, L.; Zhan, F.; Qiao, X. Probing the Interaction of Hesperidin Showing Antiproliferative Activity in Colorectal Cancer Cells and Human Hemoglobin. Int. J. Biol. Macromol. 2024, 281, 136078. [Google Scholar] [CrossRef]
- Bakhshan, M.A.; Sheikhzadeh, S.; Delirezh, N. Hesperidin Nanoparticles for Prostate Cancer Therapy: Preparation, Characterization and Cytotoxic Activity. Biomed. Mater. 2024, 19, 035044. [Google Scholar] [CrossRef]
- Chang, T.-M.; Chi, M.-C.; Chiang, Y.-C.; Lin, C.-M.; Fang, M.-L.; Lee, C.-W.; Liu, J.-F.; Kou, Y.R. Promotion of ROS-Mediated Apoptosis, G2/M Arrest, and Autophagy by Naringenin in Non-Small Cell Lung Cancer. Int. J. Biol. Sci. 2024, 20, 1093–1109. [Google Scholar] [CrossRef]
- Elsori, D.; Pandey, P.; Ramniwas, S.; Kumar, R.; Lakhanpal, S.; Rab, S.O.; Siddiqui, S.; Singh, A.; Saeed, M.; Khan, F. Naringenin as Potent Anticancer Phytocompound in Breast Carcinoma: From Mechanistic Approach to Nanoformulations Based Therapeutics. Front. Pharmacol. 2024, 15, 1406619. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Shadboorestan, A. Oxidative Stress and Cancer; the Role of Hesperidin, a Citrus Natural Bioflavonoid, as a Cancer Chemoprotective Agent. Nutr. Cancer 2016, 68, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Bartoszewski, R.; Hering, A.; Marszałł, M.; Stefanowicz Hajduk, J.; Bartoszewska, S.; Kapoor, N.; Kochan, K.; Ochocka, R. Mangiferin Has an Additive Effect on the Apoptotic Properties of Hesperidin in Cyclopia Sp. Tea Extracts. PLoS ONE 2014, 9, e92128. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, M.-J.; Ha, E.; Chung, J.-H. Apoptotic Effect of Hesperidin through Caspase3 Activation in Human Colon Cancer Cells, SNU-C4. Phytomedicine 2008, 15, 147–151. [Google Scholar] [CrossRef]
- Abroon, S.; Nouri, M.; Mahdavi, M. Hesperidin/Salinomycin Combination; a Natural Product for Deactivation of the Pi3k/Akt Signaling Pathway and Anti-Apoptotic Factors in Kg1a Cells. J. Fluoresc. 2024. [Google Scholar] [CrossRef]
- Gavamukulya, Y.; Abou-Elella, F.; Wamunyokoli, F.; AEl-Shemy, H. Phytochemical Screening, Anti-Oxidant Activity and in Vitro Anticancer Potential of Ethanolic and Water Leaves Extracts of Annona Muricata (Graviola). Asian Pac. J. Trop. Med. 2014, 7, S355–S363. [Google Scholar] [CrossRef]
Samples | Pressure [bar] | Temperature [°C] | EY [%] | TPC [mg GAE/g Dry Weight] |
---|---|---|---|---|
SWE orange peel 1 | 20 | 120 | 60.22 ± 0.86 a, 2–4 | 13.83 ± 0.001 b, 6 |
SWE orange peel 2 | 20 | 140 | 66.67 ± 0.45 a, 1–2 | 20.51 ± 2.85 b, 5 |
SWE orange peel 3 | 20 | 160 | 64.43 ± 1.50 a, 1–3 | 32.39 ± 2.85 a, 4 |
SWE orange peel 4 | 20 | 180 | 52.37 ± 0.76 ab, 4–5 | 36.52 ± 0.30 a, 4 |
SWE orange peel 5 | 20 | 200 | 42.07 ± 2.62 bc, 5–6 | 35.99 ± 3.15 a, 4 |
SWE orange peel 6 | 20 | 220 | 30.03 ± 0.64 c, 7 | 35.67 ± 1.50 a, 4 |
PEE orange peel 1 | 20 | 120 | 54.48 ± 0.90 D, 3–4 | 16.59 ± 1.20 E, 5–6 |
PEE orange peel 2 | 20 | 140 | 63.03 ± 1.36 BC, 1–4 | 18.92 ± 2.40 E, 5–6 |
PEE orange peel 3 | 20 | 160 | 72.60 ± 2.07 A, 1 | 32.17 ± 1.05 D, 4 |
PEE orange peel 4 | 20 | 180 | 66.52 ± 0.77 B, 1–2 | 46.07 ± 2.10 C, 3 |
PEE orange peel 5 | 20 | 200 | 60.70 ± 0.22 C, 2–4 | 56.88 ± 3.60 B, 2 |
PEE orange peel 6 | 20 | 220 | 38.93 ± 1.43 E, 6–7 | 70.56 ± 5.85 A, 1 |
Samples | Temperature [°C] | Hesperidin [mg/L] | Naringin [mg/L] | p-Coumaric Acid [mg/L] | Gallic Acid [mg/L] | Caffeic Acid [mg/L] |
---|---|---|---|---|---|---|
SWE orange peel 1 | 120 | 180.28 ± 20.05 c, 5 | 62.37 ± 2.05 a, 1 | 0.32 ± 0.01 b, 3–4 | 0.02 ± 0.001 d, 5 | 0.07 ± 0.001 b, 4–5 |
SWE orange peel 2 | 140 | 401.02 ± 21.21 b, 3–4 | 57.65 ± 8.41 b, 1–3 | 0.31 ± 0.06 b, 3–4 | 0.05 ± 0.01 c, 3–4 | 0.18 ± 0.01 a, 2–3 |
SWE orange peel 3 | 160 | 662.82 ± 22.11 a, 1 | 59.99 ± 2.65 ab, 1–2 | 0.40 ± 0.05 a, 3 | 0.12 ± 0.001 a, 1 | 0.19 ± 0.01 a, 1–2 |
SWE orange peel 4 | 180 | 173.43 ± 13.80 c, 5 | 12.17 ± 1.09 c, 7 | 0.21 ± 0.16 c, 4 | 0.12 ± 0.001 a, 1 | 0.06 ± 0.001 b, 4–6 |
SWE orange peel 5 | 200 | 6.39 ± 8.99 d, 6 | 0.83 ± 0.42 d, 8 | 0.04 ± 0.03 d, 5 | 0.12 ± 0.001 a, 1 | 0.04 ± 0.02 c, 6–7 |
SWE orange peel 6 | 220 | 0.09 ± 0.10 d, 6 | 0.14 ± 0.20 d, 8 | 0.05 ± 0.05 d, 5 | 0.07 ± 0.01 b, 2 | - |
PEE orange peel 1 | 120 | 366.42 ± 12.75 BC, 3–4 | 49.49 ± 1.07 AB, 3–4 | 0.38 ± 0.07 C, 3 | 0.01 ± 0.001 C, 5 | 0.03 ± 0.01 E, 7 |
PEE orange peel 2 | 140 | 325.50 ± 40.26 C, 4 | 46.56 ± 3.61 AB, 4–5 | 0.76 ± 0.05 B, 2 | 0.02 ± 0.01 C, 5 | 0.08 ± 0.01 C, 4 |
PEE orange peel 3 | 160 | 441.76 ± 58.88 AB, 2–3 | 51.49 ± 3.57 A, 2–4 | 1.19 ± 0.05 A, 1 | 0.04 ± 0.01 B, 4 | 0.21 ± 0.01 A, 1 |
PEE orange peel 4 | 180 | 491.77 ± 28.89 A, 2 | 40.56 ± 2.38 B, 5 | 0.66 ± 0.09 B, 2 | 0.07 ± 0.001 A, 2 | 0.16 ± 0.02 B, 3 |
PEE orange peel 5 | 200 | 323.84 ± 28.72 C, 4 | 25.15 ± 3.04 C, 6 | 0.29 ± 0.10 C, 3–4 | 0.07 ± 0.001 A, 2 | 0.05 ± 0.02 DE, 5–7 |
PEE orange peel 6 | 220 | 5.81 ± 4.99 D, 6 | 0.66 ± 0.26 D, 8 | 0.04 ± 0.00 D, 5 | 0.06 ± 0.01 A, 2–3 | 0.06 ± 0.03 CD, 4–6 |
Component | Hesperidin | Naringin | ||
---|---|---|---|---|
Protein Target | GoldScore Fitness Score | DockThor Docking Score (kcal/mol) | Gold Fitness Score | DockThor Docking Score (kcal/mol) |
Fibroblast collagenase | 72.7 | −0.8 | 66.2 | −0.7 |
Elastase | 63.8 | −9.2 | 57.2 | −8.7 |
Sirtuin-1 | 88.4 | −10.2 | 89.6 | −10.1 |
Growth factor beta receptor | 86.5 | −10.0 | 68.0 | −10.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivošija, S.; Ballesteros-Gómez, A.; Zloh, M.; Milić, N.; Popović, A.; Nastić, N.; Vidović, S. Subcritical Water and Pressurised Ethanol Extractions for Maximum Recovery of Antioxidants from Orange Peel Herbal Dust with Evaluation of Its Pharmacological Potential Using In Silico and In Vitro Analysis. Antioxidants 2025, 14, 638. https://doi.org/10.3390/antiox14060638
Krivošija S, Ballesteros-Gómez A, Zloh M, Milić N, Popović A, Nastić N, Vidović S. Subcritical Water and Pressurised Ethanol Extractions for Maximum Recovery of Antioxidants from Orange Peel Herbal Dust with Evaluation of Its Pharmacological Potential Using In Silico and In Vitro Analysis. Antioxidants. 2025; 14(6):638. https://doi.org/10.3390/antiox14060638
Chicago/Turabian StyleKrivošija, Slađana, Ana Ballesteros-Gómez, Mire Zloh, Nataša Milić, Aleksandra Popović, Nataša Nastić, and Senka Vidović. 2025. "Subcritical Water and Pressurised Ethanol Extractions for Maximum Recovery of Antioxidants from Orange Peel Herbal Dust with Evaluation of Its Pharmacological Potential Using In Silico and In Vitro Analysis" Antioxidants 14, no. 6: 638. https://doi.org/10.3390/antiox14060638
APA StyleKrivošija, S., Ballesteros-Gómez, A., Zloh, M., Milić, N., Popović, A., Nastić, N., & Vidović, S. (2025). Subcritical Water and Pressurised Ethanol Extractions for Maximum Recovery of Antioxidants from Orange Peel Herbal Dust with Evaluation of Its Pharmacological Potential Using In Silico and In Vitro Analysis. Antioxidants, 14(6), 638. https://doi.org/10.3390/antiox14060638