Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Orthogonal Experimental Design and Preparation of Surfactants
2.3. Analysis of Intermediates and Products in Surfactant Synthesis
2.4. Measurement of Dynamic Interfacial Tension of Surfactants
2.5. Utilization of Waste Oil as Feedstock for Surfactant Preparation
3. Results and Discussion
3.1. Characterization and Conversion Rates of Synthesized Compounds
3.2. Interfacial Activity of the Synthesized Surfactants
3.2.1. The Effects of Different Reaction Types and Reactants on the Equilibrium Interfacial Tension of Surfactants
3.2.2. Effect of the PUFA Content in Raw Materials on Surfactant Performance
3.3. The Interfacial Performance of Surfactants Prepared from Mixed Fatty Acid Methyl Esters with a High PUFA Content
3.4. The Interfacial Performance of Surfactants Prepared from Different Waste Oils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.J.; Zhang, Y.M.; Liu, X.L.; Wang, J.Y.; Wei, L.M.; Feng, Y.J. Effect of a Hydrophilic Head Group on Krafft Temperature, Surface Activities and Rheological Behaviors of Erucyl Amidobetaines. J. Surfactants Deterg. 2014, 17, 295–301. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Hussai, S.M.S.; Kamal, M.S.; Patil, S.; Solling, T.; Hassan, S.F.; Wang, J.X. Evaluating the Potential of Zwitterionic Surfactants for Enhanced Oil Recovery: Effect of Headgroups and Unsaturation. Energy Fuels 2023, 37, 5078–5086. [Google Scholar] [CrossRef]
- Al-Azani, K.; Abu-Khamsin, S.; Al-Abdrabalnabi, R.; Kamal, M.S.; Patil, S.; Zhou, X.M.; Hussain, S.M.S.; Al Shalabi, E. Oil Recovery Performance by Surfactant Flooding: A Perspective on Multiscale Evaluation Methods. Energy Fuels 2022, 36, 13451–13478. [Google Scholar] [CrossRef]
- Chowdhury, S.; Shrivastava, S.; Kakati, A.; Sangwai, J.S. Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process. Ind. Eng. Chem. Res. 2022, 61, 21–64. [Google Scholar] [CrossRef]
- Lu, J.; Liyanage, P.J.; Solairaj, S.; Adkins, S.; Arachchilage, G.P.; Kim, D.H.; Britton, C.; Weerasooriya, U.; Pope, G.A. New surfactant developments for chemical enhanced oil recovery. J. Pet. Sci. Eng. 2014, 120, 94–101. [Google Scholar] [CrossRef]
- Liang, T.B.; Zhao, X.R.; Yuan, S.; Zhu, J.W.; Liang, X.Y.; Li, X.H.; Zhou, F.J. Surfactant-EOR in tight oil reservoirs: Current status and a systematic surfactant screening method with field experiments. J. Pet. Sci. Eng. 2021, 196, 108097. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Zhou, Y.; Lu, Y.; Chen, B.; Zhang, J. Systematic investigation of the physicochemical properties of eco-friendly biobased anionic-nonionic surfactants for enhanced oil recovery. J. Mol. Liq. 2021, 323, 114628. [Google Scholar] [CrossRef]
- Ahn, C.; Morya, V.K.; Kim, E.-K. Tuning surface-active properties of bio-surfactant sophorolipids by varying fatty-acid chain lengths. Korean J. Chem. Eng. 2016, 33, 2127–2133. [Google Scholar] [CrossRef]
- An, Y.; Yao, X.; Zhong, J.; Pang, S.; Xie, H. Enhancement of oil recovery by surfactant-polymer synergy flooding: A review. Polym. Polym. Compos. 2022, 30. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Han, Y.; Kim, Y.W.; Lee, Y.W.; Hong, S.; Hwang, I.T. Feasibility of unsaturated fatty acid feedstocks as green alternatives in bio-oil refinery. Biofuels Bioprod. Biorefining-Biofpr 2019, 13, 690–722. [Google Scholar] [CrossRef]
- Rajput, C.V.; Sastry, N.V.; Chikhaliya, N.P. Vegetable oils based precursors: Modifications and scope for futuristic bio-based polymeric materials. J. Polym. Res. 2023, 30, 159. [Google Scholar] [CrossRef]
- Oubannin, S.; Bijla, L.; Ahmed, M.N.; Ibourki, M.; El Kharrassi, Y.; Devkota, K.; Bouyahya, A.; Maggi, F.; Caprioli, G.; Sakar, E. Recent advances in the extraction of bioactive compounds from plant matrices and their use as potential antioxidants for vegetable oils enrichment. J. Food Compos. Anal. 2024, 128, 105995. [Google Scholar] [CrossRef]
- Wang, S.F.; Furuno, T.; Cheng, Z. Synthesis of new betaine-type amphoteric surfactants from tall oil fatty acid. J. Wood Sci. 2002, 48, 419–424. [Google Scholar] [CrossRef]
- Mohammed, S.; Ikiensikimama, S.S. Vegetable oils as surfactant feedstocks for enhanced oil recovery: A review. Chem. Eng. Res. Des. 2023, 200, 693–705. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef]
- Bezergianni, S.; Dimitriadis, A. Comparison between different types of renewable diesel. Renew. Sustain. Energy Rev. 2013, 21, 110–116. [Google Scholar] [CrossRef]
- Maki-Arvela, P.; Martínez-Klimov, M.; Murzin, D.Y. Hydroconversion of fatty acids and vegetable oils for production of jet fuels. Fuel 2021, 306, 121673. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Cai, B.X.; Gang, H.Z.; Yang, S.Z.; Mu, B.Z. A family of novel bio-based zwitterionic surfactants derived from oleic acid. Rsc Adv. 2014, 4, 38393–38396. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Gang, H.Z.; Liu, J.F.; Mu, B.Z.; Yang, S.Z. A thermal-stable and salt-tolerant biobased zwitterionic surfactant with ultralow interfacial tension between crude oil and formation brine. J. Pet. Sci. Eng. 2019, 181, 106181. [Google Scholar] [CrossRef]
- Lang, J.Q.; Mtui, H.I.; Gang, H.Z.; Mu, B.Z.; Yang, S.Z. Highly Ca2+-Ion-Tolerant Biobased Zwitterionic Surfactant with High Interfacial Activity. Acs Omega 2022, 7, 32775–32783. [Google Scholar] [CrossRef]
- Wang, W.; Liang, M.Y.; Lang, J.Q.; Homely Isaya, M.; Yang, S.Z.; Mu, B.Z. A new thermal-tolerant bio-based zwitterionic surfactant for enhanced oil recovery. Green Mater. 2023, 12, 50–59. [Google Scholar] [CrossRef]
- Liu, F.H.; Gao, C.L.; Zhang, C.C.; Gang, H.Z.; Mu, B.Z.; Yang, S.Z. A new zwitterionic surfactant with high interfacial activity and high salt tolerance derived from methyl oleate through an eco-friendly aryl-introducing method. J. Surfactants Deterg. 2023, 26, 135–144. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Jia, Z.; Yang, L.; Dong, J. Renewable dissymmetric sulfonate gemini surfactants from addition of sodium hydrogensulfite to alkyl linoleate. Aiche J. 2023, 69, e17898. [Google Scholar] [CrossRef]
- Xu, Y.M.; Zhang, X.X.; Zhao, H.X.; Chen, W.; Yan, X.D.; Liu, H.Q.; Liu, C.Y.; Xu, B.C. Synthesis, Characterization, and Surface-Active Properties of Carboxylbetaine and Sulfobetaine Surfactants based on Vegetable Oil. J. Surfactants Deterg. 2019, 22, 103–114. [Google Scholar] [CrossRef]
- Gao, C.L.; Gang, H.Z.; Liu, J.F.; Mu, B.Z.; Yang, S.Z. A New Benzylated Fatty Acid Amide Amphoteric Surfactant Derived from Hydrogenated Castor Oil with Ultra-Low Interfacial Tension between Crude Oil and Brine. J. Surfactants Deterg. 2021, 24, 511–515. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Cai, B.X.; Xu, W.J.; Gang, H.Z.; Liu, J.F.; Yang, S.Z.; Mu, B.Z. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants. Sci. Rep. 2015, 5, 9971. [Google Scholar] [CrossRef]
- da Silva, E.K.A.; Rial, R.C. Fatty acid profile, nutritional and therapeutic properties of vegetable oils from the Brazilian Cerrado. J. Food Compos. Anal. 2025, 137, 106819. [Google Scholar] [CrossRef]
- Kamyab, B.; Beims, R.; Chambers, D.W.; Bassi, A.S.; Xu, C.B. Sustainable production of high-performance bio-based hydraulic fluids from vegetable oils: Recent advances, current challenges, and future perspectives. Biomass Bioenergy 2024, 183, 107160. [Google Scholar] [CrossRef]
- Sajjadi, B.; Raman, A.A.A.; Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev. 2016, 63, 62–92. [Google Scholar] [CrossRef]
- Analysis of the Supply and Demand Situation of Agricultural Products in China. Available online: http://www.scs.moa.gov.cn/jcyj/202407/t20240712_6458930.htm (accessed on 24 July 2024).
- Hou, P.Q.; Yang, L.; Wang, Y.F.; Wang, L.X.; Li, S.N.; Lu, S.H. Optimize hydrothermal synthesis and electrochemical performance of Li2FeTiO4 composite cathode materials by using orthogonal experimental design method. Ionics 2020, 26, 1657–1662. [Google Scholar] [CrossRef]
- Huang, L.J.; Wang, Y.A.; Wei, Z.H.; Han, X.X.; Mo, Q.; Wang, X.Y.; Li, Y.S. Synthesis and Optimization of a Free-Radical/Cationic Hybrid Photosensitive UV Curable Resin Using Polyurethane Acrylate and Graphene Oxide. Polymers 2022, 14, 1959. [Google Scholar] [CrossRef]
- Tyagi, R.; Sharma, P.; Nautiyal, R.; Lakhera, A.K.; Kumar, V. Synthesis of quaternised guar gum using Taguchi L(16) orthogonal array. Carbohydr. Polym. 2020, 237, 116136. [Google Scholar] [CrossRef]
- Chen, D.M.; Tang, W.J.; Wang, H.; Sheng, Y.Q.; Tan, X.; Shi, Y.; Fan, W.; Ge, S.B. Phosphoric acid pretreatment of poplar to optimize fermentable sugars production based on orthogonal experimental design. Front. Chem. 2023, 11, 1119215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, L.; Jia, L. Variables Affecting Biodiesel Production from Zanthoxylum bungeanum Seed Oil with High Free Fatty Acids. Ind. Eng. Chem. Res. 2012, 51, 3525–3530. [Google Scholar] [CrossRef]
- Yuan, J.; Xiao, J.; Tian, Z.; Yang, K.; Yao, Z. Optimization of Spent Cathode Carbon Purification Process under Ultrasonic Action Using Taguchi Method. Ind. Eng. Chem. Res. 2018, 57, 7700–7710. [Google Scholar] [CrossRef]
- Butler, C.S.G.; Kelleppan-Meaney, V.T.; Williams, A.P.; Giles, L.W.; Vidallon, M.L.P.; Sokolova, A.; de Campo, L.; Tuck, K.L.; Tabor, R.F. Influence of tail group length, amide functionality and added salt ion identity on the behaviour of betaine surfactants. J. Colloid Interface Sci. 2024, 653, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.H.; Zhang, Q.; Liu, Y.; Wang, H.Z.; Cai, H.Y.; Zhang, F.; Tian, M.Z.; Liu, Z.Y.; Zhang, L.; Zhang, L. Effect of Fatty Acids on Interfacial Tensions of Novel Sulfobetaines Solutions. Energy Fuels 2014, 28, 1020–1027. [Google Scholar] [CrossRef]
- Gao, S.F.; Song, Z.Z.; Lan, F.; Li, P.; Zhang, A.H.; Hu, J.J.; Jiang, Q.Z. Studies on Physicochemical Properties and Aggregation Behavior of Two Pairs of Betaine Surfactants. Ind. Eng. Chem. Res. 2019, 58, 22260–22272. [Google Scholar] [CrossRef]
- Verma, C.; Rhee, K.Y.; Quraishi, M.A. Hydrophilicity and hydrophobicity consideration of organic surfactant compounds: Effect of alkyl chain length on corrosion protection. Adv. Colloid Interface Sci. 2022, 306, 102723. [Google Scholar] [CrossRef]
- Gok, Z.; Kucukcongar, S.; Turkyilmaz, M.; Oksuz, S.T. Treatment of strained yoghurt wastewater by electrochemical oxidation method using Taguchi experimental design. J. Appl. Electrochem. 2023, 53, 1595–1607. [Google Scholar] [CrossRef]
- Sekhar, K.P.C.; Patel, D.; Holey, S.A.; Kanjilal, S.; Nayak, R.R. Tail-group unsaturation tailors the surface and self-assembly behavior of C18-fatty acid-based glycolipids. J. Mol. Liq. 2022, 351, 118585. [Google Scholar] [CrossRef]
- Wang, Y.X.; Jiang, L.; Shen, Q.K.; Shen, J.; Han, Y.W.; Zhang, H.M. Investigation on the self-assembled behaviors of C18 unsaturated fatty acids in arginine aqueous solution. RSC Adv. 2017, 7, 41561–41572. [Google Scholar] [CrossRef]
Vegetable Oils | Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Oleic Acid (C18:1) | Linoleic Acid (C18:2) | Linolenic Acid (C18:3) |
---|---|---|---|---|---|
Palm oil | 40.2 ± 1.6 | 1.36 ± 1.26 | 42.5 ± 2.7 | 5.50 ± 2.89 | trace |
Soybean oil | 10.2 ± 0.7 | 1.86 ± 0.10 | 19.6 ± 5.5 | 50.3 ± 11.9 | trace |
Rapeseed oil | 3.87 ± 0.10 | 0.500 ± 0.100 | 72.8 ± 5.8 | 17.2 ± 3.8 | trace |
Peanut oil | 7.24 ± 1.00 | 2.00 ± 0.50 | 60.0 ± 10.0 | 10.6 ± 8.0 | trace |
Factor | A (Alkylation) | B (Amidation) | C (Quaternization) | |
---|---|---|---|---|
Level | 1 | |||
2 | ||||
3 |
Raw Material | System | A (Alkylation) | B (Amidation) | C (Quaternization) | D (Blank Column) |
---|---|---|---|---|---|
Mixed fatty acid methyl esters with varying PUFA/MUFA ratios (low, medium, and high) | 1 | A1 * | B1 * | C1 * | 1 |
2 | A1 | B2 * | C2 * | 2 | |
3 | A1 | B3 * | C3 * | 3 | |
4 | A2 * | B1 | C2 | 3 | |
5 | A2 | B2 | C3 | 1 | |
6 | A2 | B3 | C1 | 2 | |
7 | A3 * | B1 | C3 | 2 | |
8 | A3 | B2 | C1 | 3 | |
9 | A3 | B3 | C2 | 1 |
Salt | Concentration (mg/L) |
---|---|
NaCl | 1588.3 |
Na2CO3 | 381.6 |
NaHCO3 | 3176.0 |
Na2SO4 | 17.1 |
CaCl2 | 112.2 |
MgCl2 | 42.9 |
Composition | Amount |
---|---|
Acid value | 0.081 mg KOH/g |
Density | 0.837 g/cm3 |
Viscosity | 19.344 mPa S |
Organic acids | 0.16 wt% |
Asphaltene | 8.42 wt% |
Resins | 23.68% |
3 Hydrocarbon (with primary alkanes: C13–C31) | 66.3 wt% |
System | Low Ratio of Linoleic/Oleic Acid | Moderate Ratio of Linoleic/Oleic Acid | High Ratio of Linoleic/Oleic Acid | ||||||
---|---|---|---|---|---|---|---|---|---|
Alkylation | Amidation | Quaternization | Alkylation | Amidation | Quaternization | Alkylation | Amidation | Quaternization | |
1 | 98.1 | 96.6 | 96.8 | 96.3 | 90.1 | 99.8 | 94.7 | 90.9 | 93.7 |
2 | 97.9 | 90.1 | 91.2 | 93.3 | 94.8 | 96.6 | 94.2 | 91.3 | 90.1 |
3 | 97.9 | 98.1 | 99.6 | 98.9 | 93.8 | 98.9 | 97.0 | 91.2 | 90.6 |
4 | 99.6 | 96.6 | 91.3 | 98.8 | 97.7 | 97.4 | 98.0 | 96.2 | 97.5 |
5 | 99.7 | 98.6 | 99.6 | 99.5 | 97.3 | 97.5 | 97.6 | 90.0 | 96.5 |
6 | 99.8 | 99.8 | 99.5 | 99.8 | 98.3 | 96.7 | 99.6 | 93.6 | 90.5 |
7 | 99.4 | 97.4 | 97.4 | 97.9 | 94.5 | 99.8 | 95.2 | 96.9 | 92.9 |
8 | 99.3 | 99.5 | 99.4 | 97.9 | 91.9 | 98.2 | 97.1 | 96.9 | 97.1 |
9 | 99.9 | 98.9 | 90.2 | 99.6 | 97.1 | 90.0 | 97.9 | 94.8 | 93.1 |
System | Factor | Low Ratio Linoleic/Oleic Acid | Medium Ratio Linoleic/Oleic Acid | High Ratio Linoleic/Oleic Acid | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | 0.50 g/L | 3.0 g/L | 0.50 g/L | 3.0 g/L | 0.50 g/L | 3.0 g/L | |
Average IFTequ (10−3 mN/m) | ||||||||||
1 | A1 | B1 | C1 | 1 | 1.90 | 3.00 | 2.96 | 2.84 | 8.80 | 7.20 |
2 | A1 | B2 | C2 | 2 | 11.4 | 34.0 | 4.00 | 12.0 | 14.0 | 30.0 |
3 | A1 | B3 | C3 | 3 | 60.2 | 90.9 | 64.0 | 90.9 | 32.0 | 80.0 |
4 | A2 | B1 | C2 | 3 | 1.60 | 3.99 | 2.50 | 3.90 | 6.40 | 7.22 |
5 | A2 | B2 | C3 | 1 | 32.0 | 8.00 | 22.0 | 20.0 | 51.8 | 161 |
6 | A2 | B3 | C1 | 2 | 3.00 | 2.85 | 3.20 | 3.20 | 11.1 | 11.8 |
7 | A3 | B1 | C3 | 2 | 12.9 | 24.0 | 12.3 | 7.60 | 21.0 | 57.8 |
8 | A3 | B2 | C1 | 3 | 3.00 | 3.00 | 3.60 | 3.30 | 18.0 | 14.3 |
9 | A3 | B3 | C2 | 1 | 17.0 | 24.5 | 12.5 | 86.5 | 74.6 | 86.0 |
Raw Materials | Concentration | A | B | C | D | Degree of Impact | Optimal Combination | |
---|---|---|---|---|---|---|---|---|
Raw materials (low ratio of linoleic/oleic acid) | 3.0 g/L | k1 | 121 | 208 | 339 | 166 | C > A > B | A2B1C1 |
k2 | 242 | 162 | 107 | 141 | ||||
k3 | 139 | 131 | 56.0 | 195 | ||||
R | 121 | 77.0 | 283 | 54.0 | ||||
0.50 g/L | k1 | 210 | 410 | 397 | 205 | C > B > A | A2B1C1 | |
k2 | 330 | 150 | 257 | 166 | ||||
k3 | 156 | 136 | 42.0 | 324 | ||||
R | 174 | 274 | 355 | 158 | ||||
Raw materials (medium ratio of linoleic/oleic acid) | 3.0 g/L | k1 | 149 | 248 | 323 | 139 | C > B > A | A2B1C1 |
k2 | 206 | 143 | 115 | 174 | ||||
k3 | 148 | 112 | 64.0 | 189 | ||||
R | 58.0 | 136 | 259 | 50.0 | ||||
0.50 g/L | k1 | 201 | 273 | 309 | 155 | C > B > A | A2B1C1 | |
k2 | 253 | 191 | 244 | 215 | ||||
k3 | 146 | 136 | 47.0 | 231 | ||||
R | 107 | 137 | 262 | 76.0 | ||||
Raw materials (high ratio of linoleic/oleic acid) | 3.0 g/L | k1 | 61.5 | 98.3 | 97.9 | 52.2 | C > B > A | A2B1C1 |
k2 | 76.6 | 36.5 | 61.2 | 45.1 | ||||
k3 | 33.0 | 36.2 | 11.9 | 73.7 | ||||
R | 43.6 | 62.1 | 86.0 | 28.5 | ||||
0.50 g/L | k1 | 72.1 | 106 | 86.4 | 48.8 | B > C > A | A2B1C1 | |
k2 | 88.5 | 48.8 | 80.4 | 69.7 | ||||
k3 | 38.9 | 44.9 | 32.7 | 81.0 | ||||
R | 49.6 | 61.1 | 53.7 | 32.2 |
Factors | Degrees of Freedom (f) | Sum of Squares (S) | Variance (V) | F Value | p Value | ||
---|---|---|---|---|---|---|---|
Raw materials (low ratio of linoleic acid to oleic acid) | 3.0 g/L | A | 2 | 2.55 × 104 | 1.27 × 104 | 17.3 | 0.00320 |
B | 2 | 0.913 × 104 | 0.456 × 104 | 6.19 | 0.0347 | ||
C | 2 | 13.7 × 104 | 6.85 × 104 | 92.7 | 0.00003 | ||
D | 6 | 0.442 × 104 | 0.0737 × 104 | ||||
0.50 g/L | A | 2 | 4.76 × 104 | 2.38 × 104 | 3.52 | 0.0972 | |
B | 2 | 14.2 × 104 | 7.10 × 104 | 10.5 | 0.0108 | ||
C | 2 | 19.2 × 104 | 9.61 × 104 | 14.2 | 0.00530 | ||
D | 6 | 4.06 × 104 | 0.676 × 104 | ||||
Raw materials (medium ratio of linoleic acid to oleic acid) | 3.0 g/L | A | 2 | 0.671 × 104 | 0.336 × 104 | 5.19 | 0.0490 |
B | 2 | 3.07 × 104 | 1.53 × 104 | 23.8 | 0.00140 | ||
C | 2 | 11.3 × 104 | 5.65 × 104 | 87.5 | 0.00004 | ||
D | 6 | 0.388 × 104 | 0.0646 × 104 | ||||
0.50 g/L | A | 2 | 1.69 × 104 | 0.846 × 104 | 5.19 | 0.0490 | |
B | 2 | 2.85 × 104 | 1.42 × 104 | 8.74 | 0.0167 | ||
C | 2 | 11.1 × 104 | 5.57 × 104 | 34.2 | 0.00052 | ||
D | 6 | 0.977 × 104 | 0.163 × 104 | ||||
Raw materials (low ratio of oleic acid to linoleic acid) | 3.0 g/L | A | 2 | 0.294 × 104 | 0.147 × 104 | 6.65 | 0.0300 |
B | 2 | 0.769 × 104 | 0.384 × 104 | 17.4 | 0.00320 | ||
C | 2 | 1.12 × 104 | 0.558 × 104 | 25.3 | 0.0012 | ||
D | 6 | 0.133 × 104 | 0.0221 × 104 | ||||
0.50 g/L | A | 2 | 0.384 × 104 | 0.192 × 104 | 7.16 | 0.0257 | |
B | 2 | 0.698 × 104 | 0.349 × 104 | 13.0 | 0.0065 | ||
C | 2 | 0.519 × 104 | 0.259 × 104 | 9.68 | 0.0132 | ||
D | 6 | 0.161 × 104 | 0.0268 × 104 |
Waste Vegetable Oils | Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Oleic Acid (C18:1) | Linoleic Acid (C18:2) | Linolenic Acid (C18:3) |
---|---|---|---|---|---|
Waste rapeseed oil | 5.46% | 2.49% | 79.5% | 12.6% | trace |
Waste cooking oil | 14.2% | 4.66% | 57.0% | 24.1% | trace |
Waste soybean oil | 11.5% | 3.09% | 27.5% | 57.9% | trace |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-M.; Yang, S.-Z.; Mtui, H.I.; Mu, B.-Z. Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery. Processes 2025, 13, 2159. https://doi.org/10.3390/pr13072159
Zhang X-M, Yang S-Z, Mtui HI, Mu B-Z. Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery. Processes. 2025; 13(7):2159. https://doi.org/10.3390/pr13072159
Chicago/Turabian StyleZhang, Xue-Mei, Shi-Zhong Yang, Homely Isaya Mtui, and Bo-Zhong Mu. 2025. "Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery" Processes 13, no. 7: 2159. https://doi.org/10.3390/pr13072159
APA StyleZhang, X.-M., Yang, S.-Z., Mtui, H. I., & Mu, B.-Z. (2025). Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery. Processes, 13(7), 2159. https://doi.org/10.3390/pr13072159