Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = L filter design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4084 KB  
Article
Searching for Multimode Resonator Topologies with Adaptive Differential Evolution
by Vladimir Stanovov, Sergey Khodenkov, Ivan Rozhnov and Lev Kazakovtsev
Sensors 2025, 25(20), 6447; https://doi.org/10.3390/s25206447 - 18 Oct 2025
Viewed by 184
Abstract
Microwave devices based on microstrip resonators are widely used today in communication, radar, and navigation systems. The requirements to these devices may include specific frequency-selective properties, as well as size and production costs. The design of resonators and filters are mostly performed manually, [...] Read more.
Microwave devices based on microstrip resonators are widely used today in communication, radar, and navigation systems. The requirements to these devices may include specific frequency-selective properties, as well as size and production costs. The design of resonators and filters are mostly performed manually, as the process requires expert knowledge and computationally expensive modeling, so practitioners are usually limited to tuning a chosen example from a set of known, typical topologies. However, the set of possible topologies remains unexplored and may contain specific constructions, which have not been discovered yet. In this study we propose an approach to automatically search the space multimode resonator topologies using a zero-order optimization algorithm and numerous computational experiments. In particular, a family of symmetrical resonators constructed out of four rectangles is considered, and the parameters are tuned by the recently proposed L-SRTDE algorithm. We state the problem of building the topology of a microwave device conductor with specified frequency-selective characteristics as an optimization problem, and the minimized function (target function) in this problem is based on the evaluation of the deviation between the specified frequency-selective characteristics and their values obtained via electrodynamic modeling. The experiments with two target function formulations have shown that the proposed approach allows finding novel topologies and automatically tune them according to the required frequency-selective properties. It is shown that some of the topologies are different from the known ones but still demonstrate high-quality properties. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 8882 KB  
Article
A Robust Design Strategy for Resonant Controllers Tuned Beyond the LCL-Filter Resonance Frequency
by Xin Zhao, Chuan Xie, Josep M. Guerrero and Xiaohua Wu
Electronics 2025, 14(20), 3991; https://doi.org/10.3390/electronics14203991 - 12 Oct 2025
Viewed by 238
Abstract
Compared to the L-filter, the LCL-filter provides superior high-frequency harmonic attenuation for a given inductance. However, it also introduces resonance issues that can compromise system stability. Consequently, the bandwidth of the inner current loop must be maintained well below the resonant frequency [...] Read more.
Compared to the L-filter, the LCL-filter provides superior high-frequency harmonic attenuation for a given inductance. However, it also introduces resonance issues that can compromise system stability. Consequently, the bandwidth of the inner current loop must be maintained well below the resonant frequency of the filter. This paper proposes a robust controller design strategy for LCL-filtered converters to extend the harmonic control range under wide variations in grid impedance. An analysis of the resonant controller phase-frequency characteristics reveals its capability to provide phase compensation up to 2π. Building on this finding, the damping ratio and phase leading angle are systematically optimized through a joint analysis of the phase characteristics introduced by the resonant controller and active damping, thereby enhancing system robustness. With these optimized parameters, the center frequency of the resonant controller can be tuned above the LCL-filter resonance frequency without inducing instability. In contrast to conventional methods, the proposed approach allows the LCL-filter to be designed with a lower resonance frequency. This enables improved attenuation of switching-frequency harmonics without compromising the tracking performance for higher-order harmonics. Such a capability is particularly beneficial in high-power and weak-grid scenarios, where the filter resonance frequency may fall to just a few hundred hertz. Experimental results validate the effectiveness of the proposed design strategy. Full article
Show Figures

Figure 1

18 pages, 2167 KB  
Article
Turning Organic Waste into Energy and Food: Household-Scale Water–Energy–Food Systems
by Seneshaw Tsegaye, Terence Wise, Gabriel Alford, Peter R. Michael, Mewcha Amha Gebremedhin, Ankit Kumar Singh, Thomas H. Culhane, Osman Karatum and Thomas M. Missimer
Sustainability 2025, 17(19), 8942; https://doi.org/10.3390/su17198942 - 9 Oct 2025
Viewed by 550
Abstract
Population growth drives increasing energy demands, agricultural production, and organic waste generation. The organic waste contributes to greenhouse gas emissions and increasing landfill burdens, highlighting the need for novel closed-loop technologies that integrate water, energy, and food resources. Within the context of the [...] Read more.
Population growth drives increasing energy demands, agricultural production, and organic waste generation. The organic waste contributes to greenhouse gas emissions and increasing landfill burdens, highlighting the need for novel closed-loop technologies that integrate water, energy, and food resources. Within the context of the Water–energy–food Nexus (WEF), wastewater can be recycled for food production and food waste can be converted into clean energy, both contributing to environmental impact reduction and resource sustainability. A novel household-scale, closed-loop WEF system was designed, installed and operated to manage organic waste while retrieving water for irrigation, nutrients for plant growth, and biogas for energy generation. The system included a biodigester for energy production, a sand filter system to regulate nutrient levels in the effluent, and a hydroponic setup for growing food crops using the nutrient-rich effluent. These components are operated with a daily batch feeder coupled with automated sensors to monitor effluent flow from the biodigester, sand filter system, and the feeder to the hydroponic system. This novel system was operated continuously for two months using typical household waste composition. Controlled experimental tests were conducted weekly to measure the nutrient content of the effluent at four locations and to analyze the composition of biogas. Gas chromatography was used to analyze biogas composition, while test strips and In-Situ Aqua Troll Multi-Parameter Water Quality Sonde were employed for water quality measurements during the experimental study. Experimental results showed that the system consistently produced biogas with 76.7% (±5.2%) methane, while effluent analysis confirmed its potential as a nutrient source with average concentrations of phosphate (20 mg/L), nitrate (26 mg/L), and nitrite (5 mg/L). These nutrient values indicate suitability for hydroponic crop growth and reduced reliance on synthetic fertilizers. This novel system represents a significant step toward integrating waste management, energy production, and food cultivation at the source, in this case, the household. Full article
Show Figures

Figure 1

48 pages, 12849 KB  
Article
Analysis of the Functional Efficiency of a Prototype Filtration System Dedicated for Natural Swimming Ponds
by Wojciech Walczak, Artur Serafin, Tadeusz Siwiec, Jacek Mielniczuk and Agnieszka Szczurowska
Water 2025, 17(19), 2816; https://doi.org/10.3390/w17192816 - 25 Sep 2025
Viewed by 437
Abstract
Water treatment systems in swimming ponds support the natural self-cleaning capabilities of water based on the functions of repository macrophytes in their regeneration zone and the regulation of the internal metabolism of the reservoirs. As part of the project, a functional modular filtration [...] Read more.
Water treatment systems in swimming ponds support the natural self-cleaning capabilities of water based on the functions of repository macrophytes in their regeneration zone and the regulation of the internal metabolism of the reservoirs. As part of the project, a functional modular filtration chamber with system multiplication capabilities was designed and created. This element is dedicated to water treatment systems in natural swimming ponds. The prototype system consisted of modular filtration chambers and pump sections, as well as equipment adapted to the conditions prevailing in the eco-pool. An innovative solution for selective shutdown of the filtration chamber without closing the circulation circuit was also used, which forms the basis of a patent application. A verified high-performance adsorbent, Rockfos® modified limestone, was used in the filtration chamber. In order to determine the effective filtration rate for three small test ponds with different flow rates (5 m/h, 10 m/h and 15 m/h), the selected physicochemical parameters of water (temperature, pH, electrolytical conductivity, oxygen saturation, total hardness, nitrites, nitrates, and total phosphorus, including adsorption efficiency and bed absorption capacity) were researched before and after filtration. Tests were also carried out on the composition of fecal bacteria and phyto- and zooplankton. Based on high effective phosphorus filtration efficiency of 32.65% during the operation of the bed, the following were determined: no exceedances of the standards for the tested parameters in relation to the German standards for eco-pools (FLL—Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e. V., 2011); lower number of fecal pathogens (on average 393—coliform bacteria; 74—Escherichia coli; 34—fecal enterococci, most probably number/100 mL); the lowest share of problematic cyanobacteria in phytoplankton (<250,000 individuals/dm3 in number and <0.05 µg/dm3—biomass); low chlorophyll a content (2.2 µg/dm3—oligotrophy) and the presence of more favorable smaller forms of zooplankton, an effective filtration speed of 5 m/h. This velocity was recommended in the FLL standards for swimming ponds, which were adopted in this study as a reference for rapid filters. In testing the functional efficiency of a dedicated filtration system for a Type II test pond (50 m2—area and 33 m3—capacity), at a filtration rate of 5 m/h, an average effective phosphorus adsorption efficiency of 18.28–53.98% was observed under the bed work-in-progress conditions. Analyses of other physicochemical water parameters, with appropriate calculations and statistical tests, indicated progressive functional efficiency of the system under bathing conditions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 2919 KB  
Article
Development of an Efficient HPLC-MS/MS Method for the Detection of a Broad Spectrum of Hydrophilic and Lipophilic Contaminants in Marine Waters: An Experimental Design Approach
by Daniel Bona, Marina Di Carro, Emanuele Magi and Barbara Benedetti
Separations 2025, 12(10), 257; https://doi.org/10.3390/separations12100257 - 23 Sep 2025
Viewed by 573
Abstract
The present study develops and optimizes a targeted chromatographic method coupled with mass spectrometry, employing design of experiments, for the determination of several emerging contaminants in environmental waters. Their widespread presence poses environmental and health risks due to their pseudo-persistence and unknown long-term [...] Read more.
The present study develops and optimizes a targeted chromatographic method coupled with mass spectrometry, employing design of experiments, for the determination of several emerging contaminants in environmental waters. Their widespread presence poses environmental and health risks due to their pseudo-persistence and unknown long-term effects. Therefore, sensitive and selective analytical methods are essential for their reliable environmental monitoring. This work focuses on 40 organic micro-contaminants with a wide range of polarities, including drugs, pesticides and UV-filters. Chromatographic separation was performed on a pentafluorophenyl column, and a Face-Centered Design was applied for multivariate optimization. Mobile phase flow and temperature were chosen as the study factors, and retention time and peak width as the responses, as indicators of analytical performance. Two optimized runs (for positive and negative electrospray ionization modes) were obtained, enabling the analysis of all 40 analytes in a total of 29 min. The final method was successfully applied to seawater samples from different sites of the Genoa harbor area. Several analytes were detected and quantified, down to the ng L−1 level, with tracers and pharmaceuticals showing the highest concentrations. The method demonstrated satisfactory accuracy, precision and specificity and is suitable for routine monitoring of a broad range of emerging contaminants in seawater. Full article
Show Figures

Figure 1

18 pages, 3246 KB  
Article
Cascaded Ambiguity Resolution for Pseudolite System-Augmented GNSS PPP
by Caoming Fan, Zheng Yao, Jinling Wang and Mingquan Lu
Remote Sens. 2025, 17(18), 3149; https://doi.org/10.3390/rs17183149 - 11 Sep 2025
Viewed by 531
Abstract
Global navigation satellite System (GNSS) precise point positioning (PPP) enables high-precision global positioning using a single receiver, yet its widespread application is hindered by long convergence times. In contrast, pseudolite system (PLS) transmitters are located relatively close to receivers, and the movement of [...] Read more.
Global navigation satellite System (GNSS) precise point positioning (PPP) enables high-precision global positioning using a single receiver, yet its widespread application is hindered by long convergence times. In contrast, pseudolite system (PLS) transmitters are located relatively close to receivers, and the movement of receivers induces rapid spatial geometry changes, which greatly facilitate fast parameter convergence. Therefore, leveraging the fast-converging PLS to augment GNSS PPP presents a promising solution. This study proposes a tightly coupled PLS and GNSS observation-level integration model. A key factor influencing the augmentation effectiveness is the strategy of ambiguity resolution. In this work, we design a novel strategy of ambiguity resolution, in which the fast convergence property of PLS is taken into account, and the PLS ambiguities are picked out to be fixed independently. This strategy can resolve the PLS ambiguities, GNSS wide-lane (WL) ambiguities, and GNSS L1 ambiguities cascadingly. Further, the fixed ambiguities can be treated as constraints in the filtering process. The experimental results demonstrate that the proposed strategy substantially improves the ambiguity fixing rates, especially in short-duration augmentation. Full article
Show Figures

Figure 1

17 pages, 2566 KB  
Article
Synergistic Epichlorohydrin-Crosslinked Carboxymethyl Xylan for Enhanced Thermal Stability and Filtration Control in Water-Based Drilling Fluids
by Yutong Li, Fan Zhang, Bo Wang, Jiaming Liu, Yu Wang, Zhengli Shi, Leyao Du, Kaiwen Wang, Wangyuan Zhang, Zonglun Wang and Liangbin Dou
Gels 2025, 11(8), 666; https://doi.org/10.3390/gels11080666 - 20 Aug 2025
Viewed by 487
Abstract
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design [...] Read more.
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design and synthesis of epichlorohydrin-crosslinked carboxymethyl xylan (ECX), developed through a synergistic strategy combining covalent crosslinking with hydrophilic functionalization. When incorporated into water-based drilling fluid base slurries, ECX facilitates the formation of a robust gel suspension. Comprehensive structural analyses (FT-IR, XRD, TGA/DSC) reveal that dual carboxymethylation and ether crosslinking impart a 10 °C increase in glass transition temperature and a 15% boost in crystallinity, forming a rigid–flexible three-dimensional network. ECX-modified drilling fluids demonstrate excellent colloidal stability, as evidenced by an enhancement in zeta potential from −25 mV to −52 mV, which significantly improves dispersion and interparticle electrostatic repulsion. In practical formulation (1.0 wt%), ECX achieves a 620% rise in yield point and a 71.6% reduction in fluid loss at room temperature, maintaining 70% of rheological performance and 57.5% of filtration control following dynamic aging at 150 °C. Tribological tests show friction reduction up to 68.2%, efficiently retained after thermal treatment. SEM analysis further confirms the formation of dense and uniform polymer–clay composite filter cakes, elucidating the mechanism behind its high-temperature resilience and effective sealing performance. Furthermore, ECX demonstrates high biodegradability (BOD5/COD = 21.3%) and low aquatic toxicity (EC50 = 14 mg/L), aligning with sustainable development goals. This work elucidates the correlation between molecular engineering, gel microstructure, and macroscopic function, underscoring the great potential of eco-friendly polysaccharide-based crosslinked polymers for industrial gel-based fluid design in harsh environments. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

31 pages, 34013 KB  
Article
Vision-Based 6D Pose Analytics Solution for High-Precision Industrial Robot Pick-and-Place Applications
by Balamurugan Balasubramanian and Kamil Cetin
Sensors 2025, 25(15), 4824; https://doi.org/10.3390/s25154824 - 6 Aug 2025
Viewed by 1082
Abstract
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, [...] Read more.
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, Horgen, Switzerland) robot arm to pick up metal plates from various locations and place them into a precisely defined slot on a brake pad production line. The system uses a fixed eye-to-hand Intel RealSense D435 RGB-D camera (manufactured by Intel Corporation, Santa Clara, California, USA) to capture color and depth data. A robust software infrastructure developed in LabVIEW (ver.2019) integrated with the NI Vision (ver.2019) library processes the images through a series of steps, including particle filtering, equalization, and pattern matching, to determine the X-Y positions and Z-axis rotation of the object. The Z-position of the object is calculated from the camera’s intensity data, while the remaining X-Y rotation angles are determined using the angle-of-inclination analytics method. It is experimentally verified that the proposed analytical solution outperforms the hybrid-based method (YOLO-v8 combined with PnP/RANSAC algorithms). Experimental results across four distinct picking scenarios demonstrate the proposed solution’s superior accuracy, with position errors under 2 mm, orientation errors below 1°, and a perfect success rate in pick-and-place tasks. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

16 pages, 2223 KB  
Article
Plasmonic Sensing Design for Measuring the Na+/K+ Concentration in an Electrolyte Solution Based on the Simulation of Optical Principles
by Hongfu Chen, Shubin Yan, Yi Sun, Youbo Hu, Taiquan Wu and Yuntang Li
Photonics 2025, 12(8), 758; https://doi.org/10.3390/photonics12080758 - 28 Jul 2025
Viewed by 1054
Abstract
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations [...] Read more.
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations is able to confine light to sub-wavelength dimensions. The data show that different geometrical factors have different effects on sensing, with the geometry of the rectangular cavity and the radius of the circular ring being the key factors affecting the Fano resonance. Furthermore, the resonance bifurcation enables the structure to achieve a tunable dual Fano resonance system. The structure was tuned to obtain optimal sensitivity (S) and figure of merit values up to 3066 nm/RIU and 78. The designed structure has excellent sensing performance with sensitivities of 0.4767 nm·(mg/dL1) and 0.6 nm·(mg/dL1) in detecting Na+ and K+ concentrations in the electrolyte solution, respectively, and can be easily achieved by the spectrometer. The wavelength accuracy of 0.001 nm can be easily achieved by a spectrum analyzer, which has a broad application prospect in the field of optical integration. Full article
Show Figures

Figure 1

14 pages, 7022 KB  
Article
Sensitive and Facile Detection of Aloin via N,F-CD-Coated Test Strips Coupled with a Miniaturized Fluorimeter
by Guo Wei, Chuanliang Wang, Rui Wang, Peng Zhang, Xuhui Geng, Jinhua Li, Abbas Ostovan, Lingxin Chen and Zhihua Song
Biomolecules 2025, 15(7), 1052; https://doi.org/10.3390/biom15071052 - 21 Jul 2025
Cited by 1 | Viewed by 606
Abstract
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects [...] Read more.
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects (increased carcinogenicity caused by excessive use of aloin) impacting human health. This investigation was inspired by the good fluorescence properties of carbon dots (CDs); CD-based sensors have aroused a great deal of interest due to their excellent sensitivity and selectivity. Thus, it is of great significance to develop novel CD-based sensors for aloin determination. Herein, N,F-CDs were designed and synthesized through a convenient hydrothermal strategy; the synthesized N,F-CDs possessed good fluorescence performance and a small particle size (near 4.3 nm), which demonstrated the successful preparation of N,F-CDs. The resulting N,F-CDs possessed a large Stokes shift and could emit a highly stable green fluorescence. The fluorescence of the N,F-CDs could be effectively quenched by aloin through the inner filter effect. Furthermore, the synthesis procedure was easy to operate. Finally, the N,F-CD-coated test strips were fabricated and combined with a miniaturized fluorimeter for the fluorescence detection of aloin via the inner filter effect for the first time. The N,F-CD-coated test strips were fabricated and used for the fluorescence sensing of aloin, and the results were compared with a typical ultraviolet (UV) method. The N,F-CD-coated test strips exhibited high recovery (96.9~106.1%) and sensitivity (31.8 nM, n = 3), good selectivity, low sample consumption (1 μL), high speed (5 min), good stability, and anti-interference properties. The results indicate that N,F-CD-coated test strips are applicable for the quantitative determination of aloin in bovine serum, orange juice, and urine samples. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

14 pages, 3371 KB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 400
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

20 pages, 1482 KB  
Article
Uptake, Partitioning, and Accumulation of High and Low Rates of Carbamazepine in Hydroponically Grown Lettuce (Lactuca sativa var. capitata)
by Emily R. Stamm, Cade Coldren, Clinton Williams and Catherine Simpson
Plants 2025, 14(14), 2165; https://doi.org/10.3390/plants14142165 - 14 Jul 2025
Viewed by 670
Abstract
As potable water becomes limited, alternative water sources, such as reclaimed wastewater, for crop irrigation have gained attention. However, reclaimed wastewater for irrigation may expose edible crops to compounds of emerging concern (CECs), which may include pharmaceutics, hazardous waste, and volatile substances. Of [...] Read more.
As potable water becomes limited, alternative water sources, such as reclaimed wastewater, for crop irrigation have gained attention. However, reclaimed wastewater for irrigation may expose edible crops to compounds of emerging concern (CECs), which may include pharmaceutics, hazardous waste, and volatile substances. Of these CECs, carbamazepine (CBZ) is of particular interest because only 7% of CBZ is filtered out during traditional wastewater treatment processing methods. Two trials were designed to evaluate the uptake and partitioning of CBZ in lettuce grown in a deep-water culture system (DWC) at low and high concentrations. The first trial (0 µg L−1, 12.5 µg L−1, 25 µg L−1, and 50 µg L−1) of CBZ had few effects on lettuce (Lactuca sativa var. capitata) growth, and low concentrations of accumulated CBZ were found in lettuce tissues. As a result, increased concentrations of CBZ were used in the second trial (0 mg L−1, 21 mg L−1, 41 mg L−1, and 83 mg L−1). Greater amounts of CBZ accumulated in plant tissues and the application of higher rates of CBZ negatively affected the growth and overall health of the lettuce. Further research is needed to determine the impacts of CECs on plant uptake and growth, as well as the environmental conditions. Full article
Show Figures

Figure 1

33 pages, 519 KB  
Systematic Review
Impact of Oncological Treatment on Quality of Life in Patients with Head and Neck Malignancies: A Systematic Literature Review (2020–2025)
by Raluca Grigore, Paula Luiza Bejenaru, Gloria Simona Berteșteanu, Ruxandra Ioana Nedelcu-Stancalie, Teodora Elena Schipor-Diaconu, Simona Andreea Rujan, Bianca Petra Taher, Șerban Vifor Gabriel Berteșteanu, Bogdan Popescu, Irina Doinița Popescu, Alexandru Nicolaescu, Anca Ionela Cîrstea and Catrinel Beatrice Simion-Antonie
Curr. Oncol. 2025, 32(7), 379; https://doi.org/10.3390/curroncol32070379 - 30 Jun 2025
Cited by 1 | Viewed by 1378
Abstract
Background: Quality of life (QoL) is a critical indicator in assessing the success of oncological treatments for head and neck malignancies, reflecting their impact on physiological functions and psychosocial well-being beyond mere survival. Treatments (surgery, radiotherapy, chemotherapy) pose multiple functional and emotional [...] Read more.
Background: Quality of life (QoL) is a critical indicator in assessing the success of oncological treatments for head and neck malignancies, reflecting their impact on physiological functions and psychosocial well-being beyond mere survival. Treatments (surgery, radiotherapy, chemotherapy) pose multiple functional and emotional challenges, and recent advancements underscore the necessity of evaluating post-treatment QoL. Objective: This literature review investigates the impact of oncological treatment on the QoL of patients with malignant head and neck cancers (oral, oropharyngeal, hypopharyngeal, laryngeal) and identifies factors influencing their QoL index. Methodology: Using a PICO framework, studies from PubMed Central were analyzed, selected based on inclusion (English publications, full text, PROM results) and exclusion criteria. The last research was conducted on 6 April 2025. From 231 identified studies, 49 were included after applying filters (MeSH: “Quality of Life,” “laryngeal cancer,” “oral cavity cancer,” etc.). Data were organized in Excel, and the methodology adhered to PRISMA standards. Results: Treatment Impact: Oncological treatments significantly affect QoL, with acute post-treatment declines in functions such as speech, swallowing, and emotional well-being (anxiety, depression). Partial recovery depends on rehabilitative interventions. Influencing Factors: Treatment type, disease stage, socioeconomic, and demographic contexts influence QoL. De-escalated treatments and prompt rehabilitation improve recovery, while complications like trismus, dysphagia, or persistent hearing issues reduce long-term QoL. Assessment Tools: Standardized PROM questionnaires (EORTC QLQ-C30, QLQ-H&N35, MDADI, HADS) highlighted QoL variations. Studies from Europe, North America, and Asia indicate regional differences in outcomes. Limitations: Retrospective designs, small sample sizes, and PROM variability limit generalizability. Multicentric studies with extended follow-up are recommended. Conclusions: Oncological treatments for head and neck malignancies have a complex impact on QoL, necessitating personalized and multidisciplinary strategies. De-escalated therapies, early rehabilitation, and continuous monitoring are essential for optimizing functional and psychosocial outcomes. Methodological gaps highlight the need for standardized research. Full article
(This article belongs to the Section Head and Neck Oncology)
Show Figures

Figure 1

32 pages, 11250 KB  
Article
Novel Dielectric Resonator-Based Microstrip Filters with Adjustable Transmission and Equalization Zeros
by David Espinosa-Adams, Sergio Llorente-Romano, Vicente González-Posadas, José Luis Jiménez-Martín and Daniel Segovia-Vargas
Electronics 2025, 14(13), 2557; https://doi.org/10.3390/electronics14132557 - 24 Jun 2025
Viewed by 925
Abstract
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of [...] Read more.
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of both transmission zeros (4-2-0 configuration) and equalization zeros (4-0-2 configuration), specifically designed for demanding space and radar receiver applications, while the loaded quality factor (QL) and insertion loss do not match those of dielectric resonator cavity filters (DRCFs), our solution significantly surpasses conventional microstrip filters (MFs), achieving QL> 3000 compared to typical QL≈ 200 for coupled-line MFs in X-band. The fabricated filters exhibit exceptional performance as follows: input reflection (S11) below −18 dB (4-2-0) and −16.5 dB (4-0-2), flat transmission response (S21), and out-of-band rejection exceeding −30 dB. Mechanical tuning enables precise control of input–output coupling, inter-resonator coupling, cross-coupling, and frequency synthesis, while equalization zeros provide tailored group delay characteristics. This study positions DRMFs as a viable intermediate technology for high-performance RF systems, bridging the gap between conventional solutions. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

28 pages, 6673 KB  
Article
Valorization of Anaerobic Liquid Digestates Through Membrane Processing and Struvite Recovery—The Case of Dairy Effluents
by Anthoula C. Karanasiou, Charikleia K. Tsaridou, Dimitrios C. Sioutopoulos, Christos Tzioumaklis, Nikolaos Patsikas, Sotiris I. Patsios, Konstantinos V. Plakas and Anastasios J. Karabelas
Membranes 2025, 15(7), 189; https://doi.org/10.3390/membranes15070189 - 24 Jun 2025
Viewed by 1029
Abstract
An integrated process scheme is developed for valorizing filtered liquid digestates (FLD) from an industrial anaerobic digestion (AD) plant treating dairy-processing effluents with relatively low nutrient concentrations. The process scheme involves FLD treatment by nanofiltration (NF) membranes, followed by struvite recovery from the [...] Read more.
An integrated process scheme is developed for valorizing filtered liquid digestates (FLD) from an industrial anaerobic digestion (AD) plant treating dairy-processing effluents with relatively low nutrient concentrations. The process scheme involves FLD treatment by nanofiltration (NF) membranes, followed by struvite recovery from the NF-retentate. An NF pilot unit (designed for this purpose) is combined with a state-of-the-art NF/RO process simulator. Validation of simulator results with pilot data enables reliable predictions required for scaling up NF systems. The NF permeate meets the standards for restricted irrigation and/or reuse. Considering the significant nutrient concentrations in the NF retentate (i.e., ~500 mg/L NH4-N, ~230 mg/L PO4-P), struvite recovery/precipitation is investigated, including determination of near-optimal processing conditions. Maximum removal of nutrients, through production of struvite-rich precipitate, is obtained at a molar ratio of NH4:Mg:PO4 = 1:1.5:1.5 and pH = 10 in the treated stream, attained through the addition of Κ2HPO4, ΜgCl2·6H2O, and NaOH. Furthermore, almost complete struvite precipitation is achieved within ~30 min, whereas precipitate/solid drying at modest/ambient temperature is appropriate to avoid struvite degradation. Under the aforementioned conditions, a significant amount of dry precipitate is obtained, i.e., ~12 g dry mass per L of treated retentate, including crystalline struvite. The approach taken and the obtained positive results provide a firm basis for further development of this integrated process scheme towards sustainable large-scale applications. Full article
Show Figures

Figure 1

Back to TopTop