Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (705)

Search Parameters:
Keywords = KH-570

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5015 KiB  
Article
Steel Hydrogen-Induced Degradation Diagnostics for Turbo Aggregated Rotor Shaft Repair Technologies
by Alexander I. Balitskii, Valerii O. Kolesnikov, Maria R. Havrilyuk, Valentina O. Balitska, Igor V. Ripey, Marcin A. Królikowski and Tomasz K. Pudlo
Energies 2025, 18(16), 4368; https://doi.org/10.3390/en18164368 - 16 Aug 2025
Viewed by 309
Abstract
Rotor equipment material samples with varying degrees of degradation during long-term operation are characterized by lower (up to 17%) corrosion and hydrogen resistance compared to the initial state. The scheme of redistribution of carbides in structural components in the initial state and after [...] Read more.
Rotor equipment material samples with varying degrees of degradation during long-term operation are characterized by lower (up to 17%) corrosion and hydrogen resistance compared to the initial state. The scheme of redistribution of carbides in structural components in the initial state and after long-term operation is presented. The schemes of the turning rotor shaft are visualized, while taking the microstructure features into account. During long-term service, the properties of steels are affected by changes in the parameters of structural components caused by the action of a hydrogen-containing environment. Based on the experimental data, the regression equation and approximation probability R2 value describing the change in the electrochemical parameters of 38KhN3MFA rotor steel samples after 200, 225, 250, and 350 thousand hours of operation were obtained. During machining, an increase in hydrogen content was recorded in the chips, especially from degraded areas of the rotor shaft (up to 7.94 ppm), while in undegraded zones, it ranged from 2.1 to 4.4 ppm. A higher hydrogen concentration was correlated with increased surface roughness. The use of LCLs improved surface quality by 1.5 times compared to LCLp. Dispersion caused by degradation contributed to hydrogen accumulation and changed the nature of material destruction. After repair, the rotors demonstrated stable operation for over 25 thousand hours, with no reappearance of critical defects observed during scheduled inspections. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

33 pages, 3734 KiB  
Article
Preparation and Performance Characterization of Melamine-Formaldehyde-Microencapsulated Waterborne Topcoat–Brass Powder–Waterborne Acrylic Coating
by Wenjing Chang, Yan Han, Xiaoxing Yan and Jun Li
Coatings 2025, 15(8), 951; https://doi.org/10.3390/coatings15080951 - 14 Aug 2025
Viewed by 400
Abstract
A novel self-healing brass powder/waterborne acrylic decorative coating for wooden substrates was developed, in which γ-methacryloxypropyltrimethoxysilane (KH570)-modified brass powder (with a coupling agent concentration of 6% and reaction solution pH of 5) was employed as the filler, and melamine-formaldehyde (MF) resin-encapsulated water-based paint [...] Read more.
A novel self-healing brass powder/waterborne acrylic decorative coating for wooden substrates was developed, in which γ-methacryloxypropyltrimethoxysilane (KH570)-modified brass powder (with a coupling agent concentration of 6% and reaction solution pH of 5) was employed as the filler, and melamine-formaldehyde (MF) resin-encapsulated water-based paint microcapsules were utilized as the healing agent. The brass powder content and the core–wall ratio of the topcoat microcapsules were identified as the predominant factors affecting both the optical and mechanical properties of the self-healing brass powder/waterborne acrylic coating on Basswood surfaces. Therefore, the brass powder content was selected as the primary influencing factor. With concentration gradients of 0.5%, 1%, 3%, 5%, 7%, 9%, and 10%, and under constant conditions of 3% microcapsule content and room temperature curing, the effect of brass powder content on the properties of self-healing microcapsule coatings with different core–wall ratios was investigated. The waterborne acrylic wood coating containing 3% brass powder and 3% microcapsules with a core–wall ratio of 0.58:1 exhibited superior overall performance. This optimized formulation not only maintained excellent optical properties but also significantly enhanced mechanical performance, while preserving outstanding aging resistance, liquid resistance, and self-healing capability. The coating demonstrated the following comprehensive performance metrics: a glossiness of 24.0 GU, color difference (ΔE) of 2.13, chromatic aberration (ΔE*) of 13.68, visible light reflectance of 0.5879, dominant wavelength of 587.47 nm, visible light transmittance of 74.33%, pencil hardness of H grade, impact resistance of 2 kg·cm, adhesion rating of class 2, surface roughness of 2.600 μm, along with excellent aging resistance and liquid resistance properties, while achieving a self-healing efficiency of 19.62%. The coating also exhibited a smooth and uniform microscopic morphology, with the chemical bonds of both the modified brass powder and microcapsules remaining intact within the coating matrix. Full article
(This article belongs to the Special Issue Novel Microcapsule Technology in Coatings)
Show Figures

Figure 1

22 pages, 6303 KiB  
Article
Analysis of the Upper Limit of the Stability of High and Steep Slopes Supported by a Combination of Anti-Slip Piles and Reinforced Soil Under the Seismic Effect
by Wei Luo, Gequan Xiao, Zhi Tao, Jingyu Chen, Zhulong Gong and Haifeng Wang
Buildings 2025, 15(15), 2806; https://doi.org/10.3390/buildings15152806 - 7 Aug 2025
Viewed by 262
Abstract
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading [...] Read more.
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading effect needs an in-depth study. Based on the upper-bound theorem of limit analysis and the strength-reduction technique, this study establishes an upper-bound stability model for high–steep slopes that simultaneously considers seismic action and the combined reinforcement of anti-slide piles and reinforced soil. A closed-form safety factor is derived. The theoretical results are validated against published data, demonstrating satisfactory agreement. Finally, the MATLAB R2022a sequential quadratic programming method is used to optimize the objective function, and the Optum G2 2023 software is employed to analyze the factors influencing slope stability due to the interaction between anti-slide piles and geogrids. The research indicates that the horizontal seismic acceleration coefficient kh exhibits a significant negative correlation with the safety factor Fs. Increases in the tensile strength T of the reinforcing materials, the number of layers n, and the length l all significantly improve the safety factor Fs of the reinforced-soil slope. Additionally, as l increases, the potential slip plane of the slope shifts backward. For slope support systems combining anti-slide piles and reinforced soil, when the length of the geogrid is the same, adding anti-slide piles can significantly improve the slope’s safety factor. As anti-slide piles move from the toe to the crest of the slope, the safety factor first decreases and then increases, indicating that the optimal reinforcement position for anti-slide piles should be in the middle to lower part of the slope body. The length of the anti-slip piles should exceed the lowest layer of the geogrid to more effectively utilize the blocking effect of the pile ends on the slip surface. The research findings can provide a theoretical basis and practical guidance for parameter optimization in high–steep slope support engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 5335 KiB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Viewed by 400
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

26 pages, 7634 KiB  
Article
Research on the Preparation and Performance of Wood with High Negative Oxygen Ion Release Induced by Moisture
by Min Yin, Yuqi Zhang, Yun Lu, Zongying Fu, Haina Mi, Jianfang Yu and Ximing Wang
Coatings 2025, 15(8), 905; https://doi.org/10.3390/coatings15080905 - 2 Aug 2025
Viewed by 405
Abstract
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release [...] Read more.
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release has a short duration, failing to meet practical application requirements. This study innovatively developed a humidity-responsive, healthy wood material with a high negative oxygen ion release capacity based on fast-growing poplar. Through vacuum cyclic impregnation technology, hexagonal stone powder was infused into the pores of poplar wood, endowing it with the ability to continuously release negative oxygen ions. The healthy wood demonstrated a static average negative oxygen ion release rate of 537 ions/cm3 (peaking at 617 ions/cm3) and a dynamic average release rate of 3,170 ions/cm3 (peaking at 10,590 ions/cm3). The results showed that the particle size of hexagonal stone powder in suspension was influenced by the dispersants and dispersion processes. The composite dispersion process demonstrated optimal performance when using 0.5 wt% silane coupling agent γ-(methacryloxy)propyltrimethoxysilane (KH570), achieving the smallest particle size of 8.93 μm. The healthy wood demonstrated excellent impregnation performance, with a weight gain exceeding 14.61% and a liquid absorption rate surpassing 165.18%. The optimal impregnation cycle for vacuum circulation technology was determined to be six cycles, regardless of the type of dispersant. Compared with poplar wood, the hygroscopic swelling rate of healthy wood was lower, especially in PEG-treated samples, where the tangential, radial, longitudinal, and volumetric swelling rates decreased by 70.93%, 71.67%, 69.41%, and 71.35%, respectively. Combining hexagonal stone powder with fast-growing poplar wood can effectively enhance the release of negative oxygen ions. The static average release of negative oxygen ions from healthy wood is 1.44 times that of untreated hexagonal stone powder, and the dynamic release reaches 2 to 3 times the concentration of negative oxygen ions specified by national fresh air standards. The water-responsive mechanism revealed that negative oxygen ion release surged when ambient humidity exceeded 70%. This work proposes a sustainable and effective method to prepare healthy wood with permanent negative oxygen ion release capability. It demonstrates great potential for improving indoor air quality and enhancing human health. Full article
Show Figures

Figure 1

16 pages, 3327 KiB  
Article
Development and Evaluation of Selenium-Enriched Compound Fertilizers for Remediation of Mercury-Contaminated Agricultural Soil
by Yuxin Li, Guangpeng Pei, Yanda Zhang, Shuyun Guan, Yingzhong Lv, Zhuo Li and Hua Li
Agronomy 2025, 15(8), 1842; https://doi.org/10.3390/agronomy15081842 - 30 Jul 2025
Viewed by 436
Abstract
Agricultural soil contaminated with mercury (Hg) poses a serious threat to ecosystems and human health. Although adding an appropriate amount of selenium (Se) can reduce the toxicity and mobility of Hg in soil, Se alone is prone to leaching into groundwater through soil [...] Read more.
Agricultural soil contaminated with mercury (Hg) poses a serious threat to ecosystems and human health. Although adding an appropriate amount of selenium (Se) can reduce the toxicity and mobility of Hg in soil, Se alone is prone to leaching into groundwater through soil runoff. Therefore, Se-enriched compound fertilizers were developed, and their remediation effect on Hg-contaminated agricultural soil was determined. The Se-enriched compound fertilizers were prepared by combining an organic fertilizer (vinegar residue, biochar, and potassium humate), inorganic fertilizer (urea, KH2PO4, ZnSO4, and Na2SeO3), and a binder (attapulgite and bentonite). A material proportioning experiment showed that the optimal granulation rate, organic matter content, and compressive strength were achieved when using 15% attapulgite (Formulation 1) and 10% bentonite (Formulation 2). An analysis of Se-enriched compound fertilizer particles showed that the two Se-enriched compound fertilizers complied with the standard for organic–inorganic compound fertilizers (China GB 18877-2002). Compared with the control, Formulation 1 and Formulation 2 significantly reduced the Hg content in bulk and rhizosphere soil following diethylenetriaminepentaacetic acid (DTPA) extraction by 40.1–47.3% and 53.8–56.0%, respectively. They also significantly reduced the Hg content in maize seedling roots and shoots by 26.4–29.0% and 57.3–58.7%, respectively, effectively limiting Hg uptake, transport, and enrichment. Under the Formulation 1 and Formulation 2 treatments, the total and DTPA-extractable Se contents in soil and maize seedlings were significantly increased. This study demonstrated that Se-enriched compound fertilizer effectively remediates Hg-contaminated agricultural soil and can promote the uptake of Se by maize. The results of this study are expected to positively contribute to the sustainable development of the agro-ecological environment. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

20 pages, 4676 KiB  
Article
Adsorption of Pb2+ and Cd2+ from Aqueous Solutions by Porous Carbon Foam Derived from Biomass Phenolic Resin
by Jianwei Ling, Yu Gao, Ruiling Wang, Shiyu Lu, Xuemei Li, Shouqing Liu and Jianxiang Liu
Int. J. Mol. Sci. 2025, 26(15), 7302; https://doi.org/10.3390/ijms26157302 - 28 Jul 2025
Viewed by 300
Abstract
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and [...] Read more.
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and Cd2+ from water. The synthesis involved partially substituting phenol with the liquefaction product of bamboo powder, followed by modification with a silane coupling agent (KH560) and foaming with n-hexane-loaded activated carbon (H/AC). The prepared carbon foam was comprehensively characterized, and its adsorption performance and mechanism for Pb2+ and Cd2+ in aqueous solution were investigated. The results showed that M-CF possessed a uniform and well-developed spherical pore structure and demonstrated excellent removal capacity for Cd2+ and Pb2+. The adsorption process conformed to the Sips isotherm model and the pseudo-second-order kinetic equation, with maximum adsorption capacities of 22.15 mg·g−1 and 61.59 mg·g−1 for Cd2+ and Pb2+, respectively. Mechanistic analysis revealed that the removal of Cd2+ and Pb2+ was a result of the synergistic effect of physisorption and chemisorption, accompanied by complexation. Furthermore, precipitates formed during the adsorption process were found to be mainly composed of hydroxides, carbonates, and PbS. This research demonstrates the efficacy of carbon foam prepared from bamboo powder waste as a partial phenol substitute for the efficient removal of Pb2+ and Cd2+ from water, thus expanding the preparation pathways for novel heavy metal adsorption materials. Full article
Show Figures

Figure 1

17 pages, 7928 KiB  
Article
Light–Nutrient Optimization Enhances Cherry Tomato Yield and Quality in Greenhouses
by Jianglong Li, Zhenbin Xie, Tiejun Zhao, Hongjun Li, Riyuan Chen, Shiwei Song and Yiting Zhang
Horticulturae 2025, 11(8), 874; https://doi.org/10.3390/horticulturae11080874 - 25 Jul 2025
Viewed by 578
Abstract
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: [...] Read more.
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: nitrogen 10.7 me/L, phosphorus 2.7 me/L, potassium 5.3 me/L) during flowering stage, and 2.4 dS/m (N1: nitrogen 16 me/L, phosphorus 4 me/L, potassium 8 me/L; N2: nitrogen 10.7 me/L, phosphorus 5.4 me/L, potassium 10.8 me/L) from fruit setting to harvest. N1 used standard adjustments, while N2 was optimized by adding solely with KCl and KH2PO4. Lighting treatments included L1 (natural light) and L2 (supplemental red/blue light). The application of N2 effectively decreased nitrate levels while it significantly enhanced the content of soluble sugars, flavor, and overall palatability, especially fruit coloring in cherry tomatoes, irrespective of supplementary lighting conditions. However, such optimization also increased sourness or altered the sugar–acid ratio. Supplementary lighting generally promoted the accumulation of soluble sugars, sweetness, and tomato flavor, although its effects varied markedly among different fruit clusters. The combination of optimized nutrient solutions and supplementary lighting exhibited synergistic effects, improving the content of soluble sugars, vitamin C, proteins, and flavor. N1 combined with L2 achieved the highest plant yield. Among the cultivars, ‘Linglong’ showed the greatest overall quality improvement, followed by ‘Baiyu’, ‘Miying’, and ‘Moka’. In conclusion, supplementary lighting can enhance the effect of nitrogen on yield and amplify the influence of phosphorus and potassium on fruit quality improvement in cherry tomatoes. The findings of this study may serve as a theoretical basis for the development of year-round production techniques for high-quality cherry tomatoes. Full article
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Genome-Wide Identification of the SiNHX Gene Family in Foxtail Millet (Setaria Italica) and Functional Characterization of SiNHX7 in Arabidopsis
by Xiaoqian Chu, Dan-Ying Chen, Mengmeng Sun, Jiajing Zhang, Minghua Zhang, Hejing Wu, Hongzhi Wang, Shuqi Dong, Xiangyang Yuan, Xiaorui Li, Lulu Gao, Guanghui Yang and Jia-Gang Wang
Int. J. Mol. Sci. 2025, 26(15), 7139; https://doi.org/10.3390/ijms26157139 - 24 Jul 2025
Viewed by 282
Abstract
Plant growth is susceptible to abiotic stresses like salt and drought, and Na+/H+ antiporters (NHXs) play a pivotal role in stress responses. NHX proteins belong to the CPAs (cation/proton antiporters) family with a conserved Na+ (K+)/H+ [...] Read more.
Plant growth is susceptible to abiotic stresses like salt and drought, and Na+/H+ antiporters (NHXs) play a pivotal role in stress responses. NHX proteins belong to the CPAs (cation/proton antiporters) family with a conserved Na+ (K+)/H+ exchange domain, which is widely involved in plant growth, development, and defense. While NHX genes have been extensively studied in model plants (e.g., Arabidopsis thaliana and Oryza sativa), research in other species remains limited. In this study, we identified nine NHX genes in foxtail millet (Setaria italica) and analyzed their systematic phylogeny, gene structure, protein characteristics, distribution of the chromosome, collinearity relationship, and cis-elements prediction at the promoter region. Phylogenetic analysis revealed that the members of the SiNHX gene family were divided into four subgroups. RT-qPCR analysis of the SiNHX family members showed that most genes were highly expressed in roots of foxtail millet, and their transcriptional levels responded to salt stress treatment. To determine SiNHX7’s function, we constructed overexpression Arabidopsis lines for each of the two transcripts of SiNHX7, and found that the overexpressed plants exhibited salt tolerance. These findings provide valuable insights for further study of the function of SiNHX genes and are of great significance for breeding new varieties of salt-resistant foxtail millet. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 5401 KiB  
Article
Evaluation of Integral and Surface Hydrophobic Modification on Permeation Resistance of Foam Concrete
by Liangbo Ying, Pengfei Yu, Fuping Wang and Ping Jiang
Coatings 2025, 15(7), 854; https://doi.org/10.3390/coatings15070854 - 20 Jul 2025
Viewed by 446
Abstract
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve [...] Read more.
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve the permeation performance of foam concrete. The study also examines the effects of carbonation and freeze–thaw environments on the permeation resistance of PFC. Graphene oxide (GO), KH-550, and a composite hydrophobic coating (G/S) consisting of GO and KH-550 were employed to enhance the permeation resistance of PFC through surface hydrophobic modification. The functionality of the G/S composite hydrophobic coating was confirmed using energy dispersive X-ray spectrometry (EDS) and Fourier transform infrared spectroscopy (FTIR). The results showed the following: (1) The water contact angle of PFC increased by 20.2° compared to that of ordinary foam concrete, indicating that PU-based hydrophobic modification can significantly improve its impermeability. (2) After carbonation, a micro–nano composite structure resembling the surface of a lotus leaf developed on the surface of PFC, further enhancing its impermeability. However, freeze–thaw cycles led to the formation and widening of microcracks in the PFC, which compromised its hydrophobic properties. (3) Surface hydrophobic modifications using GO, KH-550, and the G/S composite coating improved the anti-permeability properties of PFC, with the G/S composite showing the most significant enhancement. (4) GO filled the tiny voids and pores on the surface of the PFC, thereby improving its anti-permeability properties. KH-550 replaced water on the surface of PFC and encapsulated surface particles, orienting its R-groups outward to enhance hydrophobicity. The G/S composite emulsion coating formed a hydrophobic silane layer inside the concrete, which enhanced water resistance by blocking water penetration, reducing microscopic pores in the hydrophobic layer, and improving impermeability characteristics. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

19 pages, 4069 KiB  
Article
Influence of Silane-Modified Coal Gangue Ceramsite on Properties of Ultra-High-Performance Concrete
by Yuanjie Qin, Sudong Hua, Dongrui Zhang and Hongfei Yue
Appl. Sci. 2025, 15(14), 7968; https://doi.org/10.3390/app15147968 - 17 Jul 2025
Viewed by 328
Abstract
In this study, a kind of sustainable ultra-high-performance concrete (UHPC) was designed by using coal gangue ceramsite (CGC) and a modified Andreasen–Andersen model. However, when CGC lightweight aggregate with high water absorption is used in UHPC with a low water–cement ratio, CGC has [...] Read more.
In this study, a kind of sustainable ultra-high-performance concrete (UHPC) was designed by using coal gangue ceramsite (CGC) and a modified Andreasen–Andersen model. However, when CGC lightweight aggregate with high water absorption is used in UHPC with a low water–cement ratio, CGC has an adverse effect on the working performance of UHPC and may lead to the decrease of mechanical properties. This study found that a 5% silane coupling agent KH560 can make CGC hydrophobic, and cause its contact angle to increase from 0° to 111.32°. Adding 100% hydrophobic modified CGC into UHPC will significantly improve its working performance, with the highest increase of 38.51%. At the same time, the addition of 20% modified CGC can further improve the compressive strength of UHPC (28 days reached 150.1 MPa), reduce the internal porosity by 21.4%, and make the interface bond more compact. In addition, the hydration degree of UHPC has also been improved, a result caused by the cement obtaining more free water for a more complete hydration reaction. This study can provide a new scheme for solving the problem of the solid waste of coal gangue. Full article
Show Figures

Figure 1

12 pages, 1298 KiB  
Article
Effect of Deuteration on the Temperature Dependence of the Quadratic Electro-Optic Effect in KDP Crystals
by Marek Izdebski and Rafał Ledzion
Materials 2025, 18(14), 3290; https://doi.org/10.3390/ma18143290 - 12 Jul 2025
Viewed by 308
Abstract
The results of precise measurements of the temperature dependencies of quadratic electro-optic coefficients, namely g1111g1122 and no3g1111ne3g3311, in KH2PO4 (KDP) and KD2PO4 [...] Read more.
The results of precise measurements of the temperature dependencies of quadratic electro-optic coefficients, namely g1111g1122 and no3g1111ne3g3311, in KH2PO4 (KDP) and KD2PO4 (DKDP) crystals at a wavelength of 632.8 nm are presented. We consider electro-optic coefficients describing changes in the optical impenetrability tensor resulting from an applied electric field, as well as intrinsic electro-optic coefficients defined in terms of induced polarization. The results show significant differences in the values of the analogous coefficients for the KDP and DKDP crystals and their temperature dependencies. Therefore, the quadratic electro-optic effect in KDP-type crystals cannot be easily described based solely on the contribution of PO4 tetrahedra, as assumed in current models of the linear effect. Moreover, the values of the intrinsic coefficients in the KDP and DKDP crystals differ even more than the corresponding usual electro-optic coefficients, which contradicts the conventional belief in their lower variability. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

27 pages, 1696 KiB  
Article
Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(7), 1651; https://doi.org/10.3390/agronomy15071651 - 7 Jul 2025
Viewed by 699
Abstract
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how [...] Read more.
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how these amendments simultaneously affect soil physical and chemical properties, plant growth, and the accumulation of bioactive compounds in sunflower sprouts, thereby linking soil health to crop nutritional quality. The application of 2% w/w KH alone resulted in the greatest increases in macroaggregation (+0.51), soil pH (from 6.8 to 8.6), and electrical conductivity (+298%). The combination of 1% w/w CM and 2% KH led to the highest increases in soil organic carbon (OC, +62.9%) and soil respiration (+56.4%). Nitrate and available phosphorus (P) peaked with 3% w/w RHB + 2% KH (+120%) and 1% w/w CM + 0.5% KH (+35.5%), respectively. For plant traits, 0.5% w/w KH increased the total leaf area by 61.9%, while 1% w/w CM enhanced shoot and root biomass by 60.8% and 79.0%, respectively. In contrast, 2% w/w KH reduced chlorophyll content (−43.6%). Regarding bioactive compounds, the highest total phenolic content (TPC) was observed with 1% w/w KH (+21.9%), while the strongest DPPH antioxidant activity was found under 1% w/w CM + 1% w/w KH (+72.6%). A correlation analysis revealed that biomass production and secondary metabolite accumulation are shaped by trade-offs arising from resource allocation under stress or nutrient limitations. Potassium, P, soil microbial respiration, and OC emerged as key integrators connecting soil structure, fertility, and plant metabolic responses. Overall, the combination of 1% w/w CM with 0.5–1% w/w KH proved to be the most effective strategy under the tested conditions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 1661 KiB  
Article
Optimization of the Inorganic Salts in Coenzyme Q10 Fermentation Medium of Rhodobacter sphaeroides Based on Uniform Design and Artificial Neural Network and Genetic Algorithm
by Yi Zheng, Yujun Xiao, Shuling Tang, Junpeng Li, Yingzi Wu and Yong Zhou
Fermentation 2025, 11(7), 383; https://doi.org/10.3390/fermentation11070383 - 2 Jul 2025
Viewed by 742
Abstract
Coenzyme Q10 (CoQ10) has attracted widespread attention in recent years due to its momentous physiological functions. Microbial fermentation is the major method in CoQ10 industrial production, and Rhodobacter sphaeroides is the main strain for the production of CoQ10 [...] Read more.
Coenzyme Q10 (CoQ10) has attracted widespread attention in recent years due to its momentous physiological functions. Microbial fermentation is the major method in CoQ10 industrial production, and Rhodobacter sphaeroides is the main strain for the production of CoQ10 by fermentation. Optimization of the culture medium is a popular solution to improve the metabolite production. Culture medium is the material basis for microbial growth and product synthesis, of which inorganic salts are a key ingredient. Uniform design (UD), artificial neural network (ANN), and genetic algorithm (GA) are the main research methods. Through uniform design (UD) and artificial neural network/genetic algorithm (ANN-GA) progressive optimization, an optimal formulation of the inorganic salts in fermentation medium was obtained (g·L−1): MgSO4 12, NaCl 2.5, FeSO4 1.6, KH2PO4 0.8, MnSO4 0.1, CaCl2 0.1. Ultimately, the fermentation yield of CoQ10 could reach 255.36 mg·L−1. ANN-GA exhibited a superior prediction capability compared to UD. Compared to UD, the optimization results of ANN-GA had a smaller relative error (ANN-GA 1.23%; UD 3.01%) and a higher increase rate in the fermentation level of CoQ10 (ANN-GA 4.1%; UD 2.04%). R. sphaeroides had a high demand for Mg2+. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 428
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

Back to TopTop