Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = J-protein characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3143 KB  
Article
Polyethylene Terephthalate Micro/Nano-Plastics Induce Structural and Conformational Changes in Cedar Pollen Proteins: Spectroscopic and Molecular Dynamics Evidence
by Tochukwu Oluwatosin Maduka, Qingyue Wang, Christian Ebere Enyoh, Miho Suzuki, Weiqian Wang and Md. Sohel Rana
Appl. Sci. 2026, 16(3), 1577; https://doi.org/10.3390/app16031577 - 4 Feb 2026
Abstract
Pollen allergy represents a growing public health concern, yet the role of microplastic pollution in modulating allergen behavior remains largely unresolved. In this study, we investigated interactions between polyethylene terephthalate (PET) microplastics (0.2–12 µm; predominantly 0.4–1 µm) and cedar pollen proteins, with emphasis [...] Read more.
Pollen allergy represents a growing public health concern, yet the role of microplastic pollution in modulating allergen behavior remains largely unresolved. In this study, we investigated interactions between polyethylene terephthalate (PET) microplastics (0.2–12 µm; predominantly 0.4–1 µm) and cedar pollen proteins, with emphasis on the major allergen Cry j 1. Surface charge characterization using the pH drift method revealed two apparent points of zero charge in the acidic (pH 3.0–3.8) and near-neutral (~7.5) regions, indicating surface chemical heterogeneity. Protein adsorption experiments conducted at physiological pH (7.4) showed concentration-dependent and saturable removal of proteins from solution with increasing PET mass and a 3.10-fold preferential enrichment of aromatic-rich protein fractions. Spectroscopic analyses revealed adsorption-induced but non-denaturing structural perturbations, including increased exposure of aromatic residues and partial β-sheet destabilization. Complementary all-atom molecular dynamics simulations showed rapid and stable Cry j 1 adsorption onto PET, anisotropic surface accommodation, modest increases in solvent accessibility, and subtle secondary structure rearrangements without global unfolding. Together, these findings indicate that PET microplastics can selectively bind and structurally modulate pollen allergens in ways that may influence allergen persistence and epitope presentation, with potential implications for IgE-mediated sensitization in polluted environments. Full article
(This article belongs to the Special Issue Advanced Research on Microplastics, Human Exposure and Food Safety)
Show Figures

Figure 1

19 pages, 2458 KB  
Article
Maresin-1 Ameliorates Chronic Unpredictable Stress-Induced Depressive-like Behaviors Associated with Dynamic Modulation of Hippocampal Microglial Activity and TSPO PET Signals
by Anhai Zheng, Tian Qiu, Lei Shi, Lixia Wang, Zhu Xia, Zhiping Peng, Li Kuang and Jiamei Guo
Biomedicines 2026, 14(2), 335; https://doi.org/10.3390/biomedicines14020335 - 31 Jan 2026
Viewed by 130
Abstract
Background/Objectives: Maresin-1 (MaR1), a specialized pro-resolving mediator (SPM) derived from omega-3 fatty acids, has demonstrated potent anti-inflammatory and pro-resolving properties. However, its effects on depression-like behaviors and the associated dynamics of neuroinflammation, particularly in the context of chronic stress, are not yet [...] Read more.
Background/Objectives: Maresin-1 (MaR1), a specialized pro-resolving mediator (SPM) derived from omega-3 fatty acids, has demonstrated potent anti-inflammatory and pro-resolving properties. However, its effects on depression-like behaviors and the associated dynamics of neuroinflammation, particularly in the context of chronic stress, are not yet fully understood. This study aimed to investigate the therapeutic potential of MaR1 in a chronic unpredictable stress (CUS) model and to monitor its dynamic effects on neuroimmune activity using longitudinal in vivo imaging. Methods: Adolescent male C57BL/6J mice were subjected to a 5-week CUS protocol. Mice exhibiting stable anhedonia were randomized to receive intraperitoneal injections of either MaR1 (5 µg/kg) or vehicle every other day for 4 weeks. During this period, CUS procedures were maintained. Depression-like behaviors were assessed using the sucrose preference test (SPT), tail suspension test (TST), and open field test (OFT). Dynamic changes in neuroinflammation were monitored via longitudinal [18F]DPA-714 positron emission tomography (PET) scans at baseline and after 2 and 4 weeks of treatment. Ex vivo analyses included immunofluorescence quantification of hippocampal microglia (ionized calcium-binding adaptor molecule 1, Iba1), astrocytes (glial fibrillary acidic protein, GFAP), and 18 kDa translocator protein (TSPO) co-expression, alongside quantitative polymerase chain reaction (qPCR) and Western blotting for inflammatory markers (IL-1β, IL-4, TSPO). Results: MaR1 treatment selectively alleviated depression-like behaviors, significantly reversing CUS-induced anhedonia in the SPT and improving locomotor activity, while its effect on despair-like behavior (TST) was not statistically significant. Longitudinal PET imaging revealed a biphasic neuroimmune response, characterized by an initial increase in [18F]DPA-714 standardized uptake value (SUV) at 2 weeks, followed by a return toward baseline at 4 weeks. Histologically, MaR1 reversed CUS-induced hippocampal microglial loss, resulting in a rebound of microglial numbers, and normalized astrocytic activation. At the molecular level, MaR1 dynamically modulated cytokine expression, culminating in a significant upregulation of the pro-resolving marker IL-4 and TSPO at 4 weeks. Conclusions: These findings indicate that Maresin-1 treatment is associated with behavioral improvement and dynamic modulation of glial activity and TSPO PET signals in the hippocampus. This study highlights the value of TSPO PET imaging for monitoring dynamic glial changes during therapeutic intervention and provides supportive evidence for targeting neuroimmune pathways in depression. Full article
(This article belongs to the Special Issue Advanced Research on Psychiatric Disorders)
Show Figures

Figure 1

21 pages, 1963 KB  
Article
Juniperus communis L. Needle Extract Modulates Oxidative and Inflammatory Pathways in an Experimental Model of Acute Inflammation
by Dinu Bolunduț, Alina Elena Pârvu, Andra Diana Cecan, Anca Elena But, Florica Ranga, Marcel Pârvu, Iulia Ioana Morar and Ciprian Ovidiu Dalai
Molecules 2026, 31(2), 247; https://doi.org/10.3390/molecules31020247 - 11 Jan 2026
Viewed by 340
Abstract
Juniperus communis L. is a conifer widely used in traditional European medicine for the management of inflammatory disorders. However, its effects on oxidative stress and inflammation remain incompletely characterized. The present study investigated the antioxidant and anti-inflammatory potential of an ethanolic needle extract [...] Read more.
Juniperus communis L. is a conifer widely used in traditional European medicine for the management of inflammatory disorders. However, its effects on oxidative stress and inflammation remain incompletely characterized. The present study investigated the antioxidant and anti-inflammatory potential of an ethanolic needle extract of J. communis using in vitro assays and an in vivo model of acute inflammation induced by turpentine oil in rats. Phytochemical profiling by HPLC–DAD–ESI–MS revealed a polyphenol-rich extract dominated by flavonols, flavanols, and hydroxybenzoic acids, with quercetin derivatives and taxifolin as major constituents. In vitro analyses demonstrated radical-scavenging and reducing capacities, exceeding or comparable to reference antioxidants in DPPH, hydrogen peroxide, ferric-reducing, and nitric oxide scavenging assays. In vivo, both therapeutic and prophylactic administration of the extract significantly attenuated oxidative and nitrosative stress, as evidenced by reductions in total oxidant status, oxidative stress index, malondialdehyde, advanced oxidation protein products, nitric oxide, 3-nitrotyrosine, and 8-hydroxy-2′-deoxyguanosine, alongside restoration of total antioxidant capacity and thiol levels. These effects were concentration-dependent. Concomitantly, inflammatory signaling was suppressed, with decreased NF-κB activity and reduced levels of interleukin-1β and interleukin-18. These results support the use of these extracts, whose benefits have been observed in traditional medicine, providing scientific support for the anti-inflammatory and antioxidant capacity of J. communis extract. Full article
Show Figures

Graphical abstract

15 pages, 761 KB  
Article
Protective Effects of Humic Acid on Intestinal Barrier Dysfunction and Inflammatory Activation in Canine Cell-Based Models
by Alma Virág Móritz, Orsolya Farkas, Ákos Jerzsele and Nikolett Palkovicsné Pézsa
Animals 2026, 16(2), 173; https://doi.org/10.3390/ani16020173 - 7 Jan 2026
Viewed by 352
Abstract
The intestinal barrier is essential for gastrointestinal and systemic homeostasis by enabling nutrient absorption while limiting the translocation of pathogens and toxins. When barrier function is impaired, bacterial components such as lipopolysaccharides (LPSs) may cross the epithelium and promote inflammatory signaling. In dogs, [...] Read more.
The intestinal barrier is essential for gastrointestinal and systemic homeostasis by enabling nutrient absorption while limiting the translocation of pathogens and toxins. When barrier function is impaired, bacterial components such as lipopolysaccharides (LPSs) may cross the epithelium and promote inflammatory signaling. In dogs, chronic inflammatory enteropathies are frequent disorders associated with barrier dysfunction, dysbiosis, and immune dysregulation, and may progress to protein-losing enteropathy or systemic inflammation. Humic substances, particularly humic acid (HA), are natural organic compounds with reported antioxidative, immunomodulatory, and barrier-supporting effects; however, the cellular mechanisms underlying these effects in intestinal and immune models remain insufficiently characterized. This study evaluated the effects of a commercially available HA-based supplement on epithelial barrier integrity and inflammatory responses using an in vitro system combining IPEC-J2 intestinal epithelial cells and primary canine peripheral blood mononuclear cells (PBMCs). Epithelial barrier integrity (FD4 paracellular flux), reactive oxygen species, and cytokine production (TNF-α, IL-6) were assessed under basal and LPS-stimulated conditions. HA treatment preserved epithelial barrier function and reduced LPS-induced pro-inflammatory cytokine production, supporting further investigation of HA as a nutraceutical adjunct for gut health support in dogs with chronic enteropathies. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

23 pages, 5498 KB  
Article
The Effect of a Cactus-Based Natural Coagulant on the Physical–Chemical and Bacteriological Quality of Drinking Water: Batch and Continuous Mode Studies
by Abderrezzaq Benalia, Ouiem Baatache, Kerroum Derbal, Amel Khalfaoui, Loqmen Atime, Antonio Pizzi, Gennaro Trancone and Antonio Panico
Water 2026, 18(2), 138; https://doi.org/10.3390/w18020138 - 6 Jan 2026
Viewed by 498
Abstract
Cactus leaves from the Cactaceae family, particularly the Opuntia genus, have attracted increasing attention as natural coagulants for water treatment applications. In this work, Cactus-based extracts were investigated for drinking water treatment through the coagulation–flocculation process. Several extraction routes were examined, including [...] Read more.
Cactus leaves from the Cactaceae family, particularly the Opuntia genus, have attracted increasing attention as natural coagulants for water treatment applications. In this work, Cactus-based extracts were investigated for drinking water treatment through the coagulation–flocculation process. Several extraction routes were examined, including Ca-J, Ca-H2O, Ca-NaOH (0.05 M), Ca-NaCl (0.5 M), and Ca-HCl (0.05 M), and their performance was evaluated using jar test experiments. The removal efficiencies of total coliforms (TC), anaerobic sulfite-reducing bacteria (ASRB), total suspended solids (TSS), and turbidity were assessed, and the most effective extract was subsequently tested in a semi-industrial pilot-scale coagulation–flocculation–settling system. The physicochemical properties of the Cactus material were characterized using FTIR, SEM, XRD, and MALDI-TOF analyses. Results revealed bioactive components, including carbohydrates, proteins, tannins, flavonoids, and glucose, with functional groups (carboxyl, hydroxyl, carbonyl) responsible for coagulation. XRD and SEM analyses showed a semi-crystalline structure and a heterogeneous surface with fiber networks, while MALDI-TOF confirmed the presence of flavonoid and tannin compounds. These features collectively contribute to the effective removal of turbidity, suspended solids, and microbial contaminants. Among the tested extracts, Ca-NaOH (0.05 M) exhibited the highest removal efficiencies, achieving 100% removal of TC and ASRB, 94.15% removal of TSS, and 70.38% turbidity reduction under laboratory conditions. Pilot-scale application of this extract resulted in a turbidity reduction of 66.65%. Additional water quality parameters, including total alkalinity (TA), total dissolved solids (TDS), pH, and electrical conductivity (EC), were monitored to evaluate process performance. Overall, the results highlight the strong potential of Cactus leaves as an effective, cost-efficient, and environmentally friendly alternative to conventional chemical coagulants. However, further research is required to enhance their scalability and commercialization. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

11 pages, 223 KB  
Article
Comparative Study on the Composition of Oil Bodies from High-Oleic Peanuts
by Lixia Zhang, Songli Wei, Xiaojing Sun, Xin Lu, Shangde Sun, Runfeng Du and Shanshan Guo
Foods 2026, 15(1), 177; https://doi.org/10.3390/foods15010177 - 5 Jan 2026
Viewed by 447
Abstract
Compositional heterogeneity of oil bodies (OB) from nine high-oleic peanut (HOP) cultivars was systematically characterized. The results demonstrated that nine OB samples exhibited variability in R, G, and B values (red, green, and blue color channels), with the B channel values significantly differing [...] Read more.
Compositional heterogeneity of oil bodies (OB) from nine high-oleic peanut (HOP) cultivars was systematically characterized. The results demonstrated that nine OB samples exhibited variability in R, G, and B values (red, green, and blue color channels), with the B channel values significantly differing among cultivars, while no significant color variation was observed in their overall appearance. Fats and proteins dominated the dry matter composition of OB, consistent with typical plant OB structural profiles. The high-fat OB of cultivars J572-O, J6-O, Z215-O, and H985-O exhibited outstanding efficiency in loading lipophilic bioactive compounds. OBs from J16-O, G37-O, Z215-O, J572-O, Y37-O, and Y65-O had a distinctive fatty acid profile: high-oleic acid and monounsaturated fatty acids (MUFAs), with reduced linoleic acid, palmitoleic acid, and saturated fatty acids (SFAs). All OB samples contained four tocopherol isomers (α-, β-, γ-, δ-), with α-tocopherol (5.07–12.59 mg/100 g) and γ-tocopherol (6.36–14.81 mg/100 g) as the predominant forms. Essential amino acids (EAAs) and hydrophobic amino acids were detected, with leucine, phenylalanine, and valine being highly abundant. TEAA/TAA and TEAA/TNEAA ratios complied with FAO/WHO standards. J16-O stood out with a balanced fatty acid profile, high tocopherols, and quality protein, making it a promising candidate for functional foods. Full article
(This article belongs to the Section Food Analytical Methods)
22 pages, 3127 KB  
Article
Poly(ε-caprolactone) Nanoparticle Tumor-Lysate Vaccination in Mice Generates Hybridoma-Derived Antibodies Enabling Breast Cancer Diagnosis and Chemotherapy Synergy
by Murat Ihlamur, Pelin Pelit Arayıcı and Emrah Şefik Abamor
Biomedicines 2026, 14(1), 88; https://doi.org/10.3390/biomedicines14010088 - 1 Jan 2026
Viewed by 465
Abstract
Background: Tumor-lysate vaccines can capture tumor heterogeneity; however, their effectiveness may be reduced by antigen instability and short antigen presentation. Here, we aimed to improve antigen protection and prolong presentation by using a slow-degrading polymeric nanocarrier and an approved adjuvant. Methods: We encapsulated [...] Read more.
Background: Tumor-lysate vaccines can capture tumor heterogeneity; however, their effectiveness may be reduced by antigen instability and short antigen presentation. Here, we aimed to improve antigen protection and prolong presentation by using a slow-degrading polymeric nanocarrier and an approved adjuvant. Methods: We encapsulated breast cancer cell lysates (MCF-7 and MDA-MB-231) in poly(ε-caprolactone) (PCL) nanoparticles using a double-emulsion (w/o/w) method and co-administered them with alum. We then characterized particle size, PDI, zeta potential, morphology, and in vitro release. Next, we evaluated nitric oxide (NO), TNF-α/IL-10 responses, and cytocompatibility in J774 macrophages. Finally, we quantified serum antibody titers in Balb/c mice after six biweekly immunizations, generated hybridomas, purified IgG, and tested antibody-mediated cytotoxicity alone and together with doxorubicin. Results: PCL nanoparticles were ~220–255 nm (PDI 0.10–0.19; ζ −2 to −3 mV) and released ~90–95% of encapsulated lysate by 800 h (~33 days). Encapsulated lysate (40 μg/mL) modestly increased NO versus control and increased further with alum (p < 0.05). TNF-α increased 7.4–9.72-fold, whereas IL-10 rose 2.82–3.11-fold. Importantly, encapsulated antigen + alum produced the highest ELISA responses after the sixth dose (6.36-fold for MCF-7 and 7.00-fold for MDA-MB-231 versus control; p < 0.05). Hybridoma-derived antibody signals increased through day 42, and Protein G purification yielded up to ~395 μg and ~318 μg IgG. Purified antibodies reduced cell viability, and viability decreased further when antibodies were combined with doxorubicin (to ~31.6% in MCF-7 and ~40.3% in MDA-MB-231). Conclusions: Overall, sustained PCL-mediated antigen release combined with alum strengthened humoral responses to tumor lysate and enabled recovery of functional antibodies with diagnostic capture and in vitro cytotoxic activity. In future work, key mechanistic steps such as lymph-node trafficking and cross-presentation should be tested directly. Full article
(This article belongs to the Section Nanomedicine and Nanobiology)
Show Figures

Figure 1

18 pages, 582 KB  
Review
Rodent Models for Atherosclerosis
by Linghong Zeng, Jingshu Chi, Meiqi Zhu, Hong Hao, Shiyin Long, Zhenguo Liu and Caiping Zhang
Int. J. Mol. Sci. 2026, 27(1), 378; https://doi.org/10.3390/ijms27010378 - 29 Dec 2025
Viewed by 857
Abstract
Atherosclerosis, a leading cause of cardiovascular disease, is driven by a complex interplay of dyslipidemia, inflammation, and arterial plaque formation and progression. Animal models are indispensable to elucidate the pathogenesis and develop novel therapies. Rodent models are widely utilized due to their cost-effectiveness, [...] Read more.
Atherosclerosis, a leading cause of cardiovascular disease, is driven by a complex interplay of dyslipidemia, inflammation, and arterial plaque formation and progression. Animal models are indispensable to elucidate the pathogenesis and develop novel therapies. Rodent models are widely utilized due to their cost-effectiveness, reproducibility, and rapid disease progression. However, notable species differences exist in lipoprotein composition and lipid metabolism pathways. Mice and rats exhibit an HDL-dominant profile, whereas Syrian golden hamsters express cholesteryl ester transfer protein (CETP) and display a higher LDL fraction, but lower than that of humans, offering a model closer to human metabolically. Divergent CETP activity across species further complicates the translational relevance of the findings from these models for atherosclerosis and related metabolic disorders. This review systematically examines the key factors in rodent model selection and optimization, with consideration on the roles of sex and age. We focus on three commonly used and well-characterized rodent strains prone to atherosclerosis: C57BL/6J mice, Sprague-Dawley (SD) rats, Wistar rats, and golden hamsters. On Apoe−/− or Ldlr−/− backgrounds, male C57BL/6 mice, owing to their pronounced hypercholesterolemia and extended survival with high-fat diet, are preferentially used in late-stage plaque stability studies. In contrast, male SD or Wistar rats develop atherosclerosis slowly with limited lesion progression, while hamsters, despite their human-like lipid metabolism, exhibit substantial individual variability and lesions that typically arrest at early fatty streaks with poor reproducibility. Therefore, rats and hamsters are better suited for studies focusing on early disease mechanisms and human-mimetic lipid metabolism. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

24 pages, 3342 KB  
Article
Effects of Grass Carp Antifreeze Peptide on Freeze-Thaw Characteristics and Structure of Wet Gluten Protein
by Meizhu Dang, Bing Huang, Yangyang Jia, Yuanyuan Shao, Xingxing Mei and Chunmei Li
Foods 2025, 14(24), 4336; https://doi.org/10.3390/foods14244336 - 16 Dec 2025
Viewed by 435
Abstract
This study uniquely explores the impact of a novel natural antifreeze peptide derived from grass carp (GCAFP) on the freeze–thaw characteristics and structural stability of wet gluten protein, providing new insights into the development of natural cryoprotectants for frozen foods. The effects of [...] Read more.
This study uniquely explores the impact of a novel natural antifreeze peptide derived from grass carp (GCAFP) on the freeze–thaw characteristics and structural stability of wet gluten protein, providing new insights into the development of natural cryoprotectants for frozen foods. The effects of GCAFP on the physicochemical and structural properties of gluten protein were investigated using differential scanning calorimetry (DSC), nuclear magnetic resonance imaging (NMR), rheology, and scanning electron microscopy (SEM). The results showed that the addition of 0.5% GCAFP significantly reduced the freezing temperature (Tf, from −8.50 ± 1.31 °C to −10.75 ± 2.49 °C) and expanded the melting temperature range (Tm,δ, from 3.60 ± 1.40 °C to 5.65 ± 0.12 °C), indicating improved freezing stability. After five weeks of frozen storage, the ice crystal melting enthalpy (ΔHm) of gluten protein in the GCAFP group increased by only 20.17 J/g, compared with 27.23 J/g in the control, representing a 6.35% reduction (p < 0.05). Similarly, after five freeze–thaw cycles, the freezable water fraction (Fw) and ΔHm were reduced by 5.19% and 1.55%, respectively, demonstrating that GCAFP inhibited water migration and ice recrystallization. Low-field NMR revealed that GCAFP maintained a higher proportion of bound water (T21) and decreased free water (T23), confirming its role in restricting water mobility. Rheological analysis showed that GCAFP preserved the viscoelasticity of gluten protein, maintaining higher storage (G′) and loss (G″) moduli than the control after five freeze–thaw cycles, thus mitigating the decline in network elasticity. Structural characterization indicated that GCAFP stabilized the α-helix and β-sheet contents, reduced glutenin macropolymer depolymerization from 24.85% to 18.95%, and strengthened hydrogen bonding within the protein matrix. Overall, GCAFP effectively protected wet gluten protein against ice crystal damage by maintaining water distribution, viscoelasticity, and secondary structure integrity, highlighting its potential as a natural antifreeze ingredient for frozen food applications. Full article
Show Figures

Figure 1

38 pages, 10193 KB  
Article
Assessment of Physicochemical Properties of Cashew Apple Through Computer Vision
by Mathala Juliet Gupta, C. Igathinathane, Jyoti Nishad, Humeera Tazeen, Astina Joice, S. Sunoj, Anand Mohan, Parveen Kumar and Jamboor Dinakara Adiga
AgriEngineering 2025, 7(12), 398; https://doi.org/10.3390/agriengineering7120398 - 28 Nov 2025
Viewed by 708
Abstract
Cashew apples, a byproduct of the cashew nut industry with an estimated global production of 38 million tonnes, are rich in several essential nutrients and are widely processed into juice, syrup, wine, pickles, and other value-added products. However, their morphological and physicochemical properties [...] Read more.
Cashew apples, a byproduct of the cashew nut industry with an estimated global production of 38 million tonnes, are rich in several essential nutrients and are widely processed into juice, syrup, wine, pickles, and other value-added products. However, their morphological and physicochemical properties vary significantly across varieties, complicating in-field characterization, maturity assessment, and biochemical analysis. These challenges originate from the reliance on costly chemicals, skilled manpower, limited time, and sophisticated equipment. This study employed a user-developed computer vision-based ImageJ 1.x batch processing plugin to assess 15 physicochemical properties across six diverse cashew apple varieties from the images of slices and whole samples. Five methodologies—color grid, surface morphology, gray level co-occurrence matrix, local binary pattern, and color indices—generated image-based metrics rapidly (2.87±0.79 s/image). The correlation of wet chemistry with image-based parameters, linear modeling, and wet chemistry parameters prediction with an independent dataset were successfully performed, and the successfully modeled properties include acidity, antioxidants, carbohydrates, carotenoids, crude fat, flavonoids, pH, phenolics, proteins, tannins, vitamin C, and total soluble solids. The results demonstrated the feasibility of predicting 11 out of 15 physicochemical properties of cashew apples (R2>0.5). This methodology offers a faster, safer, and cost-effective alternative to wet chemistry and can be extended to other horticultural crops. Full article
Show Figures

Graphical abstract

18 pages, 3543 KB  
Article
Bergamot Polyphenols Reduce Hepatic Lipogenesis While Boosting Autophagy and Short-Chain Fatty Acid Production in a Murine “Cafeteria” Model of MASLD
by Concetta Riillo, Maddalena Parafati, Francesco Crupi, Bartosz Fotschki, Monica Ragusa, Anna Di Vito, Chiara Mignogna, Vincenzo Mollace and Elzbieta Janda
Nutrients 2025, 17(23), 3684; https://doi.org/10.3390/nu17233684 - 25 Nov 2025
Cited by 1 | Viewed by 1236
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in Western countries, characterized by excessive fat storage in the form of lipid droplets (LDs) in hepatocytes; it is also called Metabolic-Associated Steatotic Liver Disease (MASLD), if coexisting with at least [...] Read more.
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in Western countries, characterized by excessive fat storage in the form of lipid droplets (LDs) in hepatocytes; it is also called Metabolic-Associated Steatotic Liver Disease (MASLD), if coexisting with at least one cardiometabolic risk factor. Bergamot polyphenols (BPF) have been shown to counteract hepatic LD accumulation through potent lipogenesis suppression and associated metabolic benefits in Wistar rats, but their liver-specific anti-lipogenic effects may be species- and strain-dependent. Results and Methods: To address this issue we examined the effect of a cafeteria diet (CAF) and BPF in C3H/HeOuJ mice, which are considered resistant to diet-induced MASLD and fibrosis. Interestingly, a 15-week CAF diet led to a robust LD accumulation, weak portal and focal inflammation, and induced a higher expression of lipogenesis (Acly)- but not fibrosis-related (Col1a) genes in C3H/HeOuJ livers. This was associated with a significant increase in blood glucose, triglycerides, and total cholesterol levels, and a decrease in caecal short-chain fatty acids (SCFAs). Importantly, mice co-treated with BPF showed strongly reduced steatosis compared to CAF mice, lower blood glucose and triglyceride levels, stimulation of hepatic autophagy, and a reduced Acly gene and protein expression, followed by a more than doubled and tripled production of total SCFAs and butyric acid, respectively. Conclusions: In conclusion, while CAF diet supplementation in C3H/HeOuJ mice proves to be a suitable model of MASLD with deficient SCFA production, BPF confirms its potency to prevent murine MASLD by pleiotropic mechanisms, including beneficial effects on SCFA content, hepatic autophagy, and lipogenesis. Full article
Show Figures

Figure 1

20 pages, 3047 KB  
Article
Protective Efficacy of Two Novel DNA Vaccine Candidates Encoding TgGRA28 and TgGRA83 with an IL-28B Molecular Adjuvant Against Acute and Chronic Toxoplasmosis in Mice
by Jun Fang, Jingqi Mu, Rui Li and Jia Chen
Vaccines 2025, 13(12), 1180; https://doi.org/10.3390/vaccines13121180 - 21 Nov 2025
Viewed by 684
Abstract
Background: Toxoplasma gondii is a globally distributed apicomplexan parasite capable of causing congenital infections and spontaneous abortions in humans. While the parasite-secreted effector proteins TgGRA28 and TgGRA83 are known to mediate virulence or immune modulation, their potential as vaccine targets remains unexplored. Despite [...] Read more.
Background: Toxoplasma gondii is a globally distributed apicomplexan parasite capable of causing congenital infections and spontaneous abortions in humans. While the parasite-secreted effector proteins TgGRA28 and TgGRA83 are known to mediate virulence or immune modulation, their potential as vaccine targets remains unexplored. Despite its immunomodulatory properties, the role of IL-28B (a type III interferon) in enhancing DNA vaccine efficacy against T. gondii infection remains unclear. Methods: In this study, we constructed eukaryotic expression plasmids pVAX-GRA28, pVAX- GRA83 and pVAX-IL-28B. After transfection into -293-T cell, protein expression encoding TgGRA28 and TgGRA83 was confirmed via indirect immunofluorescence assay (IFA), while IL-28B expression was analyzed by ELISA. Subsequently, C57BL/6J or IFNαR1 knockout mice were immunized with single or dual-antigen DNA vaccines, with or without the molecular adjuvant pVAX-IL-28B. Immune responses were assessed through Toxoplasma-specific antibody levels, cytotoxic T lymphocyte (CTL) activity, cytokine profiling (IFN-γ, IL-2, IL-12p40, IL-12p70), and flow cytometric analysis of lymphocyte subsets and dendritic cells (DCs). Protective efficacy was determined by survival rates and brain cyst burden following challenge with 100 or 10 ME49 T. gondii cysts, respectively. Results: Vaccination with pVAX-GRA28 and pVAX-GRA83 elicited robust humoral immune responses with increased T. gondii-specific IgG levels and also Th1-polarized immunity, characterized by elevated IgG2a/IgG1 ratio, IFN-γ-dominant cytokine responses, and enhanced DCs, CD4+ and CD8+ T-cell activation. The cocktail vaccine conferred superior protection compared to single-antigen formulations, significantly improving survival and reducing cyst formation. Co-administration of pVAX-IL-28B further augmented vaccine-induced immunity, enhancing both cellular and humoral responses. Moreover, these DNA immunization with pVAX-GRA28 and pVAX-GRA83 plus pVAX-IL-28B induced robust protective immunity that was largely independent of type I IFN signaling, consistent with type III IFN biology. Conclusions: Our findings demonstrate that TgGRA28 and TgGRA83 are promising vaccine candidates against toxoplasmosis, capable of inducing protective immunity against acute and chronic infection. Moreover, IL-28B serves as a potent genetic adjuvant, warranting further investigation for its broader application in vaccines targeting apicomplexan parasites. Full article
(This article belongs to the Section Vaccines Against Tropical and Other Infectious Diseases)
Show Figures

Figure 1

20 pages, 1368 KB  
Article
Phytochemistry and Biological Effects of the Juglans regiaSorrento” Walnut Husk Extract on Human Keratinocyte Cells
by Giulia Vergine, Michela Ottolini, Giuseppe E. De Benedetto, Simona Bettini, Francesca Baldassarre, Daniele Vergara and Giuseppe Ciccarella
Antioxidants 2025, 14(12), 1385; https://doi.org/10.3390/antiox14121385 - 21 Nov 2025
Viewed by 886
Abstract
Plants are a valuable source of natural compounds with diverse applications. Recently, increased attention has focused on waste products from the agricultural industry, including walnut husk. Given its potential as a sustainable source of bioactives, this work characterizes the alcoholic Juglans regia [...] Read more.
Plants are a valuable source of natural compounds with diverse applications. Recently, increased attention has focused on waste products from the agricultural industry, including walnut husk. Given its potential as a sustainable source of bioactives, this work characterizes the alcoholic Juglans regiaSorrento” walnut husk extract (WHE). The extract’s phenolic content, antioxidant activity, and phytochemical composition were evaluated using spectrophotometry and UHPLC-HRMS-based untargeted metabolomics analysis. WHE exhibited a high total phenolic content (TPC = 1.45 ± 0.03 mg GAE/g dry extract) and a rich profile of phenolic acids, flavonoids, and tannins. Given this composition, WHE’s biological activity was further tested in an in vitro human keratinocyte (HaCaT) model. At the concentration of 10 μg/mL, WHE showed no cytotoxicity and displayed significant antioxidant properties by modulating detoxifying proteins such as Nrf2. WHE also influenced mitochondrial metabolism, increased maximum respiration, preserved barrier integrity, and activated pathways for epithelial homeostasis. Overall, this study highlights the bioactivity of the J. regiaSorrento” walnut husk extract. These findings support the valorization of walnut husk as a sustainable source of bioactives for dermatological and cosmetic products. Full article
(This article belongs to the Special Issue Antioxidant Phytochemicals for Promoting Human Health and Well-Being)
Show Figures

Graphical abstract

24 pages, 2759 KB  
Article
Factors Released by Polarized Neutrophil-like Cells Modulate Cardiac Fibroblast Phenotype and Limit the Inflammatory Response After Myocardial Infarction
by Letitia Ciortan, Ana-Maria Gan, Sergiu Cecoltan, Mihaela Serbanescu, Andreea Cristina Mihaila, Razvan Daniel Macarie, Monica Madalina Tucureanu, Miruna Larisa Naie, Mihai Bogdan Preda, Bogdan-Paul Cosman, Galyna Bila, Rostyslav Bilyy and Elena Butoi
Biomedicines 2025, 13(11), 2829; https://doi.org/10.3390/biomedicines13112829 - 20 Nov 2025
Viewed by 813
Abstract
Background: Following myocardial infarction (MI), cardiac fibroblasts (CFs) adopt distinct phenotypes to ensure scar formation and healing. Although leukocytes are a critical driver of post-MI healing, the role of neutrophils in modulating CF phenotype remains insufficiently explored. We therefore investigated the impact [...] Read more.
Background: Following myocardial infarction (MI), cardiac fibroblasts (CFs) adopt distinct phenotypes to ensure scar formation and healing. Although leukocytes are a critical driver of post-MI healing, the role of neutrophils in modulating CF phenotype remains insufficiently explored. We therefore investigated the impact of soluble mediators released by neutrophil subtypes found post-MI—pro-inflammatory (N1) and anti-inflammatory (N2)—on shaping CFs phenotype. Methods: In vitro, human 3D grown CFs were indirectly co-cultured with N1 or N2 neutrophil-like cells using a two-chamber Transwell system. After 24 h, expression of inflammatory, remodeling, and pro-fibrotic markers was evaluated in fibroblasts and conditioned media. In vivo, soluble mediators derived from polarized mouse neutrophils (SN1 or SN2) were injected into the infarcted myocardium of C57BL/6J after MI surgery. The effects on the healing process were investigated at 1 and 7 days post-MI. Results: In vitro, CFs were found to exhibit a pro-inflammatory and matrix-degrading phenotype following indirect co-culture with N1 cells, characterized by overexpression of IL-1β, IL-6, MCP-1, and metalloproteases MMP-3/MMP-9. In vivo, both SN1 and SN2 treatments significantly reduced pro-inflammatory markers IL-1β and IL-6 gene expression at day 1 post-MI (inflammatory phase). At day 7 post-MI (resolution phase), SN1/SN2 treatments continued to limit local inflammation, while mitigating fibrotic remodeling by reducing CCN2, α-SMA, and key extracellular matrix proteins. Conclusions: Together, these findings suggest that while N1-derived mediators promote a pro-inflammatory fibroblast phenotype in vitro, factors secreted by both N1 and N2 support a more balanced reparative response in vivo, by limiting local inflammation and potentially mitigating adverse remodeling post-MI. Full article
(This article belongs to the Special Issue Coronary Artery Disease: Current Evidence and Future Perspectives)
Show Figures

Figure 1

15 pages, 921 KB  
Article
Genomic Characterization of Predominant Delta Variant (B.1.617.2 and AY.120 Sub-Lineages) SARS-CoV-2 Detected from AFI Patients in Ethiopia During 2021–2022
by Musse Tadesse Chekol, Dejenie Shiferaw Teklu, Adamu Tayachew, Wolde Shura, Admikew Agune, Aster Hailemariam, Aynalem Alemu, Mesfin Wossen, Abdulhafiz Hassen, Melaku Gonta, Neamin Tesfay, Tesfu Kasa and Nigatu Kebede
Genes 2025, 16(11), 1366; https://doi.org/10.3390/genes16111366 - 11 Nov 2025
Viewed by 583
Abstract
Background: The Delta variant of SARS-CoV-2 virus, one of the alarming variants of concern (VOC) with a distinct mutation characteristic, was immensely detrimental and a significant cause of the prolonged pandemic waves. This study aimed to analyze the genetic characteristics of the [...] Read more.
Background: The Delta variant of SARS-CoV-2 virus, one of the alarming variants of concern (VOC) with a distinct mutation characteristic, was immensely detrimental and a significant cause of the prolonged pandemic waves. This study aimed to analyze the genetic characteristics of the predominant Delta variant in acute febrile illness (AFI) patients in Ethiopia. Method: Nasopharyngeal swab samples were collected from AFI patients in four hospitals from February 2021 to June 2022 and tested for SARS-CoV-2 by using RT-qPCR. Of 101 positive samples, 48 stored specimens were re-tested, and 26 with sufficient RNA quality (Ct < 30) were sequenced using whole-genome sequencing to identify variants of concern, specific virus lineages and mutation features. Result: Delta variants (21J clade) were found predominant among all the sequenced SARS-CoV-2 isolate (80.8%, 21/26). AY.120 (46.2%) and B.1.617.2 (26.9%) were the predominant sub-lineages of the Delta variant. Omicron (21k, Pango BA.1.1/BA.1.17/BA.1) and Alpha (20I, Pango B.1.1.7) variants accounted for 11.5% and 7.7% of the total sequenced samples. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Ethiopia. The number of mutations increases dramatically from Alpha (~35 avg) to Delta (~42 avg) to Omicron (~56 avg). The Delta variant revealed a spike mutation on L452R and T478K and P681R, and was characterized by the double deletion E156-F157- in Spike protein. Conclusions: The findings are indicative of a gradual change in the genetic coding of the virus underscoring the importance of ongoing genomic surveillance to track the evolution and spread of SARS-CoV-2 and other emerging virus. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop