Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (637)

Search Parameters:
Keywords = Improved Empirical Mode Decomposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 6384 KiB  
Article
An Integrated Mechanical Fault Diagnosis Framework Using Improved GOOSE-VMD, RobustICA, and CYCBD
by Jingzong Yang and Xuefeng Li
Machines 2025, 13(7), 631; https://doi.org/10.3390/machines13070631 - 21 Jul 2025
Abstract
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak [...] Read more.
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak feature enhancement, this paper proposes an innovative diagnostic framework integrating Improved Goose optimized Variational Mode Decomposition (IGOOSE-VMD), RobustICA, and CYCBD. First, to mitigate modal aliasing issues caused by empirical parameter dependency in VMD, we fuse a refraction-guided reverse learning mechanism with a dynamic mutation strategy to develop the IGOOSE. By employing an energy-feature-driven fitness function, this approach achieves synergistic optimization of the mode number and penalty factor. Subsequently, a multi-channel observation model is constructed based on optimal component selection. Noise interference is suppressed through the robust separation capabilities of RobustICA, while CYCBD introduces cyclostationarity-based prior constraints to formulate a blind deconvolution operator with periodic impact enhancement properties. This significantly improves the temporal sparsity of fault-induced impact components. Experimental results demonstrate that, compared to traditional time–frequency analysis techniques (e.g., EMD, EEMD, LMD, ITD) and deconvolution methods (including MCKD, MED, OMEDA), the proposed approach exhibits superior noise immunity and higher fault feature extraction accuracy under high background noise conditions. Full article
24 pages, 6464 KiB  
Article
A Hybrid Model for Carbon Price Forecasting Based on Secondary Decomposition and Weight Optimization
by Yongfa Chen, Yingjie Zhu, Jie Wang and Meng Li
Mathematics 2025, 13(14), 2323; https://doi.org/10.3390/math13142323 - 21 Jul 2025
Abstract
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original [...] Read more.
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original price series is decomposed into intrinsic mode functions (IMFs), using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The IMFs are then grouped into low- and high-frequency components based on multiscale entropy (MSE) and K-Means clustering. To further alleviate mode mixing in the high-frequency components, an improved variational mode decomposition (VMD) optimized by particle swarm optimization (PSO) is applied for secondary decomposition. Secondly, a two-stage feature-selection method is employed, in which the partial autocorrelation function (PACF) is used to select relevant lagged features, while the maximal information coefficient (MIC) is applied to identify key variables from both historical and external data. Finally, this paper introduces a dynamic integration module based on sliding windows and sequential least squares programming (SLSQP), which can not only adaptively adjust the weights of four base learners but can also effectively leverage the complementary advantages of each model and track the dynamic trends of carbon prices. The empirical results of the carbon markets in Hubei and Guangdong indicate that the proposed method outperforms the benchmark model in terms of prediction accuracy and robustness, and the method has been tested by Diebold Mariano (DM). The main contributions are the improved feature-extraction process and the innovative use of a sliding window-based SLSQP method for dynamic ensemble weight optimization. Full article
Show Figures

Figure 1

20 pages, 10304 KiB  
Article
Long-Term Hourly Ozone Forecasting via Time–Frequency Analysis of ICEEMDAN-Decomposed Components: A 36-Hour Forecast for a Site in Beijing
by Taotao Lv, Yulu Yi, Zhuowen Zheng, Jie Yang and Siwei Li
Remote Sens. 2025, 17(14), 2530; https://doi.org/10.3390/rs17142530 - 21 Jul 2025
Abstract
Surface ozone is a pollutant linked to higher risks of cardiopulmonary diseases with long-term exposure. Timely forecasting of ozone levels helps authorities implement preventive measures to protect public health and safety. However, few studies have been able to reliably provide long-term hourly ozone [...] Read more.
Surface ozone is a pollutant linked to higher risks of cardiopulmonary diseases with long-term exposure. Timely forecasting of ozone levels helps authorities implement preventive measures to protect public health and safety. However, few studies have been able to reliably provide long-term hourly ozone forecasts due to the complexity of ozone’s diurnal variations. To address this issue, this study constructs a hybrid prediction model integrating improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), bi-directional long short-term memory neural network (BiLSTM), and the persistence model to forecast the hourly ozone concentrations for the next continuous 36 h. The model is trained and tested at the Wanshouxigong site in Beijing. The ICEEMDAN method decomposes the ozone time series data to extract trends and obtain intrinsic mode functions (IMFs) and a residual (Res). Fourier period analysis is employed to elucidate the periodicity of the IMFs, which serves as the basis for selecting the prediction model (BiLSTM or persistence model) for different IMFs. Extensive experiments have shown that a hybrid model of ICEEMDAN, BiLSTM, and persistence model is able to achieve a good performance, with a prediction accuracy of R2 = 0.86 and RMSE = 18.70 µg/m3 for the 36th hour, outperforming other models. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 5415 KiB  
Article
Intelligent Optimized Diagnosis for Hydropower Units Based on CEEMDAN Combined with RCMFDE and ISMA-CNN-GRU-Attention
by Wenting Zhang, Huajun Meng, Ruoxi Wang and Ping Wang
Water 2025, 17(14), 2125; https://doi.org/10.3390/w17142125 - 17 Jul 2025
Viewed by 180
Abstract
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is [...] Read more.
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used initially. A novel comprehensive index is constructed by combining the Pearson correlation coefficient, mutual information (MI), and Kullback–Leibler divergence (KLD) to select intrinsic mode functions (IMFs). Next, feature extraction is performed on the selected IMFs using Refined Composite Multiscale Fluctuation Dispersion Entropy (RCMFDE). Then, time and frequency domain features are screened by calculating dispersion and combined with IMF features to build a hybrid feature vector. The vector is then fed into a CNN-GRU-Attention model for intelligent diagnosis. The improved slime mold algorithm (ISMA) is employed for the first time to optimize the hyperparameters of the CNN-GRU-Attention model. The experimental results show that the classification accuracy reaches 96.79% for raw signals and 93.33% for noisy signals, significantly outperforming traditional methods. This study incorporates entropy-based feature extraction, combines hyperparameter optimization with the classification model, and addresses the limitations of single feature selection methods for non-stationary and nonlinear signals. The proposed approach provides an excellent solution for intelligent optimized diagnosis of hydropower units. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

28 pages, 18279 KiB  
Article
From the Past to the Future: Unveiling the Impact of Extreme Climate on Vegetation Dynamics in Northern China Through Historical Trends and Future Projections
by Yuxuan Zhang, Xiaojun Yao, Juan Zhang and Qin Ma
Land 2025, 14(7), 1456; https://doi.org/10.3390/land14071456 - 13 Jul 2025
Viewed by 236
Abstract
Over the past few decades, occurrences of extreme climatic events have escalated significantly, with severe repercussions for global ecosystems and socio-economics. northern China (NC), characterized by its complex topography and diverse climatic conditions, represents a typical ecologically vulnerable region where vegetation is highly [...] Read more.
Over the past few decades, occurrences of extreme climatic events have escalated significantly, with severe repercussions for global ecosystems and socio-economics. northern China (NC), characterized by its complex topography and diverse climatic conditions, represents a typical ecologically vulnerable region where vegetation is highly sensitive to climate change. Therefore, monitoring vegetation dynamics and analyzing the influence of extreme climatic events on vegetation are crucial for ecological conservation efforts in NC. Based on extreme climate indicators and the Normalized Difference Vegetation Index (NDVI), this study employed trend analysis, Ensemble Empirical Mode Decomposition, all subsets regression analysis, and random forest to quantitatively investigate the spatiotemporal variations in historical and projected future NDVI trends in NC, as well as their responses to extreme climatic conditions. The results indicate that from 1982 to 2018, the NDVI in NC generally exhibited a recovery trend, with an average growth rate of 0.003/a and a short-term variation cycle of approximately 3 years. Vegetation restoration across most areas was primarily driven by short-term high temperatures and long-term precipitation patterns. Future projections under different emission scenarios (SSP245 and SSP585) suggest that extreme climate change will continue to follow historical trends. However, increased radiative forcing is expected to constrain both the rate of vegetation growth and its spatial expansion. These findings provide a scientific basis for mitigating the impacts of climate anomalies and improving ecological quality in NC. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 357
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 185
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

27 pages, 7944 KiB  
Article
Graphical Empirical Mode Decomposition–Convolutional Neural Network-Based Expert System for Early Corrosion Detection in Truss-Type Bridges
by Alan G. Lujan-Olalde, Angel H. Rangel-Rodriguez, Andrea V. Perez-Sanchez, Martin Valtierra-Rodriguez, Jose M. Machorro-Lopez and Juan P. Amezquita-Sanchez
Infrastructures 2025, 10(7), 177; https://doi.org/10.3390/infrastructures10070177 - 8 Jul 2025
Viewed by 202
Abstract
Corrosion is a critical issue in civil structures, significantly affecting their durability and functionality. Detecting corrosion at an early stage is essential to prevent structural failures and ensure safety. This study proposes an expert system based on a novel methodology for corrosion detection [...] Read more.
Corrosion is a critical issue in civil structures, significantly affecting their durability and functionality. Detecting corrosion at an early stage is essential to prevent structural failures and ensure safety. This study proposes an expert system based on a novel methodology for corrosion detection using vibration signal analysis. The approach employs graphical empirical mode decomposition (GEMD) to decompose vibration signals into their intrinsic mode functions, extracting relevant structural features. These features are then transformed into grayscale images and classified using a Convolutional Neural Network (CNN) to automatically differentiate between a healthy structure and one affected by corrosion. To enhance the computational efficiency of the method without compromising accuracy, different CNN architectures and image sizes are tested to propose a low-complexity model. The proposed approach is validated using a 3D nine-bay truss-type bridge model encountered in the Vibrations Laboratory at the Autonomous University of Querétaro, Mexico. The evaluation considers three different corrosion levels: (1) incipient, (2) moderate, and (3) severe, along with a healthy condition. The combination of GEMD and CNN provides a highly accurate corrosion detection framework that achieves 100% classification accuracy while remaining effective regardless of the damage location and severity, making it a reliable tool for early-stage corrosion assessment that enables timely maintenance and enhances structural health monitoring to improve the long life and safety of civil structures. Full article
(This article belongs to the Special Issue Structural Health Monitoring in Bridge Engineering)
Show Figures

Figure 1

24 pages, 3200 KiB  
Article
A Spatial–Temporal Time Series Decomposition for Improving Independent Channel Forecasting
by Yue Yu, Pavel Loskot, Wenbin Zhang, Qi Zhang and Yu Gao
Mathematics 2025, 13(14), 2221; https://doi.org/10.3390/math13142221 - 8 Jul 2025
Viewed by 241
Abstract
Forecasting multivariate time series is a pivotal task in controlling multi-sensor systems. The joint forecasting of all channels may be too complex, whereas forecasting the channels independently may cause important spatial inter-dependencies to be overlooked. In this paper, we improve the performance of [...] Read more.
Forecasting multivariate time series is a pivotal task in controlling multi-sensor systems. The joint forecasting of all channels may be too complex, whereas forecasting the channels independently may cause important spatial inter-dependencies to be overlooked. In this paper, we improve the performance of single-channel forecasting algorithms by designing an interpretable front-end that extracts the spatial–temporal components from the input multivariate time series. Specifically, the multivariate samples are first segmented into equal-sized matrix symbols. The symbols are decomposed into the frequency-separated Intrinsic Mode Functions (IMFs) using a 2D Empirical-Mode Decomposition (EMD). The IMF components in each channel are then forecasted independently using relatively simple univariate predictors (UPs) such as DLinear, FITS, and TCN. The symbol size is determined to maximize the temporal stationarity of the EMD residual trend using Bayesian optimization. In addition, since the overall performance is usually dominated by a few of the weakest predictors, it is shown that the forecasting accuracy can be further improved by reordering the corresponding channels to make more correlated channels more adjacent. However, channel reordering requires retraining the affected predictors. The main advantage of the proposed forecasting framework for multivariate time series is that it retains the interpretability and simplicity of single-channel forecasting methods while improving their accuracy by capturing information about the spatial-channel dependencies. This has been demonstrated numerically assuming a 64-channel EEG dataset. Full article
Show Figures

Figure 1

22 pages, 3542 KiB  
Article
Enhanced Short-Term PV Power Forecasting via a Hybrid Modified CEEMDAN-Jellyfish Search Optimized BiLSTM Model
by Yanhui Liu, Jiulong Wang, Lingyun Song, Yicheng Liu and Liqun Shen
Energies 2025, 18(13), 3581; https://doi.org/10.3390/en18133581 - 7 Jul 2025
Viewed by 287
Abstract
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition [...] Read more.
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the jellyfish search (JS) optimization algorithm, and a bidirectional long short-term memory (BiLSTM) neural network. First, the original PV power signal was decomposed into intrinsic mode functions using a modified CEEMDAN method to better capture the complex nonlinear features. Subsequently, the fast Fourier transform and improved Pearson correlation coefficient (IPCC) were applied to identify and merge similar-frequency intrinsic mode functions, forming new composite components. Each reconstructed component was then forecasted individually using a BiLSTM model, whose parameters were optimized by the JS algorithm. Finally, the predicted components were aggregated to generate the final forecast output. Experimental results on real-world PV datasets demonstrate that the proposed CEEMDAN-JS-BiLSTM model achieves an R2 of 0.9785, a MAPE of 8.1231%, and an RMSE of 37.2833, outperforming several commonly used forecasting models by a substantial margin in prediction accuracy. This highlights its effectiveness as a promising solution for intelligent PV power management. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 4388 KiB  
Article
Engineering Safety-Oriented Blasting-Induced Seismic Wave Signal Processing: An EMD Endpoint Suppression Method Based on Multi-Scale Feature
by Miao Sun, Jing Wu, Yani Lu, Fangda Yu and Hang Zhou
Sensors 2025, 25(13), 4194; https://doi.org/10.3390/s25134194 - 5 Jul 2025
Viewed by 235
Abstract
Blasting-induced seismic waves are typically nonlinear and non-stationary signals. The EMD-Hilbert transform is commonly used for time–frequency analysis of such signals. However, during the empirical mode decomposition (EMD) processing of blasting-induced seismic waves, endpoint effects occur, resulting in varying degrees of divergence in [...] Read more.
Blasting-induced seismic waves are typically nonlinear and non-stationary signals. The EMD-Hilbert transform is commonly used for time–frequency analysis of such signals. However, during the empirical mode decomposition (EMD) processing of blasting-induced seismic waves, endpoint effects occur, resulting in varying degrees of divergence in the obtained intrinsic mode function (IMF) components at both ends. The further application of the Hilbert transform to these endpoint-divergent IMFs yield artificial time–frequency analysis results, adversely impacting the assessment of blasting-induced seismic wave hazards. This paper proposes an improved EMD endpoint effect suppression algorithm that considers local endpoint development trends, global time distribution, energy matching, and waveform matching. The method first analyzes global temporal characteristics and endpoint amplitude variations to obtain left and right endpoint extension signal fragment S(t)L and S(t)R. Using these as references, the original signal is divided into “b” equal segments S(t)1, S(t)2 … S(t)b. Energy matching and waveform matching functions are then established to identify signal fragments S(t)i and S(t)j that match both the energy and waveform characteristics of S(t)L and S(t)R. Replacing S(t)L and S(t)R with S(t)i and S(t)j effectively suppresses the EMD endpoint effects. To verify the algorithm’s effectiveness in suppressing EMD endpoint effects, comparative studies were conducted using simulated signals to compare the proposed method with mirror extension, polynomial fitting, and extreme value extension methods. Three evaluation metrics were utilized: error standard deviation, correlation coefficient, and computation time. The results demonstrate that the proposed algorithm effectively reduces the divergence at the endpoints of the IMFs and yields physically meaningful IMF components. Finally, the method was applied to the analysis of actual blasting seismic signals. It successfully suppressed the endpoint effects of EMD and improved the extraction of time–frequency characteristics from blasting-induced seismic waves. This has significant practical implications for safety assessments of existing structures in areas affected by blasting. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 3373 KiB  
Article
A Novel FMCW LiDAR Multi-Target Denoising Method Based on Optimized CEEMDAN with Singular Value Decomposition
by Zhiwei Li, Ning Wang, Yao Li, Jiaji He and Yiqiang Zhao
Electronics 2025, 14(13), 2697; https://doi.org/10.3390/electronics14132697 - 3 Jul 2025
Viewed by 203
Abstract
Frequency-modulated continuous-wave (FMCW) LiDAR systems frequently experience noise interference during multi-target measurements in real-world applications, resulting in target overlapping and diminished detection accuracy. Conventional denoising approaches—such as Empirical Mode Decomposition (EMD) and wavelet thresholding—are often constrained by challenges like mode mixing and the [...] Read more.
Frequency-modulated continuous-wave (FMCW) LiDAR systems frequently experience noise interference during multi-target measurements in real-world applications, resulting in target overlapping and diminished detection accuracy. Conventional denoising approaches—such as Empirical Mode Decomposition (EMD) and wavelet thresholding—are often constrained by challenges like mode mixing and the attenuation of weak target signals, which limits their detection precision. To address these limitations, this study presents a novel denoising framework that integrates an optimized Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm and singular value decomposition (SVD). The CEEMDAN algorithm’s two critical parameters—the noise standard deviation and the number of noise additions—are optimally determined using particle swarm optimization (PSO), with the envelope entropy of the intrinsic mode functions (IMFs) serving as the fitness criterion. IMFs are subsequently selected based on spectral and amplitude comparisons with the original signal to facilitate initial signal reconstruction. Following CEEMDAN-based decomposition, SVD is employed with a normalized soft thresholding technique to further suppress residual noise. Validation using both synthetic and experimental datasets demonstrates the superior performance of the proposed approach over existing methods in multi-target scenarios. Specifically, it reduces the root mean square error (RMSE) by 45% to 59% and the mean square error (MSE) by 34% to 69%, and improves the signal-to-noise ratio (SNR) by 1.85–4.38 dB and the peak signal-to-noise ratio (PSNR) by 1.18–6.94 dB. These results affirm the method’s effectiveness in enhancing signal quality and target distinction in noisy FMCW LiDAR measurements. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

19 pages, 3425 KiB  
Article
Multi-Scale Decomposition and Hybrid Deep Learning CEEMDAN-VMD-CNN-BiLSTM Approach for Wind Power Forecasting
by Zhanhu Ning, Guoping Chen, Jiwu Wang and Wei Hu
Processes 2025, 13(7), 2046; https://doi.org/10.3390/pr13072046 - 27 Jun 2025
Viewed by 295
Abstract
To address the challenges posed by the volatility and uncertainty of wind power generation, this study presents a hybrid model combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), convolutional neural network (CNN), and bidirectional long short-term memory [...] Read more.
To address the challenges posed by the volatility and uncertainty of wind power generation, this study presents a hybrid model combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), convolutional neural network (CNN), and bidirectional long short-term memory (BiLSTM) for wind power forecasting. The model first employs CEEMDAN to decompose the original wind power sequence into multiple scales, obtaining several intrinsic mode functions (IMFs). These IMFs are then classified using sample entropy and k-means clustering, with high-frequency IMFs further decomposed using VMD. Next, the decomposed signals are processed by a CNN to extract local spatiotemporal features, followed by a BiLSTM network that captures bidirectional temporal dependencies. Experimental results demonstrate the superiority of the proposed model over ARIMA, LSTM, CEEMDAN-LSTM, and VMD-CNN-LSTM models. The proposed model achieves a mean squared error (MSE) of 67.145, a root mean squared error (RMSE) of 8.192, a mean absolute error (MAE) of 6.020, and a coefficient of determination (R2) of 0.9840, indicating significant improvements in forecasting accuracy and reliability. This study offers a new solution for enhancing wind power forecasting precision, which is crucial for efficient grid operation and energy management. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

21 pages, 3698 KiB  
Article
Research on Bearing Fault Diagnosis Method Based on MESO-TCN
by Ruibin Gao, Jing Zhu, Yifan Wu, Kaiwen Xiao and Yang Shen
Machines 2025, 13(7), 558; https://doi.org/10.3390/machines13070558 - 27 Jun 2025
Viewed by 217
Abstract
To address the issues of information redundancy, limited feature representation, and empirically set parameters in rolling bearing fault diagnosis, this paper proposes a Multi-Entropy Screening and Optimization Temporal Convolutional Network (MESO-TCN). The method integrates feature filtering, network modeling, and parameter optimization into a [...] Read more.
To address the issues of information redundancy, limited feature representation, and empirically set parameters in rolling bearing fault diagnosis, this paper proposes a Multi-Entropy Screening and Optimization Temporal Convolutional Network (MESO-TCN). The method integrates feature filtering, network modeling, and parameter optimization into a unified diagnostic framework. Specifically, ensemble empirical mode decomposition (EEMD) is combined with a hybrid entropy criterion to preprocess the raw vibration signals and suppress redundant noise. A kernel-extended temporal convolutional network (ETCN) is designed with multi-scale dilated convolution to extract diverse temporal fault patterns. Furthermore, an improved whale optimization algorithm incorporating a firefly-inspired mechanism is introduced to adaptively optimize key hyperparameters. Experimental results on datasets from Xi’an Jiaotong University and Southeast University demonstrate that MESO-TCN achieves average accuracies of 99.78% and 95.82%, respectively, outperforming mainstream baseline methods. These findings indicate the method’s strong generalization ability, feature discriminability, and engineering applicability in intelligent fault diagnosis of rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

31 pages, 3621 KiB  
Review
Electromyography Signal Acquisition, Filtering, and Data Analysis for Exoskeleton Development
by Jung-Hoon Sul, Lasitha Piyathilaka, Diluka Moratuwage, Sanura Dunu Arachchige, Amal Jayawardena, Gayan Kahandawa and D. M. G. Preethichandra
Sensors 2025, 25(13), 4004; https://doi.org/10.3390/s25134004 - 27 Jun 2025
Viewed by 615
Abstract
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, [...] Read more.
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, noise mitigation, data preprocessing, feature extraction, and control strategies. Various EMG acquisition methods, including surface, intramuscular, and high-density surface EMG, are evaluated for their applicability in real-time control. The review addresses prevalent signal quality challenges, such as motion artifacts, power-line interference, and crosstalk. It also highlights both traditional filtering techniques and advanced methods, such as wavelet transforms, empirical mode decomposition, and adaptive filtering. Feature extraction techniques are explored to support pattern recognition and motion classification. Machine learning approaches are examined for their roles in pattern recognition-based and hybrid control architectures. This article emphasizes muscle synergy analysis and adaptive control algorithms to enhance personalization and fatigue compensation, followed by the benefits of multimodal sensing and edge computing in addressing the limitations of EMG-only systems. By focusing on EMG-driven strategies through signal processing, machine learning, and sensor fusion innovations, this review bridges gaps in human–machine interaction, offering insights into improving the precision, adaptability, and robustness of next generation exoskeletons. Full article
(This article belongs to the Special Issue Sensors-Based Healthcare Diagnostics, Monitoring and Medical Devices)
Show Figures

Figure 1

Back to TopTop