From the Past to the Future: Unveiling the Impact of Extreme Climate on Vegetation Dynamics in Northern China Through Historical Trends and Future Projections
Abstract
1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Calculation of Extreme Climate Indices
2.3.2. Changing Trend
2.3.3. Ensemble Empirical Mode Decomposition
- (1)
- A specific quantity (np) of Gaussian white noise, denoted as ωj(t), is incorporated into the primitive signal x(t), resulting in the generation of numerous new signals that contain noise:
- (2)
- Xj(t) is analyzed by using the EMD model to extract the IMF components ci and the component rn:
- (3)
- Reiterate the aforementioned steps for np iterations, incorporating a novel white noise sequence of equivalent magnitude during each iteration.
- (4)
- Merge and average the extracted IMF and residual term rn from each decomposition to eliminate the aggregate influence of the incorporated white noise.
2.3.4. Correlation Analysis
2.3.5. Full Subset Regression
2.3.6. Random Forest
3. Results
3.1. Spatiotemporal Characteristics of Vegetation Dynamics in NC
3.2. Periodicity Analysis of Vegetation Dynamics in NC
3.3. Spatiotemporal Characteristics of Extreme Climate Indices in NC
3.4. The Relationship of Extreme Climate Indices and Vegetation in NC
3.5. Vegetation Dynamics in Future Prediction Regression Model
3.6. Future Climate Changes and Vegetation Dynamics in NC Based on CMIP6
3.6.1. Model Evaluation
3.6.2. Projected Changes in Future Extreme Climate and Vegetation
4. Discussion
4.1. Characteristics of Vegetation Dynamics in NC
4.2. Characteristics of Extreme Climate Indices Variations in NC
4.3. The Impact of Historical and Future Extreme Climate Changes on Vegetation Dynamics
4.4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hegerl, G.C.; Brönnimann, S.; Schurer, A.; Cowan, T. The early 20th century warming: Anomalies, causes, and consequences. Wires Clim. Change 2018, 9, e522. [Google Scholar] [CrossRef] [PubMed]
- Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wires Clim. Change 2012, 3, 115–129. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, M.; Wu, Y.; Guo, E.; Wang, Y.; Cui, S.; Kolerski, T.J.L. Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate. Land 2025, 14, 884. [Google Scholar] [CrossRef]
- Ran, T.; Ke, Z. PDSI-based analysis of characteristics and spatiotemporal changes of meteorological drought in China from 1982 to 2015. Water Resour. Prot. 2020, 36, 50–56. [Google Scholar]
- Lewis, S.C.; King, A.D.; Perkins-Kirkpatrick, S.E. Defining a new normal for extremes in a warming world. Bull. Am. Meteorol. Soc. 2017, 98, 1139–1151. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Islam, H.T.; Shahid, S.; Khatun, M.K.; Ali, M.M.; Rahman, M.S.; Ibrahim, S.M.; Almoajel, A.M. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. J. Environ. Manag. 2021, 289, 112505. [Google Scholar] [CrossRef]
- Tuoku, L.; Wu, Z.; Men, B. Impacts of climate factors and human activities on NDVI change in China. Ecol. Inform. 2024, 81, 102555. [Google Scholar] [CrossRef]
- Godínez-Alvarez, H.; Herrick, J.; Mattocks, M.; Toledo, D.; Van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 2009, 9, 1001–1008. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Shrestha, N.; Zimmermann, N.E.; Tang, Z.; Wang, Z. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). PLoS ONE 2017, 12, e0175742. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Deng, G.; Rihan, W.; Wang, S. Vegetation productivity dynamics in response to climate change and human activities under different topography and land cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Wang, C.; Guo, E. Characteristic analysis of droughts and waterlogging events for maize based on a new comprehensive index through coupling of multisource data in Midwestern Jilin Province, China. Remote Sens. 2019, 12, 60. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, S.; Liang, D.; Jia, Z. Spatial–temporal variations of NDVI and its response to climate in China from 2001 to 2020. Int. J. Digit. Earth 2022, 15, 1463–1484. [Google Scholar] [CrossRef]
- Cui, L.; Wang, L.; Singh, R.P.; Lai, Z.; Jiang, L.; Yao, R. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Environ. Sci. Pollut. Res. 2018, 25, 21867–21878. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, Q.; Singh, V.P.; Shi, P. Seasonal vegetation response to climate change in the Northern Hemisphere (1982–2013). Glob. Planet. Change 2017, 148, 1–8. [Google Scholar] [CrossRef]
- Ye, Z.-X.; Cheng, W.-M.; Zhao, Z.-Q.; Guo, J.-Y.; Ding, H.; Wang, N. Interannual and seasonal vegetation changes and influencing factors in the extra-high mountainous areas of Southern Tibet. Remote Sens. 2019, 11, 1392. [Google Scholar] [CrossRef]
- Xu, X.; Liu, H.; Lin, Z.; Jiao, F.; Gong, H.J.R.S. Relationship of abrupt vegetation change to climate change and ecological engineering with multi-timescale analysis in the karst region, Southwest China. Remote Sens. 2019, 11, 1564. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W.J.E.I. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, X.; Jiao, C.; Xu, C.; Liu, Y.; Wu, G. Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. Sci. Total Environ. 2021, 767, 144669. [Google Scholar] [CrossRef]
- Liu, L.; Gou, X.; Wang, X.; Yang, M.; Qie, L.; Pang, G.; Wei, S.; Zhang, F.; Li, Y.; Wang, Q.; et al. Relationship between extreme climate and vegetation in arid and semi-arid mountains in China: A case study of the Qilian Mountains. Agric. For. Meteorol. 2024, 348, 109938. [Google Scholar] [CrossRef]
- Liang, J.; Marino, A.; Ji, Y.J.L. Spatial and Temporal Change Characteristics and Climatic Drivers of Vegetation Productivity and Greenness during the 2001–2020 Growing Seasons on the Qinghai–Tibet Plateau. Land 2024, 13, 1230. [Google Scholar] [CrossRef]
- Rotenberg, E.; Yakir, D. Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. Glob. Change Biol. 2011, 17, 1536–1548. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, M.; Li, Y.; Gong, X.; Chen, Y.; Chen, Y.; Cao, W. Changes in daily extreme temperature and precipitation events in mainland China from 1960 to 2016 under global warming. Int. J. Climatol. 2021, 41, 1465–1483. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, Q.; Sun, Y.; Zhang, J.; Yang, L.; Yang, E.; Li, H.; Du, Q. Three-dimensional dynamic characteristics of vegetation and its response to climatic factors in the Qilian Mountains. Catena 2022, 208, 105694. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhong, F.; Wang, P. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China. Atmos. Res. 2021, 247, 105256. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, R.; Yin, S.; Bao, Y.; Ayal, D.Y. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecol. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, X. Impact of extreme climates on vegetation from multiple scales and perspectives in the Agro-pastural Transitional Zone of Northern China in the past three decades. J. Clean. Prod. 2022, 372, 133459. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B. The responses of natural vegetation dynamics to drought during the growing season across China. J. Hydrol. 2019, 574, 706–714. [Google Scholar] [CrossRef]
- Li, L.; Fan, Z.; Feng, W.; Yuxin, C.; Keyu, Q. Coupling coordination degree spatial analysis and driving factor between socio-economic and eco-environment in northern China. Ecol. Indic. 2022, 135, 108555. [Google Scholar] [CrossRef]
- Yuan, H.; Ning, L.; Zhou, J.; Shi, W.; Huang, J.; Luo, Y. HiCPC: A new 10-km CMIP6 downscaled daily climate projections over China. Sci. Data 2024, 11, 1167. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) user manual. Clim. Res. Branch Environ. Can. 2004, 22, 13–14. [Google Scholar]
- Sharma, S.; Saha, A.K. Statistical analysis of rainfall trends over Damodar River basin, India. Arab. J. Geosci. 2017, 10, 319. [Google Scholar] [CrossRef]
- Hu, W.; She, D.; Xia, J.; He, B.; Hu, C. Dominant patterns of dryness/wetness variability in the Huang-Huai-Hai River Basin and its relationship with multiscale climate oscillations. Atmos. Res. 2021, 247, 105148. [Google Scholar] [CrossRef]
- Hawinkel, P.; Swinnen, E.; Lhermitte, S.; Verbist, B.; Van Orshoven, J.; Muys, B. A time series processing tool to extract climate-driven interannual vegetation dynamics using ensemble empirical mode decomposition (EEMD). Remote Sens. Environ. 2015, 169, 375–389. [Google Scholar] [CrossRef]
- LI, C.-h.; ZHOU, M.; WANG, Y.-t.; ZHU, T.-b.; SUN, H.; YIN, H.-h.; CAO, H.-j.; HAN, H.-y. Inter-annual variation of vegetation net primary productivity and the contribution of spatial temporal and climate factors in arid Northwest China: A case study of Hexi Corridor. Chin. J. Ecol. 2020, 39, 3265. [Google Scholar]
- Xu, X.; Jiang, H.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y.; Wang, A. Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015. Sci. Total Environ. 2020, 744, 140784. [Google Scholar] [CrossRef]
- Fisher, R.; Wilson, S.K.; Sin, T.M.; Lee, A.C.; Langlois, T.J. A simple function for full-subsets multiple regression in ecology with R. Ecol. Evol. 2018, 8, 6104–6113. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gu, H.; Qiao, Y.; Xi, Z.; Rossi, S.; Smith, N.G.; Liu, J.; Chen, L. Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests. Nat. Commun. 2022, 13, 3698. [Google Scholar] [CrossRef]
- Geng, G.; Zhou, H.; Wang, T. Assessing the relationship between drought and vegetation dynamics in northern China during 1982–2015. Theor. Appl. Climatol. 2022, 148, 467–479. [Google Scholar] [CrossRef]
- Xu, W.; Liu, H.; Zhang, Q.; Liu, P. Response of vegetation ecosystem to climate change based on remote sensing and information entropy: A case study in the arid inland river basin of China. Environ. Earth Sci. 2021, 80, 132. [Google Scholar] [CrossRef]
- An, H.; Song, X.; Wang, Z.; Geng, X.; Zhou, P.; Zhai, J.; Sun, W. Investigating the long-term response of plateau vegetation productivity to extreme climate: Insights from a case study in Qinghai Province, China. Int. J. Biometeorol. 2024, 68, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar]
- Ren, Y.; Zhang, F.; Zhao, C.; Wang, D.; Li, J.; Zhang, J.; Cheng, Z. Spatiotemporal changes of extreme climate indices and their influence and response factors in a typical cold river basin in Northeast China. Theor. Appl. Climatol. 2023, 152, 1285–1309. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Liu, J.; Feng, L.; Zhao, Y. Assessing the effects of drought and “Grain for Green” Program on vegetation dynamics in China's Loess Plateau from 2000 to 2014. Catena 2019, 175, 446–455. [Google Scholar] [CrossRef]
- Jia, J.; Liu, H.; Lin, Z. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change. Acta Ecol. Sin. 2019, 39, 5058–5069. [Google Scholar]
- Wang, S.; Liu, Q.; Huang, C. Vegetation change and its response to climate extremes in the arid region of Northwest China. Remote Sens. 2021, 13, 1230. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.-A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Shi, X. Why does the temperature rise faster in the arid region of northwest China? J. Geophys. Res. Atmos. 2012, D16, 117. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Xu, W.; Wang, X.L.; Jones, P.; Parker, D.; Zhou, L.; Feng, Y.; Gao, Y. China experiencing the recent warming hiatus. Geophys. Res. Lett. 2015, 42, 889–898. [Google Scholar] [CrossRef]
- Qu, W.; Zhang, X.; Wang, Y.; Fu, G. Atmospheric visibility variation over global land surface during 1973–2012: Influence of meteorological factors and effect of aerosol, cloud on ABL evolution. Atmos. Pollut. Res. 2020, 11, 730–743. [Google Scholar] [CrossRef]
- Han, J.; Du, H.; Wu, Z.; He, H.S. Changes in extreme precipitation over dry and wet regions of China during 1961–2014. J. Geophys. Res. Atmos. 2019, 124, 5847–5859. [Google Scholar] [CrossRef]
- Walsh, J.E.; Ballinger, T.J.; Euskirchen, E.S.; Hanna, E.; Mård, J.; Overland, J.E.; Tangen, H.; Vihma, T. Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev. 2020, 209, 103324. [Google Scholar] [CrossRef]
- Huang, W.; Chen, F.; Feng, S.; Chen, J.; Zhang, X. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull. 2013, 58, 3962–3968. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Samset, B.H.; Stordal, F.; Bryn, A.; Hessen, D.O. Past and future trends of diurnal temperature range and their correlation with vegetation assessed by MODIS and CMIP6. Sci. Total Environ. 2023, 904, 166727. [Google Scholar] [CrossRef]
- Wei, Y.; Yu, M.; Wei, J.; Zhou, B. Impacts of extreme climates on vegetation at middle-to-high latitudes in Asia. Remote Sens. 2023, 15, 1251. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, Z.; Huang, X.; Cui, M.; Wang, W.; Li, Q. Vegetation Dynamics and Its Trends Associated with Extreme Climate Events in the Yellow River Basin, China. Remote Sens. 2023, 15, 4683. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S.; Zhu, J.; Wang, D. Projected changes in the pattern of spatially compounding drought and pluvial events over Eastern China under a warming climate. Earth's Future 2023, 11, e2022EF003397. [Google Scholar] [CrossRef]
- Zampieri, M.; Grizzetti, B.; Toreti, A.; De Palma, P.; Collalti, A. Rise and fall of vegetation annual primary production resilience to climate variability projected by a large ensemble of Earth System Models' simulations. Environ. Res. Lett. 2021, 16, 105001. [Google Scholar] [CrossRef]
ID | Name | Definition | Unit | |
---|---|---|---|---|
Extreme temperature indices | TNn | Min Tmin | Monthly minimum value of daily minimum temp | °C |
TXx | Max Tmax | Monthly maximum value of daily maximum temp | °C | |
TN10P | Cool nights | Percentage of days when Tmin < 10th percentile | d | |
TX90P | Warm days | Percentage of days when Tmax > 90th percentile | d | |
DTR | Diurnal temperature range | Monthly mean value of difference between Tmax and Tmin | °C | |
Extreme precipitation indices | RX1D | Max one-day | Monthly maximum consecutive 1-day precipitation | mm |
RX5D | Max five-day | Monthly maximum consecutive 5-day precipitation | mm | |
CDDs | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | d | |
CWDs | Consecutive wet days | Maximum number of consecutive days with RR ≥ 1 mm | d |
IMF1 | IMF2 | IMF3 | IMF4 | Residual (RES) | |
---|---|---|---|---|---|
Periodicity | 3 * | 6 | 12 | 37 | — — |
Variance Contribution (%) | 26.6 | 10.1 | 10.3 | 5.35 | 24.5 |
Timescale | Correlation | TN10P | TNn | TX90P | TXx | DTR |
---|---|---|---|---|---|---|
3a period | snc | 36.80 | 1.40 | 8.00 | 3.60 | 15.30 |
isnc | 29.60 | 32.90 | 27.40 | 33.70 | 39.20 | |
ispc | 11.60 | 58.70 | 43.60 | 49.60 | 36.60 | |
spc | 21.80 | 7.00 | 21.00 | 13.00 | 9.00 | |
Long period | snc | 31.20 | 4.40 | 11.60 | 6.70 | 15.50 |
isnc | 31.90 | 45.00 | 27.60 | 36.30 | 51.80 | |
ispc | 23.50 | 45.90 | 31.20 | 43.20 | 26.30 | |
spc | 13.30 | 4.70 | 29.40 | 13.60 | 6.30 |
Timescale | Correlation | CDDs | CWDs | RX1D | RX5D |
---|---|---|---|---|---|
3a period | snc | 5.20 | 6.40 | 1.50 | 2.80 |
isnc | 43.00 | 52.10 | 44.70 | 47.60 | |
ispc | 49.20 | 39.50 | 47.40 | 44.20 | |
spc | 2.60 | 1.90 | 6.30 | 5.40 | |
Long period | snc | 7.30 | 4.20 | 0.60 | 2.40 |
isnc | 51.20 | 47.20 | 29.50 | 36.00 | |
ispc | 39.60 | 43.20 | 53.90 | 46.00 | |
spc | 1.90 | 5.40 | 15.90 | 15.60 |
Variable | Coefficient | Adj-R2 | BIC |
---|---|---|---|
RX1D | 0.37 × 10−1 | 0.71 | −54 |
DTR | −0.26 × 10−2 | ||
TN10P | −0.57 × 10−2 | ||
TNn | 0.19 × 10−2 | ||
TX90P | 0.22 × 10−3 |
Statistical Parameter | Random Forest | |
---|---|---|
Train | Test | |
R2 | 0.9780 | 0.9670 |
MAE | 0.028 | 0.0342 |
MSE | 0.0015 | 0.0022 |
RMSE | 0.0383 | 0.0469 |
EVS | 0.9780 | 0.9669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yao, X.; Zhang, J.; Ma, Q. From the Past to the Future: Unveiling the Impact of Extreme Climate on Vegetation Dynamics in Northern China Through Historical Trends and Future Projections. Land 2025, 14, 1456. https://doi.org/10.3390/land14071456
Zhang Y, Yao X, Zhang J, Ma Q. From the Past to the Future: Unveiling the Impact of Extreme Climate on Vegetation Dynamics in Northern China Through Historical Trends and Future Projections. Land. 2025; 14(7):1456. https://doi.org/10.3390/land14071456
Chicago/Turabian StyleZhang, Yuxuan, Xiaojun Yao, Juan Zhang, and Qin Ma. 2025. "From the Past to the Future: Unveiling the Impact of Extreme Climate on Vegetation Dynamics in Northern China Through Historical Trends and Future Projections" Land 14, no. 7: 1456. https://doi.org/10.3390/land14071456
APA StyleZhang, Y., Yao, X., Zhang, J., & Ma, Q. (2025). From the Past to the Future: Unveiling the Impact of Extreme Climate on Vegetation Dynamics in Northern China Through Historical Trends and Future Projections. Land, 14(7), 1456. https://doi.org/10.3390/land14071456