Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,331)

Search Parameters:
Keywords = IOT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 787 KiB  
Article
Rethinking Modbus-UDP for Real-Time IIoT Systems
by Ivan Cibrario Bertolotti
Future Internet 2025, 17(8), 356; https://doi.org/10.3390/fi17080356 - 5 Aug 2025
Abstract
The original Modbus specification for RS-485 and RS-232 buses supported broadcast transmission. As the protocol evolved into Modbus-TCP, to use the TCP transport, this useful feature was lost, likely due to the point-to-point nature of TCP connections. Later proposals did not restore the [...] Read more.
The original Modbus specification for RS-485 and RS-232 buses supported broadcast transmission. As the protocol evolved into Modbus-TCP, to use the TCP transport, this useful feature was lost, likely due to the point-to-point nature of TCP connections. Later proposals did not restore the broadcast transmission capability, although they used UDP as transport and UDP, by itself, would have supported it. Moreover, they did not address the inherent lack of reliable delivery of UDP, leaving datagram loss detection and recovery to the application layer. This paper describes a novel redesign of Modbus-UDP that addresses the aforementioned shortcomings. It achieves a mean round-trip time of only 38% with respect to Modbus-TCP and seamlessly supports a previously published protocol based on Modbus broadcast. In addition, the built-in retransmission of Modbus-UDP reacts more efficiently than the equivalent Modbus-TCP mechanism, exhibiting 50% of its round-trip standard deviation when subject to a 1% two-way IP datagram loss probability. Combined with the lower overhead of UDP versus TCP, this makes the redesigned Modbus-UDP protocol better suited for a variety of Industrial Internet of Things systems with limited computing and communication resources. Full article
Show Figures

Figure 1

38 pages, 3649 KiB  
Article
Towards Smart Wildfire Prevention: Development of a LoRa-Based IoT Node for Environmental Hazard Detection
by Luis Miguel Pires, Vitor Fialho, Tiago Pécurto and André Madeira
Designs 2025, 9(4), 91; https://doi.org/10.3390/designs9040091 (registering DOI) - 5 Aug 2025
Abstract
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet [...] Read more.
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet of Things (IoT) industry, developing solutions for the early detection of fires is of critical importance. This paper proposes a low-cost network based on Long-Range (LoRa) technology to autonomously assess the level of fire risk and the presence of a fire in rural areas. The system consists of several LoRa nodes with sensors to measure environmental variables such as temperature, humidity, carbon monoxide, air quality, and wind speed. The data collected is sent to a central gateway, where it is stored, processed, and later sent to a website for graphical visualization of the results. In this paper, a survey of the requirements of the devices and sensors that compose the system was made. After this survey, a market study of the available sensors was carried out, ending with a comparison between the sensors to determine which ones met the objectives. Using the chosen sensors, a study was made of possible power solutions for this prototype, considering the expected conditions of use. The system was tested in a real environment, and the results demonstrate that it is possible to cover a circular area with a radius of 2 km using a single gateway. Our system is prepared to trigger fire hazard alarms when, for example, the signals for relative humidity, ambient temperature, and wind speed are below or equal to 30%, above or equal to 30 °C, and above or equal to 30 m/s, respectively (commonly known as the 30-30-30 rule). Full article
24 pages, 1313 KiB  
Review
Data Augmentation and Knowledge Transfer-Based Fault Detection and Diagnosis in Internet of Things-Based Solar Insecticidal Lamps: A Survey
by Zhengjie Wang, Xing Yang, Tongjie Li, Lei Shu, Kailiang Li and Xiaoyuan Jing
Electronics 2025, 14(15), 3113; https://doi.org/10.3390/electronics14153113 - 5 Aug 2025
Abstract
Internet of Things (IoT)-based solar insecticidal lamps (SIL-IoTs) offer an eco-friendly alternative by merging solar energy harvesting with intelligent sensing, advancing sustainable smart agriculture. However, SIL-IoTs encounter practical challenges, e.g., hardware aging, electromagnetic interference, and abnormal data patterns. Therefore, developing an effective fault [...] Read more.
Internet of Things (IoT)-based solar insecticidal lamps (SIL-IoTs) offer an eco-friendly alternative by merging solar energy harvesting with intelligent sensing, advancing sustainable smart agriculture. However, SIL-IoTs encounter practical challenges, e.g., hardware aging, electromagnetic interference, and abnormal data patterns. Therefore, developing an effective fault detection and diagnosis (FDD) system is essential. In this survey, we systematically identify and address the core challenges of implementing FDD of SIL-IoTs. Firstly, the fuzzy boundaries of sample features lead to complex feature interactions that increase the difficulty of accurate FDD. Secondly, the category imbalance in the fault samples limits the generalizability of the FDD models. Thirdly, models trained on single scenarios struggle to adapt to diverse and dynamic field conditions. To overcome these challenges, we propose a multi-level solution by discussing and merging existing FDD methods: (1) a data augmentation strategy can be adopted to improve model performance on small-sample datasets; (2) federated learning (FL) can be employed to enhance adaptability to heterogeneous environments, while transfer learning (TL) addresses data scarcity; and (3) deep learning techniques can be used to reduce dependence on labeled data; these methods provide a robust framework for intelligent and adaptive FDD of SIL-IoTs, supporting long-term reliability of IoT devices in smart agriculture. Full article
(This article belongs to the Collection Electronics for Agriculture)
Show Figures

Figure 1

27 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

21 pages, 2746 KiB  
Article
The Social Side of Internet of Things: Introducing Trust-Augmented Social Strengths for IoT Service Composition
by Jooik Jung and Ihnsik Weon
Sensors 2025, 25(15), 4794; https://doi.org/10.3390/s25154794 - 4 Aug 2025
Abstract
The integration of Internet of Things (IoT) systems with social networking concepts has opened new business and social opportunities, particularly by allowing smart objects to autonomously establish social relationships with each other and exchange information. However, these relations must be properly quantified and [...] Read more.
The integration of Internet of Things (IoT) systems with social networking concepts has opened new business and social opportunities, particularly by allowing smart objects to autonomously establish social relationships with each other and exchange information. However, these relations must be properly quantified and integrated with trust in order to proliferate the provisioning of IoT composite services. Therefore, this proposed work focuses on quantitatively computing social strength and trust among smart objects in IoT for the purpose of aiding efficient service composition with reasonable accuracy. In particular, we propose a trust-augmented social strength (TASS) management protocol that can cope with the heterogeneity of IoT and demonstrate high scalability and resiliency against various malicious attacks. Afterward, we show how the TASS measurements can be applied to service planning in IoT service composition. Based on the experimental results, we conclude that the proposed protocol is, in fact, capable of exhibiting the above-mentioned characteristics in real-world settings. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

11 pages, 2306 KiB  
Article
Optical Path Design of an Integrated Cavity Optomechanical Accelerometer with Strip Waveguides
by Chengwei Xian, Pengju Kuang, Zhe Li, Yi Zhang, Changsong Wang, Rudi Zhou, Guangjun Wen, Yongjun Huang and Boyu Fan
Photonics 2025, 12(8), 785; https://doi.org/10.3390/photonics12080785 (registering DOI) - 4 Aug 2025
Abstract
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element [...] Read more.
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element Analysis (FEA) and Finite-Difference Time-Domain (FDTD) methods are employed to systematically investigate the performance of key optical structures, including the resonant modes and bandgap characteristics of photonic crystal (PhC) microcavities, transmission loss of strip waveguides, coupling efficiency of tapered-lensed fiber-to-waveguide end-faces, coupling characteristics between strip waveguides and PhC waveguides, and the coupling mechanism between PhC waveguides and microcavities. Simulation results demonstrate that the designed PhC microcavity achieves a quality factor (Q-factor) of 2.26 × 105 at a 1550 nm wavelength while the optimized strip waveguide exhibits a low loss of merely 0.2 dB over a 5000 μm transmission length. The strip waveguide to PhC waveguide coupling achieves 92% transmittance at the resonant frequency, corresponding to a loss below 0.4 dB. The optimized edge coupling structure exhibits a transmittance of 75.8% (loss < 1.2 dB), with a 30 μm coupling length scheme (60% transmittance, ~2.2 dB loss) ultimately selected based on process feasibility trade-offs. The total optical path system loss (input to output) is 5.4 dB. The paper confirms that the PhC waveguide–microcavity evanescent coupling method can effectively excite the target cavity mode, ensuring optomechanical coupling efficiency for the accelerometer. This research provides theoretical foundations and design guidelines for the fabrication of high-precision monolithic integrated cavity optomechanical accelerometers. Full article
Show Figures

Figure 1

37 pages, 3005 KiB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

18 pages, 1214 KiB  
Article
Predictive Maintenance System to RUL Prediction of Li-Ion Batteries and Identify the Fault Type of Brushless DC Electric Motor from UAVs
by Dragos Alexandru Andrioaia
Sensors 2025, 25(15), 4782; https://doi.org/10.3390/s25154782 - 3 Aug 2025
Viewed by 58
Abstract
Unmanned Aerial Vehicles have started to be used more and more due to the benefits they bring. Failure of Unmanned Aerial Vehicle components may result in loss of control, which may cause property damage or personal injury. In order to increase the operational [...] Read more.
Unmanned Aerial Vehicles have started to be used more and more due to the benefits they bring. Failure of Unmanned Aerial Vehicle components may result in loss of control, which may cause property damage or personal injury. In order to increase the operational safety of the Unmanned Aerial Vehicle, the implementation of a Predictive Maintenance system using the Internet of Things is required. In this paper, the authors propose a new architecture of Predictive Maintenance system for Unmanned Aerial Vehicles that is able to identify the fault type of Brushless DC electric motor and determine the Remaining Useful Life of the Li-ion batteries. In order to create the Predictive Maintenance system within the Unmanned Aerial Vehicle, an architecture based on Fog Computing was proposed and Machine Learning was used to extract knowledge from the data. The proposed architecture was practically validated. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 56
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Viewed by 101
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 1376 KiB  
Article
Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields
by Ruth Rubí Peña-Holguín, Carlos Andrés Vaca-Coronel, Ruth María Farías-Lema, Sonnia Valeria Zapatier-Castro and Juan Diego Valenzuela-Cobos
Agriculture 2025, 15(15), 1679; https://doi.org/10.3390/agriculture15151679 - 2 Aug 2025
Viewed by 250
Abstract
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the [...] Read more.
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the key factors influencing the adoption of IoT technologies by farmers in the province of Guayas, Ecuador, and their impact on agricultural yields. The research is grounded in innovation diffusion theory and technology acceptance models, which emphasize the role of perception, usability, training, and economic viability in digital adoption. A total of 250 surveys were administered, with 232 valid responses (92.8% response rate), reflecting strong interest from the agricultural sector in digital transformation and precision agriculture. Using structural equation modeling (SEM), the results confirm that general perception of IoT (β = 0.514), practical functionality (β = 0.488), and technical training (β = 0.523) positively influence adoption, while high implementation costs negatively affect it (β = −0.651), all of which are statistically significant (p < 0.001). Furthermore, adoption has a strong positive effect on agricultural yield (β = 0.795). The model explained a high percentage of variance in both adoption (R2 = 0.771) and performance (R2 = 0.706), supporting its predictive capacity. These findings underscore the need for public and private institutions to implement targeted training and financing strategies to overcome economic barriers and foster the sustainable integration of IoT technologies in Ecuadorian agriculture. Full article
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 206
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

23 pages, 3472 KiB  
Article
Resampling Multi-Resolution Signals Using the Bag of Functions Framework: Addressing Variable Sampling Rates in Time Series Data
by David Orlando Salazar Torres, Diyar Altinses and Andreas Schwung
Sensors 2025, 25(15), 4759; https://doi.org/10.3390/s25154759 - 1 Aug 2025
Viewed by 111
Abstract
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals [...] Read more.
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals with differing resolutions. Unlike traditional methods that require uniform sampling frequencies, the BoF framework employs a flexible encoding approach, allowing for the integration of multi-resolution time series. Through a series of experiments, we demonstrate that the BoF framework ensures the precise reconstruction of the original data while enhancing resampling capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling rates and heterogeneous acquisition systems, making it a valuable tool for applications in fields such as finance, healthcare, industrial monitoring, IoT networks, and sensor networks. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Graphical abstract

28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 - 1 Aug 2025
Viewed by 195
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

28 pages, 2465 KiB  
Article
Latency-Aware and Energy-Efficient Task Offloading in IoT and Cloud Systems with DQN Learning
by Amina Benaboura, Rachid Bechar, Walid Kadri, Tu Dac Ho, Zhenni Pan and Shaaban Sahmoud
Electronics 2025, 14(15), 3090; https://doi.org/10.3390/electronics14153090 - 1 Aug 2025
Viewed by 191
Abstract
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy [...] Read more.
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy consumption. Task offloading has emerged as a viable solution; however, many existing strategies fail to adequately optimize both latency and energy usage. This paper proposes a novel task-offloading approach based on deep Q-network (DQN) learning, designed to intelligently and dynamically balance these critical metrics. The proposed framework continuously refines real-time task offloading decisions by leveraging the adaptive learning capabilities of DQN, thereby substantially reducing latency and energy consumption. To further enhance system performance, the framework incorporates optical networks into the IoT–fog–cloud architecture, capitalizing on their high-bandwidth and low-latency characteristics. This integration facilitates more efficient distribution and processing of tasks, particularly in data-intensive IoT applications. Additionally, we present a comparative analysis between the proposed DQN algorithm and the optimal strategy. Through extensive simulations, we demonstrate the superior effectiveness of the proposed DQN framework across various IoT and O-IoT scenarios compared to the BAT and DJA approaches, achieving improvements in energy consumption and latency of 35%, 50%, 30%, and 40%, respectively. These findings underscore the significance of selecting an appropriate offloading strategy tailored to the specific requirements of IoT and O-IoT applications, particularly with regard to environmental stability and performance demands. Full article
Show Figures

Figure 1

Back to TopTop