Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = III-nitride heterostructures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 4439 KB  
Review
Gallium Nitride for Space Photovoltaics: Properties, Synthesis Methods, Device Architectures and Emerging Market Perspectives
by Anna Drabczyk, Paweł Uss, Katarzyna Bucka, Wojciech Bulowski, Patryk Kasza, Paula Mazur, Edyta Boguta, Marta Mazur, Grzegorz Putynkowski and Robert P. Socha
Micromachines 2025, 16(12), 1421; https://doi.org/10.3390/mi16121421 - 18 Dec 2025
Viewed by 733
Abstract
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, [...] Read more.
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, GaN offers an exceptional combination of intrinsic material properties ideally suited for harsh orbital environments. Its wide bandgap, high thermal conductivity, and strong chemical stability contribute to superior resistance against high-energy protons, electrons, and atomic oxygen, while minimizing thermal fatigue under repeated cycling between extreme temperatures. Recent progress in epitaxial growth—spanning metal–organic chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, and atomic layer deposition—has enabled unprecedented control over film quality, defect densities, and heterointerface sharpness. At the device level, InGaN/GaN heterostructures, multiple quantum wells, and tandem architectures demonstrate outstanding potential for spectrum-tailored solar energy conversion, with modeling studies predicting efficiencies exceeding 40% under AM0 illumination. In this review article, the current state of knowledge on GaN materials and device architectures for space photovoltaics has been summarized, with emphasis placed on recent progress and persisting challenges. Particular focus has been given to defect management, doping strategies, and bandgap engineering approaches, which define the roadmap toward scalable and radiation-hardened GaN-based solar cells. With sustained interdisciplinary advances, GaN is anticipated to complement or even supersede traditional III–V photovoltaics in space, enabling lighter, more durable, and radiation-hard power systems for long-duration missions beyond Earth’s magnetosphere. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits, 2nd Edition)
Show Figures

Figure 1

35 pages, 14744 KB  
Review
Review of the Properties of GaN, InN, and Their Alloys Obtained in Cubic Phase on MgO Substrates by Plasma-Enhanced Molecular Beam Epitaxy
by Edgar López Luna and Miguel Ángel Vidal
Crystals 2024, 14(9), 801; https://doi.org/10.3390/cryst14090801 - 11 Sep 2024
Cited by 3 | Viewed by 4058
Abstract
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which [...] Read more.
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which have revolutionized lighting technologies and generated a great industry around these semiconductors, several transistors have been developed that take advantage of the characteristics of these semiconductors. These include power transistors for high-frequency applications and high-power transistors for power electronics, among other devices, which have far superior achievements. However, less effort has been devoted to studying GaN and InGaN alloys grown in the cubic phase. The metastable or cubic phase of III-N alloys has superior characteristics compared to the hexagonal phase, mainly because of the excellent symmetry. It can be used to improve lighting technologies and develop other devices. Indium gallium nitride, InxGa1−xN alloy, has a variable band interval of 0.7 to 3.4 eV that covers almost the entire solar spectrum, making it a suitable material for increasing the efficiencies of photovoltaic devices. In this study, we successfully synthesized high-quality cubic InGaN films on MgO (100) substrates using plasma-assisted molecular beam epitaxy (PAMBE), demonstrating tunable emissions across the visible spectrum by varying the indium concentration. We significantly reduced the defect density and enhanced the crystalline quality by using an intermediate cubic GaN buffer layer. We not only developed a heterostructure with four GaN/InGaN/GaN quantum wells, achieving violet, blue, yellow, and red emissions, but also highlighted the immense potential of cubic InGaN films for high-efficiency light-emitting diodes and photovoltaic devices. Achieving better p-type doping levels is crucial for realizing diodes with excellent performance, and our findings will pave the way for this advancement. Full article
(This article belongs to the Special Issue Reviews of Crystal Engineering)
Show Figures

Figure 1

36 pages, 6509 KB  
Review
Hydrostatic Pressure as a Tool for the Study of Semiconductor Properties—An Example of III–V Nitrides
by Iza Gorczyca, Tadek Suski, Piotr Perlin, Izabella Grzegory, Agata Kaminska and Grzegorz Staszczak
Materials 2024, 17(16), 4022; https://doi.org/10.3390/ma17164022 - 13 Aug 2024
Cited by 2 | Viewed by 2033
Abstract
Using the example of III–V nitrides crystallizing in a wurtzite structure (GaN, AlN, and InN), this review presents the special role of hydrostatic pressure in studying semiconductor properties. Starting with a brief description of high-pressure techniques for growing bulk crystals of nitride compounds, [...] Read more.
Using the example of III–V nitrides crystallizing in a wurtzite structure (GaN, AlN, and InN), this review presents the special role of hydrostatic pressure in studying semiconductor properties. Starting with a brief description of high-pressure techniques for growing bulk crystals of nitride compounds, we focus on the use of hydrostatic pressure techniques in both experimental and theoretical investigations of the special properties of nitride compounds, their alloys, and quantum structures. The bandgap pressure coefficient is one of the most important parameters in semiconductor physics. Trends in its behavior in nitride structures, together with trends in pressure-induced phase transitions, are discussed in the context of the behavior of other typical semiconductors. Using InN as an example, the pressure-dependent effects typical of very narrow bandgap materials, such as conduction band filling or effective mass behavior, are described. Interesting aspects of bandgap bowing in In-containing nitride alloys, including pressure and clustering effects, are discussed. Hydrostatic pressure also plays an important role in the study of native defects and impurities, as illustrated by the example of nitride compounds and their quantum structures. Experiments and theoretical studies on this topic are reviewed. Special attention is given to hydrostatic pressure and strain effects in short periods of nitride superlattices. The explanation of the discrepancies between theory and experiment in optical emission and its pressure dependence from InN/GaN superlattices led to the well-documented conclusion that InN growth on the GaN substrate is not possible. The built-in electric field present in InGaN/GaN and AlGaN/GaN heterostructures crystallizing in a wurtzite lattice can reach several MV/cm, leading to drastic changes in the physical properties of these structures and related devices. It is shown how hydrostatic pressure modifies these effects and helps to understand their origin. Full article
Show Figures

Figure 1

18 pages, 3698 KB  
Article
Electronic Properties of Group-III Nitride Semiconductors and Device Structures Probed by THz Optical Hall Effect
by Nerijus Armakavicius, Philipp Kühne, Alexis Papamichail, Hengfang Zhang, Sean Knight, Axel Persson, Vallery Stanishev, Jr-Tai Chen, Plamen Paskov, Mathias Schubert and Vanya Darakchieva
Materials 2024, 17(13), 3343; https://doi.org/10.3390/ma17133343 - 5 Jul 2024
Cited by 4 | Viewed by 2662
Abstract
Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. [...] Read more.
Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices. The optical Hall effect (OHE) emerges as a contactless method for exploring the transport and electronic properties of semiconductor materials, simultaneously offering insights into their dielectric function. This non-destructive technique employs spectroscopic ellipsometry at long wavelengths in the presence of a magnetic field and provides quantitative information on the charge carrier density, sign, mobility, and effective mass of individual layers in multilayer structures and bulk materials. In this paper, we explore the use of terahertz (THz) OHE to study the charge carrier properties in group-III nitride heterostructures and bulk material. Examples include graded AlGaN channel high-electron-mobility transistor (HEMT) structures for high-linearity devices, highlighting the different grading profiles and their impact on the two-dimensional electron gas (2DEG) properties. Next, we demonstrate the sensitivity of the THz OHE to distinguish the 2DEG anisotropic mobility parameters in N-polar GaN/AlGaN HEMTs and show that this anisotropy is induced by the step-like surface morphology. Finally, we present the temperature-dependent results on the charge carrier properties of 2DEG and bulk electrons in GaN with a focus on the effective mass parameter and review the effective mass parameters reported in the literature. These studies showcase the capabilities of the THz OHE for advancing the understanding and development of group-III materials and devices. Full article
Show Figures

Figure 1

14 pages, 4896 KB  
Article
Interface Properties of MoS2 van der Waals Heterojunctions with GaN
by Salvatore Ethan Panasci, Ioannis Deretzis, Emanuela Schilirò, Antonino La Magna, Fabrizio Roccaforte, Antal Koos, Miklos Nemeth, Béla Pécz, Marco Cannas, Simonpietro Agnello and Filippo Giannazzo
Nanomaterials 2024, 14(2), 133; https://doi.org/10.3390/nano14020133 - 5 Jan 2024
Cited by 15 | Viewed by 4355
Abstract
The combination of the unique physical properties of molybdenum disulfide (MoS2) with those of gallium nitride (GaN) and related group-III nitride semiconductors have recently attracted increasing scientific interest for the realization of innovative electronic and optoelectronic devices. A deep understanding of [...] Read more.
The combination of the unique physical properties of molybdenum disulfide (MoS2) with those of gallium nitride (GaN) and related group-III nitride semiconductors have recently attracted increasing scientific interest for the realization of innovative electronic and optoelectronic devices. A deep understanding of MoS2/GaN interface properties represents the key to properly tailor the electronic and optical behavior of devices based on this heterostructure. In this study, monolayer (1L) MoS2 was grown on GaN-on-sapphire substrates by chemical vapor deposition (CVD) at 700 °C. The structural, chemical, vibrational, and light emission properties of the MoS2/GaN heterostructure were investigated in detail by the combination of microscopic/spectroscopic techniques and ab initio calculations. XPS analyses on as-grown samples showed the formation of stoichiometric MoS2. According to micro-Raman spectroscopy, monolayer MoS2 domains on GaN exhibit an average n-type doping of (0.11 ± 0.12) × 1013 cm−2 and a small tensile strain (ε ≈ 0.25%), whereas an intense light emission at 1.87 eV was revealed by PL analyses. Furthermore, a gap at the interface was shown by cross-sectional TEM analysis, confirming the van der Waals (vdW) bond between MoS2 and GaN. Finally, density functional theory (DFT) calculations of the heterostructure were carried out, considering three different configurations of the interface, i.e., (i) an ideal Ga-terminated GaN surface, (ii) the passivation of Ga surface by a monolayer of oxygen (O), and (iii) the presence of an ultrathin Ga2O3 layer. This latter model predicts the formation of a vdW interface and a strong n-type doping of MoS2, in closer agreement with the experimental observations. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 4394 KB  
Article
Polarization Modulation on Charge Transfer and Band Structures of GaN/MoS2 Polar Heterojunctions
by Feng Tian, Delin Kong, Peng Qiu, Heng Liu, Xiaoli Zhu, Huiyun Wei, Yimeng Song, Hong Chen, Xinhe Zheng and Mingzeng Peng
Crystals 2023, 13(4), 563; https://doi.org/10.3390/cryst13040563 - 25 Mar 2023
Cited by 3 | Viewed by 2615
Abstract
As important third-generation semiconductors, wurtzite III nitrides have strong spontaneous and piezoelectric polarization effects. They can be used to construct multifunctional polar heterojunctions or quantum structures with other emerging two-dimensional (2D) semiconductors. Here, we investigate the polarization effect of GaN on the interfacial [...] Read more.
As important third-generation semiconductors, wurtzite III nitrides have strong spontaneous and piezoelectric polarization effects. They can be used to construct multifunctional polar heterojunctions or quantum structures with other emerging two-dimensional (2D) semiconductors. Here, we investigate the polarization effect of GaN on the interfacial charge transfer and electronic properties of GaN/MoS2 polar heterojunctions by first-principles calculations. From the binding energy, the N-polarity GaN/MoS2 heterojunctions show stronger structural stability than the Ga-polarity counterparts. Both the Ga-polarity and N-polarity GaN/MoS2 polar heterojunctions have type-II energy band alignments, but with opposite directions of both the built-in electric field and interfacial charge transfer. In addition, their heterostructure types can be effectively modulated by applying in-plane biaxial strains on GaN/MoS2 polar heterojunctions, which can undergo energy band transitions from type II to type I. As a result, it provides a feasible solution for the structural design and integrated applications of hybrid 3D/2D polar heterojunctions in advanced electronics and optoelectronics. Full article
(This article belongs to the Special Issue III-Nitride Materials: Properties, Growth, and Applications)
Show Figures

Figure 1

12 pages, 1483 KB  
Article
Interlayer and Intralayer Excitons in AlN/WS2 Heterostructure
by Claudio Attaccalite, Maria Stella Prete, Maurizia Palummo and Olivia Pulci
Materials 2022, 15(23), 8318; https://doi.org/10.3390/ma15238318 - 23 Nov 2022
Cited by 6 | Viewed by 2464
Abstract
The study of intra and interlayer excitons in 2D semiconducting vdW heterostructures is a very hot topic not only from a fundamental but also an applicative point of view. Due to their strong light–matter interaction, Transition Metal Dichalcogenides (TMD) and group-III nitrides are [...] Read more.
The study of intra and interlayer excitons in 2D semiconducting vdW heterostructures is a very hot topic not only from a fundamental but also an applicative point of view. Due to their strong light–matter interaction, Transition Metal Dichalcogenides (TMD) and group-III nitrides are particularly attractive in the field of opto-electronic applications such as photo-catalytic and photo-voltaic ultra-thin and flexible devices. Using first-principles ground and excited-state simulations, we investigate here the electronic and excitonic properties of a representative nitride/TMD heterobilayer, the AlN/WS2. We demonstrate that the band alignment is of type I, and low energy intralayer excitons are similar to those of a pristine WS2 monolayer. Further, we disentangle the role of strain and AlN dielectric screening on the electronic and optical gaps. These results, although they do not favor the possible use of AlN/WS2 in photo-catalysis, as envisaged in the previous literature, can boost the recently started experimental studies of 2D hexagonal aluminum nitride as a good low screening substrate for TMD-based electronic and opto-electronic devices. Importantly, our work shows how the inclusion of both spin-orbit and many-body interactions is compulsory for the correct prediction of the electronic and optical properties of TMD/nitride heterobilayers. Full article
(This article belongs to the Special Issue Electronic and Optical Properties of Heterostructures)
Show Figures

Figure 1

47 pages, 3932 KB  
Review
Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids
by Dmitry V. Shtansky, Andrei T. Matveev, Elizaveta S. Permyakova, Denis V. Leybo, Anton S. Konopatsky and Pavel B. Sorokin
Nanomaterials 2022, 12(16), 2810; https://doi.org/10.3390/nano12162810 - 16 Aug 2022
Cited by 78 | Viewed by 8155
Abstract
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride ( [...] Read more.
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride (h-BN) nanostructures are of great interest in many fields. These include, but are not limited to, (i) heterogeneous catalysts, (ii) promising nanocarriers for targeted drug delivery to tumor cells and nanoparticles containing therapeutic agents to fight bacterial and fungal infections, (iii) reinforcing phases in metal, ceramics, and polymer matrix composites, (iv) additives to liquid lubricants, (v) substrates for surface enhanced Raman spectroscopy, (vi) agents for boron neutron capture therapy, (vii) water purifiers, (viii) gas and biological sensors, and (ix) quantum dots, single photon emitters, and heterostructures for electronic, plasmonic, optical, optoelectronic, semiconductor, and magnetic devices. All of these areas are developing rapidly. Thus, the goal of this review is to analyze the critical mass of knowledge and the current state-of-the-art in the field of BN-based nanomaterial fabrication and application based on their amazing properties. Full article
(This article belongs to the Special Issue Boron Nitride-Based Nanomaterials)
Show Figures

Figure 1

24 pages, 6198 KB  
Review
Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications
by Yufei Yang, Yi Peng, Muhammad Farooq Saleem, Ziqian Chen and Wenhong Sun
Materials 2022, 15(13), 4396; https://doi.org/10.3390/ma15134396 - 22 Jun 2022
Cited by 41 | Viewed by 5953
Abstract
Since the successful separation of graphene from its bulk counterpart, two-dimensional (2D) layered materials have become the focus of research for their exceptional properties. The layered hexagonal boron nitride (h-BN), for instance, offers good lubricity, electrical insulation, corrosion resistance, and chemical stability. In [...] Read more.
Since the successful separation of graphene from its bulk counterpart, two-dimensional (2D) layered materials have become the focus of research for their exceptional properties. The layered hexagonal boron nitride (h-BN), for instance, offers good lubricity, electrical insulation, corrosion resistance, and chemical stability. In recent years, the wide-band-gap layered h-BN has been recognized for its broad application prospects in neutron detection and quantum information processing. In addition, it has become very important in the field of 2D crystals and van der Waals heterostructures due to its versatility as a substrate, encapsulation layer, and a tunneling barrier layer for various device applications. However, due to the poor adhesion between h-BN and substrate and its high preparation temperature, it is very difficult to prepare large-area and denseh-BN films. Therefore, the controllable synthesis of h-BN films has been the focus of research in recent years. In this paper, the preparation methods and applications of h-BN films on III–V compounds are systematically summarized, and the prospects are discussed. Full article
(This article belongs to the Special Issue Semiconductor Optoelectronic Materials and Devices)
Show Figures

Figure 1

10 pages, 1749 KB  
Article
Development of Quaternary InAlGaN Barrier Layer for High Electron Mobility Transistor Structures
by Justinas Jorudas, Paweł Prystawko, Artūr Šimukovič, Ramūnas Aleksiejūnas, Jūras Mickevičius, Marcin Kryśko, Paweł Piotr Michałowski and Irmantas Kašalynas
Materials 2022, 15(3), 1118; https://doi.org/10.3390/ma15031118 - 31 Jan 2022
Cited by 6 | Viewed by 3229
Abstract
A quaternary lattice matched InAlGaN barrier layer with am indium content of 16.5 ± 0.2% and thickness of 9 nm was developed for high electron mobility transistor structures using the metalorganic chemical-vapor deposition method. The structural, morphological, optical and electrical properties of the [...] Read more.
A quaternary lattice matched InAlGaN barrier layer with am indium content of 16.5 ± 0.2% and thickness of 9 nm was developed for high electron mobility transistor structures using the metalorganic chemical-vapor deposition method. The structural, morphological, optical and electrical properties of the layer were investigated planning realization of microwave power and terahertz plasmonic devices. The measured X-ray diffraction and modeled band diagram characteristics revealed the structural parameters of the grown In0.165Al0.775Ga0.06N/Al0.6Ga0.4N/GaN heterostructure, explaining the origin of barrier photoluminescence peak position at 3.98 eV with the linewidth of 0.2 eV and the expected red-shift of 0.4 eV only. The thermally stable density of the two-dimension electron gas at the depth of 10.5 nm was experimentally confirmed to be 1.2 × 1013 cm−2 (1.6 × 1013 cm−2 in theory) with the low-field mobility values of 1590 cm2/(V·s) and 8830 cm2/(V·s) at the temperatures of 300 K and 77 K, respectively. Full article
(This article belongs to the Special Issue Growth and Characteristics of Nitride Semiconductor Layers)
Show Figures

Figure 1

12 pages, 2025 KB  
Article
Properties of AlN/GaN Heterostructures Grown at Low Growth Temperatures with Ammonia and Dimethylhydrazine
by Caroline E. Reilly, Nirupam Hatui, Thomas E. Mates, Pratik Koirala, Adedapo A. Oni, Shuji Nakamura, Steven P. DenBaars and Stacia Keller
Crystals 2021, 11(11), 1412; https://doi.org/10.3390/cryst11111412 - 19 Nov 2021
Cited by 4 | Viewed by 3339
Abstract
The integration of different electronic materials systems together has gained increasing interest in recent years, with the III-nitrides being a favorable choice for a variety of electronic applications. To increase flexibility in integration options, growing nitrides material directly on semi-processed wafers would be [...] Read more.
The integration of different electronic materials systems together has gained increasing interest in recent years, with the III-nitrides being a favorable choice for a variety of electronic applications. To increase flexibility in integration options, growing nitrides material directly on semi-processed wafers would be advantageous, necessitating low temperature (LT) growth schemes. In this work, the growth of AlN and GaN was conducted via metalorganic chemical vapor deposition (MOCVD) using both NH3 and DMHy as N-precursors. The relationships between growth rate versus temperature were determined within the range of 300 to 550 °C. The growth of AlN/GaN heterostructures was also investigated herein, employing flow modulation epitaxy MOCVD at 550 °C. Subsequent samples were studied via atomic force microscopy, X-ray diffraction, TEM, and Hall measurements. Two-dimensional electron gases were found in samples where the LT AlN layer was grown with NH3, with one sample showing high electron mobility and sheet charge of 540 cm2/V∙s and 3.76 × 1013 cm−2, respectively. Inserting a LT GaN layer under the LT AlN layer caused the mobility and charge to marginally decrease while still maintaining sufficiently high values. This sets the groundwork towards use of LT nitrides MOCVD in future electronic devices integrating III-nitrides with other materials. Full article
Show Figures

Figure 1

11 pages, 4366 KB  
Article
Modeling and Epitaxial Growth of Homogeneous Long-InGaN Nanowire Structures
by Sung-Un Kim and Yong-Ho Ra
Nanomaterials 2021, 11(1), 9; https://doi.org/10.3390/nano11010009 - 23 Dec 2020
Cited by 11 | Viewed by 3741
Abstract
One-dimensional nanowires based on Group III-nitride materials are emerging as one of the most promising structures for applications of light-emitting diodes (LEDs), laser diodes (LDs), solar cells, and photocatalysts. However, leading to the so-called “green gap” in photonics, the fabrication of high concentration [...] Read more.
One-dimensional nanowires based on Group III-nitride materials are emerging as one of the most promising structures for applications of light-emitting diodes (LEDs), laser diodes (LDs), solar cells, and photocatalysts. However, leading to the so-called “green gap” in photonics, the fabrication of high concentration indium gallium nitride (InGaN) and long-InGaN structures remains still challenging. In this study, we performed simulations for structural modeling of uniform temperature distribution in a nanowire epitaxy, and have successfully developed high-concentration InGaN and long-InGaN nanowire heterostructures on silicon (Si) substrate using molecular beam epitaxy (MBE) system. From scanning electron microscope (SEM) and transmission electron microscope (TEM) results, it was confirmed that the various doped-InGaN nanowire structures show much higher crystal quality compared to conventional nanowire structures. By introducing a new three-step modulated growth technique, the n-/p-InGaN active regions were greatly increased and the optical properties were also dramatically improved due to reduced phase separation. In addition, a multi-band p-InGaN/GaN heterostructure was successfully fabricated with the core–shell nanowire structures, which enable the emission of light in the entire visible spectral range, and protect the InGaN surface from surface recombination. This paper offers important insight into the design and epitaxial growth of InGaN nanowire heterostructures. Full article
(This article belongs to the Special Issue Growth and Characterization in Nanowires)
Show Figures

Graphical abstract

15 pages, 19931 KB  
Article
Structural and Optical Properties of Self-Catalyzed Axially Heterostructured GaPN/GaP Nanowires Embedded into a Flexible Silicone Membrane
by Olga Yu. Koval, Vladimir V. Fedorov, Alexey D. Bolshakov, Sergey V. Fedina, Fedor M. Kochetkov, Vladimir Neplokh, Georgiy A. Sapunov, Liliia N. Dvoretckaia, Demid A. Kirilenko, Igor V. Shtrom, Regina M. Islamova, George E. Cirlin, Maria Tchernycheva, Alexey Yu. Serov and Ivan S. Mukhin
Nanomaterials 2020, 10(11), 2110; https://doi.org/10.3390/nano10112110 - 23 Oct 2020
Cited by 22 | Viewed by 3641
Abstract
Controlled growth of heterostructured nanowires and mechanisms of their formation have been actively studied during the last decades due to perspectives of their implementation. Here, we report on the self-catalyzed growth of axially heterostructured GaPN/GaP nanowires on Si(111) by plasma-assisted molecular beam epitaxy. [...] Read more.
Controlled growth of heterostructured nanowires and mechanisms of their formation have been actively studied during the last decades due to perspectives of their implementation. Here, we report on the self-catalyzed growth of axially heterostructured GaPN/GaP nanowires on Si(111) by plasma-assisted molecular beam epitaxy. Nanowire composition and structural properties were examined by means of Raman microspectroscopy and transmission electron microscopy. To study the optical properties of the synthesized nanoheterostructures, the nanowire array was embedded into the silicone rubber membrane and further released from the growth substrate. The reported approach allows us to study the nanowire optical properties avoiding the response from the parasitically grown island layer. Photoluminescence and Raman studies reveal different nitrogen content in nanowires and parasitic island layer. The effect is discussed in terms of the difference in vapor solid and vapor liquid solid growth mechanisms. Photoluminescence studies at low temperature (5K) demonstrate the transition to the quasi-direct gap in the nanowires typical for diluted nitrides with low N-content. The bright room temperature photoluminescent response demonstrates the potential application of nanowire/polymer matrix in flexible optoelectronic devices. Full article
(This article belongs to the Special Issue Preparation and Application of Nanowires)
Show Figures

Figure 1

24 pages, 3845 KB  
Article
Calibration of Polarization Fields and Electro-Optical Response of Group-III Nitride Based c-Plane Quantum-Well Heterostructures by Application of Electro-Modulation Techniques
by Dimitra N. Papadimitriou
Appl. Sci. 2020, 10(1), 232; https://doi.org/10.3390/app10010232 - 27 Dec 2019
Cited by 5 | Viewed by 3991
Abstract
The polarization fields and electro-optical response of PIN-diodes based on nearly lattice-matched InGaN/GaN and InAlN/GaN double heterostructure quantum wells grown on (0001) sapphire substrates by metalorganic vapor phase epitaxy were experimentally quantified. Dependent on the indium content and the applied voltage, an intense [...] Read more.
The polarization fields and electro-optical response of PIN-diodes based on nearly lattice-matched InGaN/GaN and InAlN/GaN double heterostructure quantum wells grown on (0001) sapphire substrates by metalorganic vapor phase epitaxy were experimentally quantified. Dependent on the indium content and the applied voltage, an intense near ultra-violet emission was observed from GaN (with fundamental energy gap Eg = 3.4 eV) in the electroluminescence (EL) spectra of the InGaN/GaN and InAlN/GaN PIN-diodes. In addition, in the electroreflectance (ER) spectra of the GaN barrier structure of InAlN/GaN diodes, the three valence-split bands, Γ9, Γ7+, and Γ7−, could selectively be excited by varying the applied AC voltage, which opens new possibilities for the fine adjustment of UV emission components in deep well/shallow barrier DHS. The internal polarization field Epol = 5.4 ± 1.6 MV/cm extracted from the ER spectra of the In0.21Al0.79N/GaN DHS is in excellent agreement with the literature value of capacitance-voltage measurements (CVM) Epol = 5.1 ± 0.8 MV/cm. The strength and direction of the polarization field Epol = −2.3 ± 0.3 MV/cm of the (0001) In0.055Ga0.945N/GaN DHS determined, under flat-barrier conditions, from the Franz-Keldysh oscillations (FKOs) of the electro-optically modulated field are also in agreement with the CVM results Epol = −1.2 ± 0.4 MV/cm. The (absolute) field strength is accordingly significantly higher than the Epol strength quantified in published literature by FKOs on a semipolar ( 11 2 ¯ 2 ) oriented In0.12Ga0.88N quantum well. Full article
(This article belongs to the Special Issue Novel and Efficient Semiconductor-based Light Sources)
Show Figures

Figure 1

22 pages, 3219 KB  
Review
Status of Growth of Group III-Nitride Heterostructures for Deep Ultraviolet Light-Emitting Diodes
by Kai Ding, Vitaliy Avrutin, Ümit Özgür and Hadis Morkoç
Crystals 2017, 7(10), 300; https://doi.org/10.3390/cryst7100300 - 4 Oct 2017
Cited by 47 | Viewed by 9277
Abstract
We overview recent progress in growth aspects of group III-nitride heterostructures for deep ultraviolet (DUV) light-emitting diodes (LEDs), with particular emphasis on the growth approaches for attaining high-quality AlN and high Al-molar fraction AlGaN. The discussion commences with the introduction of the current [...] Read more.
We overview recent progress in growth aspects of group III-nitride heterostructures for deep ultraviolet (DUV) light-emitting diodes (LEDs), with particular emphasis on the growth approaches for attaining high-quality AlN and high Al-molar fraction AlGaN. The discussion commences with the introduction of the current status of group III-nitride DUV LEDs and the remaining challenges. This segues into discussion of LED designs enabling high device performance followed by the review of advances in the methods for the growth of bulk single crystal AlN intended as a native substrate together with a discussion of its UV transparency. It should be stated, however, that due to the high-cost of bulk AlN substrates at the time of writing, the growth of DUV LEDs on foreign substrates such as sapphire still dominates the field. On the deposition front, the heteroepitaxial growth approaches incorporate high-temperature metal organic chemical vapor deposition (MOCVD) and pulsed-flow growth, a variant of MOCVD, with the overarching goal of enhancing adatom surface mobility, and thus epitaxial lateral overgrowth which culminates in minimization the effect of lattice- and thermal-mismatches. This is followed by addressing the benefits of pseudomorphic growth of strained high Al-molar fraction AlGaN on AlN. Finally, methods utilized to enhance both p- and n-type conductivity of high Al-molar fraction AlGaN are reviewed. Full article
(This article belongs to the Special Issue Advances in GaN Crystals and Their Applications)
Show Figures

Figure 1

Back to TopTop