Structural and Optical Properties of Self-Catalyzed Axially Heterostructured GaPN/GaP Nanowires Embedded into a Flexible Silicone Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. MBE Growth of NWs
2.2. Silicone Rubber Membrane Fabrication
2.3. Sample Characterization
3. Results and Discussion
3.1. Crystal Structure Study
3.2. Optical Properties Study
3.3. NW Composition (μ-Spectroscopy PL and Raman Study)
3.4. Photoluminescent Properties
Membrane Release Description
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobrovolsky, A.; Persson, P.O.; Sukrittanon, S.; Kuang, Y.; Tu, C.W.; Chen, W.M.; Buyanova, I.A. Effects of polytypism on optical properties and band structure of individual Ga(N)P nanowires from correlative spatially resolved structural and optical studies. Nano Lett. 2015, 15, 4052–4058. [Google Scholar] [CrossRef] [Green Version]
- Roche, E.; Andre, Y.; Avit, G.; Bougerol, C.; Castelluci, D.; Réveret, F.; Gil, E.; Medard, F.; Leymarie, J.; Jean, T. Circumventing the miscibility gap in InGaN nanowires emitting from blue to red. Nanotechnology 2018, 29, 465602. [Google Scholar] [CrossRef] [PubMed]
- Dick, K.A.; Caroff, P.; Bolinsson, J.; Messing, M.E.; Johansson, J.; Deppert, K.; Wallenberg, L.R.; Samuelson, L. Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 2010, 25, 024009. [Google Scholar] [CrossRef]
- Mozharov, A.; Bolshakov, A.; Cirlin, G.; Mukhin, I. Numerical modeling of photovoltaic efficiency of n-type GaN nanowires on p-type Si heterojunction. Phys. Status Solidi Rapid Res. Lett. 2015, 9, 507–510. [Google Scholar] [CrossRef]
- Heiss, M.; Russo-Averchi, E.; Dalmau-Mallorqui, A.; Tutuncuglu, G.; Matteini, F.; Ruffer, D.; Conesa-Boj, S.; Demichel, O.; Alarcon-Llado, E. III–V nanowire arrays: Growth and light interaction. Nanotechnology 2014, 25, 014015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, J.; Aagesen, M.; Liu, H. III–V nanowires and nanowire optoelectronic devices. J. Phys. D Appl. Phys. 2015, 48, 463001. [Google Scholar] [CrossRef]
- Valente, J.; Godde, T.; Zhang, Y.; Mowbray, D.J.; Liu, H. Light-emitting gaas nanowires on a flexible substrate. Nano Lett. 2018, 18, 4206–4213. [Google Scholar] [CrossRef]
- Khayrudinov, V.; Remennyi, M.; Raj, V.; Alekseev, P.; Matveev, B.; Lipsanen, H.; Haggren, T. Direct growth of light-emitting III–V nanowires on flexible plastic substrates. ACS Nano 2020, 14, 7484–7491. [Google Scholar] [CrossRef]
- Li, Z.; Tan, H.H.; Jagadish, C.; Fu, L. III-V semiconductor single nanowire solar cells: A review. Adv. Mater. Technol. 2018, 3, 1800005. [Google Scholar] [CrossRef]
- Ong, P.L.; Levitsky, I. Organic/IV, III-V semiconductor hybrid solar cells. Energies 2010, 3, 313–334. [Google Scholar] [CrossRef] [Green Version]
- Sharov, V.A.; Bolshakov, A.D.; Fedorov, V.V.; Bruyère, S.; Cirlin, G.E.; Alekseev, P.; Mukhin, I.S. Deep-subwavelength raman imaging of the strained GaP nanowires. J. Phys. Chem. C 2020, 124, 14054–14060. [Google Scholar] [CrossRef]
- Dai, X.; Messanvi, A.; Zhang, H.; Durand, C.; Eymery, J.; Bougerol, C.; Francois, H.J.; Tchernycheva, M. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett. 2015, 15, 6958–6964. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, A.; Word, R.C.; Meiss, J.; Könenkamp, R. Flexible inorganic nanowire light-emitting diode. Nano Lett. 2008, 8, 534–537. [Google Scholar] [CrossRef]
- Spurgeon, J.M.; Boettcher, S.W.; Kelzenberg, M.D.; Brunschwig, B.S.; Atwater, H.A.; Lewis, N.S. Flexible, polymer-supported, si wire array photoelectrodes. Adv. Mater. 2010, 22, 3277–3281. [Google Scholar] [CrossRef]
- Abramson, A.R.; Kim, W.C.; Huxtable, S.T.; Yan, H.; Wu, Y.; Majumdar, A.; Tien, C.-L.; Yang, P. Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device. J. Microelectromech. Syst. 2004, 13, 505–513. [Google Scholar] [CrossRef]
- Zach, M.P.; Ng, K.H.; Penner, R.M. Molybdenum nanowires by electrodeposition. Science 2000, 290, 2120–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchernycheva, M.; Guan, N.; Dai, X.; Messanvi, A.; Zhang, H.; Bayle, F.; Neplokh, V.; Piazza, V.; Julien, F.H.; Bougerol, C.; et al. Flexible optoelectronic devices based on nitride nanowires embedded in polymer films. In Proceedings of the 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), Toulouse, France, 9–12 October 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, X.; Guan, N.; Messanvi, A.; Neplokh, V.; Piazza, V.; Vallo, M.; Bougerol, C.; Julien, F.H.; Babichev, A.; et al. Flexible photodiodes based on nitride core/shell p–n junction nanowires. ACS Appl. Mater. Interfaces 2016, 8, 26198–26206. [Google Scholar] [CrossRef]
- Neplokh, V.; Messanvi, A.; Zhang, H. Substrate-free InGaN/GaN nanowire light-emitting diodes. Nanoscale Res. Lett. 2015, 10, 447. [Google Scholar] [CrossRef]
- Chao, J.J.; Shiu, S.C.; Hung, S.C.; Lin, C.F. GaAs nanowire/poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) hybrid solar cells. Nanotechnology 2010, 21, 285203. [Google Scholar] [CrossRef]
- Bi, H.; LaPierre, R.R. A GaAs nanowire/P3HT hybrid photovoltaic device. Nanotechnology 2009, 20, 465205. [Google Scholar] [CrossRef]
- Fedorov, V.V.; Bolshakov, A.; Sergaeva, O.; Neplokh, V.; Markina, D.; Bruyere, S.; Saerens, G.; Petrov, M.I.; Grange, R.; Timofeeva, M.; et al. Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion. ACS Nano 2020, 14, 10624–10632. [Google Scholar] [CrossRef] [PubMed]
- Guan, N.; Dai, X.; Babichev, A.V.; Julien, F.H.; Tchernycheva, M. Flexible inorganic light emitting diodes based on semiconductor nanowires. Chem. Sci. 2017, 8, 7904–7911. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hrachowina, L.; Barrigon, E.; Åberg, I.; Borgström, M. Self-limiting polymer exposure for vertical processing of semiconductor nanowire-based flexible electronics. ACS Appl. Nano Mater. 2020, 3, 7743–7749. [Google Scholar] [CrossRef]
- Guan, N.; Dai, X.; Messanvi, A.; Zhang, H.; Yan, J.; Gautier, E.; Bougerol, C.; Julien, F.H.; Durand, C.; Eymery, J.; et al. Flexible white light emitting diodes based on nitride nanowires and nanophosphors. ACS Photonics 2016, 3, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baig, S.A.; Boland, J.L.; Damry, D.A.; Tan, H.H.; Jagadish, C.; Johnston, M.B.; Joyce, H. Choice of polymer matrix for a fast switchable III-V nanowire terahertz modulator. MRS Adv. 2017, 2, 1475–1480. [Google Scholar] [CrossRef] [Green Version]
- Baig, S.A.; Boland, J.L.; Damry, D.A.; Tan, H.H.; Jagadish, C.; Joyce, H.J.; Johnston, M.B. An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires. Nano Lett. 2017, 17, 2603–2610. [Google Scholar] [CrossRef]
- Sun, Y.; Khang, D.Y.; Hua, F.; Hurley, K.; Nuzzo, R.G.; Rogers, J.A. Photolithographic route to the fabrication of micro/nanowires of III-V semiconductors. Adv. Funct. Mater. 2005, 15, 30–40. [Google Scholar] [CrossRef]
- Huh, B. OLED Display Market Tracker. Available online: https://www.oled-info.com/ihs-oled-displays-take-over-60-total-smartphone-display-market-q3-2018-revenue (accessed on 18 December 2018).
- Salehi, A.; Fu, X.; Shin, D.; So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 2019, 29, 1808803. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A decade of nonpolar and semipolar III-nitrides: A review of successes and challenges. Phys. Status Solidi 2018, 216, 1800628. [Google Scholar] [CrossRef] [Green Version]
- Park, S.I.; Xiong, Y.; Kim, R.H.; Elvikis, P.; Meitl, M.; Kim, D.H.; Wu, J.; Yoon, J.; Yu, C.-J.; Yhuanjian, L.; et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.; Hwang, Y.; Choi, Y.S.; Jeong, T.; Baek, J.H.; Ko, H.C.; Park, S.J. Transfer of GaN LEDs from sapphire to flexible substrates by laser lift-off and contact printing. IEEE Photonics Technol. Lett. 2012, 24, 2115–2118. [Google Scholar] [CrossRef]
- Zhang, H.; Rogers, J.A. Recent advances in flexible inorganic light emitting diodes: From materials design to integrated optoelectronic platforms. Adv. Opt. Mater. 2019, 7, 1800936. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, P.; Pushkarev, A.P.; Sinev, I.S.; Fedorov, V.V.; Bruyère, S.; Bolshakov, A.; Mukhin, I.S.; Makarov, S.V. Perovskite–gallium phosphide platform for reconfigurable visible-light nanophotonic chip. ACS Nano 2020, 14, 8126–8134. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.J.; Schneider, K.; Hönl, S.; Anderson, M.; Baumgartner, Y.; Czornomaz, L.; Kippenberg, T.J.; Seidler, P. Integrated gallium phosphide nonlinear photonics. Nat. Photonics 2020, 14, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Koval, O.Y.; Fedorov, V.V.; Kryzhanovskaya, N.V.; Sapunov, G.A.; Kirilenko, D.A.; Pirogov, E.V.; Filosofov, N.G.; Serov, A.Y.; Shtrom, I.V.; Bolshakov, A.D.; et al. Structural and optical characterization of dilute phosphide planar heterostructures with high nitrogen content on silicon. Cryst. Eng. Comm. 2020, 22, 283–292. [Google Scholar] [CrossRef]
- Sukrittanon, S.; Kuang, Y.J.; Dobrovolsky, A.; Kang, W.M.; Jang, J.S.; Kim, B.J.; Chen, W.M.; Buyanova, I.A.; Tu, C.W. Growth and characterization of dilute nitride GaN x P 1−x nanowires and GaN x P 1−x /GaN y P 1−y core/shell nanowires on Si (111) by gas source molecular beam epitaxy. Appl. Phys. Lett. 2014, 105, 072107. [Google Scholar] [CrossRef] [Green Version]
- Sukrittanon, S.; Tu, C.W. Growth and photoluminescence of self-catalyzed GaP/GaNP core/shell nanowires on Si(111) by gas source molecular beam epitaxy. Appl. Phys. Lett. 2012, 100, 053108. [Google Scholar] [CrossRef]
- Steidl, M.; Wu, M.; Peh, K.; Kleinschmidt, P.; Spiecker, E.; Hannappel, T. Impact of N incorporation on VLS growth of GaP(N) nanowires utilizing UDMH. Nanoscale Res. Lett. 2018, 13, 417. [Google Scholar] [CrossRef]
- Steidl, M.; Schwarzburg, K.; Galiana, B.; Kups, T.; Supplie, O.; Kleinschmidt, P.; Lilienkamp, G.; Hannappel, T. MOVPE growth of GaP/GaPN core–shell nanowires: N incorporation, morphology and crystal structure. Nanotechnology 2019, 30, 104002. [Google Scholar] [CrossRef]
- Dobrovolsky, A.; Chen, S.; Kuang, Y.; Sukrittanon, S.; Tu, C.W.; Chen, W.M.; Buyanova, I.A. Optical properties of GaP/GaNP core/shell nanowires: a temperature-dependent study. Nanoscale Res. Lett. 2013, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Sukrittanon, S.; Tu, C.W. Growth and characterization of GaP/GaNP core/shell nanowires. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2013, 31, 03C110. [Google Scholar] [CrossRef]
- Dobrovolsky, A.; Sukrittanon, S.; Kuang, Y.J.; Tu, C.W.; Chen, W.M.; Buyanova, I.A. Raman spectroscopy of GaP/GaNP core/shell nanowires. Appl. Phys. Lett. 2014, 105, 193102. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Feenstra, R.M.; Greve, D.W.; Moore, J.C.; Sievert, M.D.; Baski, A.A. Effects of hydrogen on the morphology and electrical properties of GaN grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2005, 86, 121914. [Google Scholar] [CrossRef] [Green Version]
- Arehart, A.R.; Corrion, A.; Poblenz, C.; Speck, J.S.; Mishra, U.K.; DenBaars, S.P.; Ringel, S.A. Comparison of deep level incorporation in ammonia and rf-plasma assisted molecular beam epitaxy n-GaN films. Phys. Status Solidi 2008, 5, 1750–1752. [Google Scholar] [CrossRef]
- Ishizaka, A.; Shiraki, Y. Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 1986, 133, 666–671. [Google Scholar] [CrossRef]
- Imamura, K.; Takahashi, M.; Asuha; Hirayama, Y.; Imai, S.; Kobayashi, H. Nitric acid oxidation of Si method at 120 °C: HNO3 concentration dependence. J. Appl. Phys. 2010, 107, 054503. [Google Scholar] [CrossRef]
- Matteini, F.; Tütüncüoglu, G.; Potts, H.; Jabeen, F.; Fontcuberta i Morral, A. Wetting of Ga on SiO x and its impact on GaAs nanowire growth. Cryst. Growth Des. 2015, 15, 3105–3109. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.; Lei, W.; Zhou, X.; Luo, S.; Hu, Y.; Wang, L.; Yang, T.; Wang, Z. Effect of growth temperature on the morphology and phonon properties of InAs nanowires on Si substrates. Nanoscale Res. Lett. 2011, 6, 463. [Google Scholar] [CrossRef] [Green Version]
- Bolshakov, A.D.; Fedorov, V.V.; Sibirev, N.V.; Fetisova, M.V.; Moiseev, E.I.; Kryzhanovskaya, N.V.; Koval, O.Y.; Ubyivovk, E.V.; Cirlin, G.E.; Mukhin, I.S. Growth and Characterization of GaP/GaPAs Nanowire Heterostructures with Controllable Composition. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900350. [Google Scholar] [CrossRef]
- Neplokh, V.; Kochetkov, F.M.; Deriabin, K.V.; Fedorov, V.V.; Bolshakov, A.D.; Eliseev, I.E.; Mikhailovskii, V.Y.; Ilatovskii, D.A.; Krasnikov, D.V.; Tchernycheva, M.; et al. Modified silicone rubber for fabrication and contacting of flexible suspended membranes of n-/p-GaP nanowires with a single-walled carbon nanotube transparent contact. J. Mater. Chem. C 2020, 8, 3764–3772. [Google Scholar] [CrossRef] [Green Version]
- Kochetkov, F.M.; Kochetkov, F.M.; Deriabin, K.V.; Fedorov, V.V.; Bolshakov, A.D.; Eliseev, I.E.; Mikhailovskii, V.Y.; Ilatovskii, D.A.; Krasnikov, D.V.; Tchernycheva, M.; et al. Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices. Nanotechnology 2020, 31, 46LT01. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.L.; Wu, X.X.; Zhang, S.Q.; Zhang, Z.K.; Pan, W.W.; Yuan, G.; Yuan, C.L.; Ren, Y.L.; Lei, W. Ultra-long high quality catalyst-free WO3 nanowires for fabricating high-performance visible photodetectors. Nanotechnology 2020, 31, 274003. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Gao, L.; Lei, W.; Guo, L.; Pan, H.; Yang, T.; Chen, T.; Wang, Z. InAs-mediated growth of vertical InSb nanowires on Si substrates. Nanoscale Res. Lett. 2013, 8, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigutti, L.; Jacopin, G.; Largeau, L.; Galopin, E.; Bugallo, A.D.L.; Julien, F.H.; Harmand, J.-C.; Glas, F.; Tchernyeva, M. Correlation of optical and structural properties of GaN/AlN core-shell nanowires. Phys. Rev. B 2011, 83, 155320. [Google Scholar] [CrossRef]
- Zhou, S.M. Self-catalyzed vapor–liquid–solid growth of large-scale single crystal GaN whiskers. Mater. Lett. 2003, 25, 3880–3883. [Google Scholar] [CrossRef]
- Tessarek, C.; Tessarek, C.; Röder, R.; Michalsky, T.; Geburt, S.; Franke, H.; Schmidt-Grund, R.; Heilmann, M.; Hoffmann, B.; Ronning, C.; et al. Improving the Optical Properties of Self-Catalyzed GaN Microrods toward Whispering Gallery Mode Lasing. ACS Photonics 2014, 1, 990–997. [Google Scholar] [CrossRef]
- Jo, J.; Tchoe, Y.; Yi, G.C.; Kim, M. Real-time characterization using in situ RHEED transmission mode and TEM for investigation of the growth behaviour of nanomaterials. Sci. Rep. 2018, 8, 1694. [Google Scholar] [CrossRef]
- Yang, D.S.; Lao, C.; Zewail, A.H. 4D electron diffraction reveals correlated unidirectional behavior in zinc oxide nanowires. Science 2008, 321, 1660–1664. [Google Scholar] [CrossRef] [Green Version]
- Maliakkal, C.B.; Gokhale, M.; Parmar, J.; Bapat, R.D.; Chalke, B.A.; Ghosh, S.; Bhattacharya, A. Growth, structural and optical characterization of wurtzite GaP nanowires. Nanotechnology 2019, 30, 254002. [Google Scholar] [CrossRef]
- Glas, F.; Harmand, J.C.; Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101. [Google Scholar] [CrossRef] [Green Version]
- Buyanova, I.A.; Chen, W.M.; Goldys, E.M.; Xin, H.P.; Tu, C.W. Structural properties of a GaNxP1−x alloy: Raman studies. Appl. Phys. Lett. 2001, 78, 3959–3961. [Google Scholar] [CrossRef]
- Yoon, S.; Seong, M.J.; Geisz, J.F.; Duda, A.; Mascarenhas, A. Evolution of electronic states in GaP1-xNx. Phys. Rev. B 2003, 67, 235209. [Google Scholar] [CrossRef]
- Christian, T.M.; Fluegel, B.; Beaton, D.A.; Alberi, K.; Mascarenhas, A. Bismuth-induced Raman modes in GaP 1−x Bi x. Jpn. J. Appl. Phys. 2016, 55, 108002. [Google Scholar] [CrossRef]
- Dobrovolsky, A.; Sukrittanon, S.; Kuang, Y.; Tu, C.W.; Chen, W.M.; Buyanova, I.A. Energy upconversion in GaP/GaNP core/shell nanowires for enhanced near-infrared light harvesting. Small 2014, 10, 4403–4408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyanova, I.A.; Izadifard, M.; Ivanov, I.G.; Birch, J.; Chen, W.M.; Felici, M.; Polimeni, A.; Capizzi, M.; Hong, Y.G.; Xin, H.P.; et al. Direct experimental evidence for unusual effects of hydrogen on the electronic and vibrational properties of GaPN. Phys. Rev. B 2004, 70, 245215. [Google Scholar] [CrossRef] [Green Version]
- Shan, W.; Walukiewicz, W.; Yu, K.M.; Wu, J. Nature of the fundamental band gap in GaNxP1−x alloys. Appl. Phys. Lett. 2000, 76, 3251–3253. [Google Scholar] [CrossRef]
- Assali, S.; Greil, J.; Zardo, I.; Belabbes, A.; De Moor, M.W.A.; Koelling, S.; Koenraad, P.M.; Bechstedt, F.; Bakkers, E.P.A.M.; Haverkort, J.E.M. Optical study of the band structure of wurtzite GaP nanowires. J. Appl. Phys. 2016, 120, 044304. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, B.C.; Couto, O.D.; Obata, H.T.; de Lima, M.M.; Bonani, F.D.; de Oliveira, C.E.; Sipahi, G.M.; Iikawa, F.; Cotta, M.A. Optical Absorption Exhibits Pseudo-Direct Band Gap of Wurtzite Gallium Phosphide. Sci. Rep. 2020, 10, 7904. [Google Scholar] [CrossRef]
- Thomas, D.G.; Hopfield, J.J.; Frosch, C.J. Isoelectronic traps due to nitrogen in gallium phosphide. Phys. Rev. Lett. 1965, 15, 857–860. [Google Scholar] [CrossRef]
- Lazarenko, A.A.; Sobolev, M.S.; Pirogov, E.V.; Kryzhanovskaya, N.V.; Nikitina, E.V. Epitaxial growth and investigation of GaP/GaP(As)N heterostructures on Si (100) 4.0 substrates. J. Phys. Conf. Ser. 2017, 917, 032044. [Google Scholar] [CrossRef]
- Chen, S.; Chen, W.M.; Buyanova, I.A. Effects of strong band-tail states on exciton recombination dynamics in dilute nitride GaP/GaNP core/shell nanowires. J. Phys. Chem. C 2018, 122, 19212–19218. [Google Scholar] [CrossRef]
- Baillargeon, J.N.; Cheng, K.Y.; Hofler, G.E.; Pearah, P.J.; Hsieh, K.C. Luminescence quenching and the formation of the GaP 1−x N x alloy in GaP with increasing nitrogen content. Appl. Phys. Lett. 1992, 60, 2540–2542. [Google Scholar] [CrossRef] [Green Version]
- Buyanova, I.A.; Pozina, G.; Bergman, J.P.; Chen, W.M.; Xin, H.P.; Tu, C.W. Time-resolved studies of photoluminescence in GaNxP1−x alloys: Evidence for indirect-direct band gap crossover. Appl. Phys. Lett. 2002, 81, 52–54. [Google Scholar] [CrossRef]
- Islam, A.Z.M.T.; Hanaoka, T.; Onabe, K.; Yagi, S.; Kamata, N.; Yaguchi, H. Direct evidence of carrier excitation from intermediate band states in GaPN by two-wavelength excited photoluminescence. Appl. Phys. Express 2013, 6, 092401. [Google Scholar] [CrossRef]
- Gottschalch, V.; Wagner, G.; Bauer, J.; Paetzelt, H.; Shirnow, M. VLS growth of GaN nanowires on various substrates. J. Cryst. Growth 2008, 310, 5123–5128. [Google Scholar] [CrossRef]
- Kuyyalil, J.; Thanh, T.N.; Quinci, T.; Almosni, S.; Létoublon, A.; Rohel, T.; Bertru, N.; Le Corre, A.; Durand, O.; Cornet, C. Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN. J. Cryst. Growth 2013, 377, 17–21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koval, O.Y.; Fedorov, V.V.; Bolshakov, A.D.; Fedina, S.V.; Kochetkov, F.M.; Neplokh, V.; Sapunov, G.A.; Dvoretckaia, L.N.; Kirilenko, D.A.; Shtrom, I.V.; et al. Structural and Optical Properties of Self-Catalyzed Axially Heterostructured GaPN/GaP Nanowires Embedded into a Flexible Silicone Membrane. Nanomaterials 2020, 10, 2110. https://doi.org/10.3390/nano10112110
Koval OY, Fedorov VV, Bolshakov AD, Fedina SV, Kochetkov FM, Neplokh V, Sapunov GA, Dvoretckaia LN, Kirilenko DA, Shtrom IV, et al. Structural and Optical Properties of Self-Catalyzed Axially Heterostructured GaPN/GaP Nanowires Embedded into a Flexible Silicone Membrane. Nanomaterials. 2020; 10(11):2110. https://doi.org/10.3390/nano10112110
Chicago/Turabian StyleKoval, Olga Yu., Vladimir V. Fedorov, Alexey D. Bolshakov, Sergey V. Fedina, Fedor M. Kochetkov, Vladimir Neplokh, Georgiy A. Sapunov, Liliia N. Dvoretckaia, Demid A. Kirilenko, Igor V. Shtrom, and et al. 2020. "Structural and Optical Properties of Self-Catalyzed Axially Heterostructured GaPN/GaP Nanowires Embedded into a Flexible Silicone Membrane" Nanomaterials 10, no. 11: 2110. https://doi.org/10.3390/nano10112110