Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = HSPA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 17450 KB  
Article
Integrated Single-Cell and Bulk Transcriptomics Unveils Immune Profiles in Chick Erythroid Cells upon Avian Pathogenic Escherichia coli Infection
by Fujuan Cai, Xianjue Wang, Chunzhi Wang, Yuzhen Wang and Wenguang Zhang
Animals 2026, 16(2), 179; https://doi.org/10.3390/ani16020179 - 7 Jan 2026
Viewed by 228
Abstract
Nucleated erythroid cells (NECs) have emerged as active participants in immune responses in addition to their canonical oxygen transport function. The subpopulations and immune heterogeneity of chick erythroid cells (ch-ECs) upon infection have not been fully characterized. Single-cell RNA sequencing (scRNA-seq) was used [...] Read more.
Nucleated erythroid cells (NECs) have emerged as active participants in immune responses in addition to their canonical oxygen transport function. The subpopulations and immune heterogeneity of chick erythroid cells (ch-ECs) upon infection have not been fully characterized. Single-cell RNA sequencing (scRNA-seq) was used to profile ch-ECs in chicks infected with avian pathogenic Escherichia coli (APEC). Unsupervised clustering uncovered ten distinct ch-EC subpopulations (C1–C10), with significant compositional shifts between infected and control groups. Pseudotime analysis revealed a developmental continuum: C1, C3, C5, and C9 as early progenitors; C2, C4, C6, C7, and C10 as mature erythroid cells; and C8 as a naive population. We revealed 62 immune-related genes, including protein kinases and heat shock proteins, and subpopulation-specific differentially expressed genes (DEGs) linked to immune functions. SCENIC analysis revealed Fos, Srf, and Stat3 as key transcription factors with elevated regulon activity and specificity following infection. Subpopulations C2, C4, C6, and C7, which exhibited marked abundance changes, were scrutinized for immune relevance through integrated multi-omics analysis. Immune-related genes including FOS, AKAP9, HS6ST1, GAB3, TFRC, HSPA8, HSP90AA1, and DNAJB6 were identified. Enrichment analysis indicated activation of the MHC class I antigen presentation pathway, while pathways such as Mitogen-Activated Protein Kinase (MAPK) signaling, NOD-like receptor (NLR) signaling, and the heat shock response were found to be suppressed. In conclusion, this study delineates the immune gene repertoire and signaling networks of ch-ECs during APEC infection, offering new perspectives on NEC immunoregulatory functions. Full article
(This article belongs to the Special Issue Bacterial Disease Research in Livestock and Poultry)
Show Figures

Figure 1

16 pages, 2288 KB  
Review
Diabetic Retinopathy and Other Microvascular Complications of Diabetes—A Review of Multi-Omics Research
by Julia Grzybowska-Adamowicz and Agnieszka Zmysłowska
Diabetology 2026, 7(1), 3; https://doi.org/10.3390/diabetology7010003 - 31 Dec 2025
Viewed by 430
Abstract
Microvascular complications of diabetes include retinopathy (DR), diabetic kidney disease (DKD), and neuropathy (DN), which play a crucial role in diabetes management, as they significantly impair the functionality of the patient and remain major causes of morbidity despite advances in glycaemic control. The [...] Read more.
Microvascular complications of diabetes include retinopathy (DR), diabetic kidney disease (DKD), and neuropathy (DN), which play a crucial role in diabetes management, as they significantly impair the functionality of the patient and remain major causes of morbidity despite advances in glycaemic control. The aim of this review was to summarize multi-omics findings in DR, DKD, and DN. Multi-omics studies consist of genomic, epigenomic, transcriptomic, proteomic, and metabolomic research. These studies provided comprehensive insights into the complex mechanisms underlying microvascular complications of diabetes, such as inflammation, angiogenesis, and apoptosis in the retina, kidneys, and nervous system. They also enabled the search for emerging diagnostic, prognostic, and therapeutic biomarkers. Moreover, changes in microRNA levels were found to differentiate patients with non-proliferative and proliferative DR. In addition, different proteins and metabolites concentrations were noticed in diabetes macular oedema and tractional retinal detachment—serious complications of DR. Specific molecular signatures, such as miR-146a and miR-27 dysregulation, changes in levels of HLA-DRA, AGER, and HSPA1A proteins, and alterations in tyrosine, alanine, 2,4-dihydroxybutanoic acid, ribonic acid, myoinositol, ribitol, 3,4-dihydroxybutanoic acid, valine, glycine, and 2-hydroxyisovaleric acid, were found to be characteristic for all microvascular complications of diabetes. In the future, more studies in multi-omics are expected to help improve precision medicine approaches to treating diabetes, allowing for personalized prediction, prevention, and treatment of microvascular complications. Full article
(This article belongs to the Special Issue New Perspectives and Future Challenges in Diabetic Retinopathy)
Show Figures

Graphical abstract

15 pages, 1399 KB  
Article
Antibodies Against SARS-CoV-2 Nucleocapsid Protein Possess Autoimmune Properties
by Alexandra Rak, Yana Zabrodskaya, Pei-Fong Wong and Irina Isakova-Sivak
Antibodies 2026, 15(1), 2; https://doi.org/10.3390/antib15010002 - 22 Dec 2025
Viewed by 848
Abstract
Background/Objectives: Notwithstanding the declaration by the World Health Organization in May 2023 regarding the conclusion of the COVID-19 pandemic, new cases of this potentially lethal infection continue to be documented globally, exerting a sustained influence on the worldwide economy and social structures. Contemporary [...] Read more.
Background/Objectives: Notwithstanding the declaration by the World Health Organization in May 2023 regarding the conclusion of the COVID-19 pandemic, new cases of this potentially lethal infection continue to be documented globally, exerting a sustained influence on the worldwide economy and social structures. Contemporary SARS-CoV-2 variants, while associated with a reduced propensity for severe acute pathology, retain the capacity to induce long-term post-COVID syndrome, including in ambulatory patient populations. This clinical phenomenon may be attributable to potential autoimmune reactions hypothetically triggered by antiviral antibodies, thereby underscoring the need for developing novel, universal vaccines against COVID-19. The nucleocapsid protein (N), being one of its most conserved and highly immunogenic components of SARS-CoV-2, presents a promising target for such investigative efforts. However, the protective role of anti-N antibodies, generated during natural infection or through immunization with N-based vaccines, alongside the potential adverse effects associated with their production, remains to be fully elucidated. In the present study, we aim to identify potential sites of homology in structures or sequences between the SARS-CoV-2 N protein and human antigens detected using hyperimmune sera against N protein obtained from mice, rabbits, and hamsters. Methods: We employed Western blot analysis of lysates from human cell lines (MCF7, HEK293T, THP-1, CaCo2, Hep2, T98G, A549) coupled with mass spectrometric identification to assess the cross-reactivity of polyclonal and monoclonal antibodies generated against recombinant SARS-CoV-2 N protein with human self-antigens. Results: We showed that anti-N antibodies developed in mice and rabbits exhibit pronounced immunoreactivity towards specific components of the human proteome. In contrast, anti-N immunoglobulins from hamsters showed no non-specific cross-reactivity with either hamster or human proteomic extracts because of the lack of autoreactivity or immunogenicity differences. Subsequent mass spectrometric analysis of the immunoreactive bands identified principal autoantigenic targets, which were predominantly heat shock proteins (including HSP90-beta, HSP70, mitochondrial HSP60, and HSPA8), histones (H2B, H3.1–3), and key metabolic enzymes (G6PD, GP3, PKM, members of the 1st family of aldo-keto reductases). Conclusions: The results obtained herein highlight the differences in the development of anti-N humoral responses in humans and in the Syrian hamster model. These data provide a foundational basis for formulating clinical recommendations to predict possible autoimmune consequences in COVID-19 convalescents and are of critical importance for the rational design of future N protein-based, cross-protective vaccine candidates against novel coronavirus infections. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

14 pages, 1779 KB  
Article
Pilot Proteomic Analysis of Urinary Extracellular Vesicles Supports the “Toxic Urine Hypothesis” as a Vicious Cycle in Refractory IC/BPS Pathogenesis
by Man-Jung Hung, Evelyn Yang, Tsung-Ho Ying, Peng-Ju Chien, Ying-Ting Huang and Wen-Wei Chang
Int. J. Mol. Sci. 2026, 27(1), 130; https://doi.org/10.3390/ijms27010130 - 22 Dec 2025
Viewed by 741
Abstract
Despite treatments such as pentosan polysulfate, hyaluronic acid, botulinum toxin A, and platelet-rich plasma, many interstitial cystitis/bladder pain syndrome (IC/BPS) patients experience persistent symptoms. Urinary extracellular vesicles (uEVs) carry molecular cargo reflecting disease pathophysiology, yet their proteomic profiles in treated IC/BPS remain unexplored. [...] Read more.
Despite treatments such as pentosan polysulfate, hyaluronic acid, botulinum toxin A, and platelet-rich plasma, many interstitial cystitis/bladder pain syndrome (IC/BPS) patients experience persistent symptoms. Urinary extracellular vesicles (uEVs) carry molecular cargo reflecting disease pathophysiology, yet their proteomic profiles in treated IC/BPS remain unexplored. This pilot study examined uEV proteomics in refractory IC/BPS cases to test the “Toxic Urine Hypothesis”—a vicious cycle, whereby urothelial dysfunction enables EV-mediated toxin penetration, triggering inflammation that further impairs the bladder barrier. Urinary EVs were isolated from six female IC/BPS patients on active treatments and four healthy female controls. Mass spectrometry-based proteomics identified differential protein expressions, followed by pathway enrichment analysis and functional validation using NF-κB reporter assays in HEK293T cells and Western blot in primary human bladder epithelial cells. IC/BPS EVs exhibited 31 upregulated proteins (including HPGD, KRT8, HSPA4, 14-3-3 family members) and 19 downregulated proteins (including neutrophil granule proteins MPO and ELANE), indicating suppressed acute neutrophil inflammation but enriched homeostatic, metabolic, and regenerative pathways. Patient EVs induced significantly higher NF-κB activation than in the controls, with upregulated 14-3-3ζ and phosphorylated NF-κB p65 in bladder epithelial cells. These findings support the “Toxic Urine Hypothesis”, revealing persistent NF-κB-mediated chronic epithelial stress despite suppressed acute inflammation in treated IC/BPS patients, suggesting that therapies targeting inflammation and regeneration may help break this vicious cycle. Full article
(This article belongs to the Special Issue Role of Extracellular Vesicles in Diseases)
Show Figures

Graphical abstract

20 pages, 7905 KB  
Article
Carbonic Anhydrase 3 Overexpression Modulates Signalling Pathways Associated with Cellular Stress Resilience and Proteostasis
by Yezhou Yu, Merrina Anugraham, Tony Blick, Arutha Kulasinghe, Louise M. Sternicki, Giovanna Di Trapani, Sally-Ann Poulsen, Daniel Kolarich and Kathryn F. Tonissen
Int. J. Mol. Sci. 2025, 26(24), 12064; https://doi.org/10.3390/ijms262412064 - 15 Dec 2025
Viewed by 507
Abstract
Carbonic anhydrase 3 (CA3) exhibits low enzymatic activity compared to other CA isoforms but contains two surface-exposed cysteine residues that undergo glutathionylation under oxidative stress. Highly expressed in muscle tissue, CA3 has been implicated in cellular protection, particularly through interactions with Bcl2-Associated Athanogene [...] Read more.
Carbonic anhydrase 3 (CA3) exhibits low enzymatic activity compared to other CA isoforms but contains two surface-exposed cysteine residues that undergo glutathionylation under oxidative stress. Highly expressed in muscle tissue, CA3 has been implicated in cellular protection, particularly through interactions with Bcl2-Associated Athanogene 3 (BAG3), modulating autophagy, while CA3 overexpression decreased hypoxia-induced apoptosis in cardiomyocytes. In this study, we investigated the impact of CA3 overexpression on cellular pathways in HEK293T, MDA-MB-231, and SVCT cells using RNA sequencing and proteomics. Gene Set Enrichment Analysis (GSEA) in HEK293T cells revealed the down-regulation of pathways related to protein synthesis, RNA processing, Roundabout signalling, selenocysteine-metabolism, and suppression of neurodegenerative disease-associated pathways. Human breast epithelial cell lines under normoxia and hypoxia showed down-regulation of similar pathways, although notably, hypoxic conditions also suppressed interferon α/β signalling. Proteomic analysis in HEK293T cells using HaloTag pull-down experiments identified putative novel CA3 binding partners, including heat shock 70 kDa proteins 1 and 8, and ribosomal protein S2 (RPS2). RANBP2 protein was consistently up-regulated after CA3 overexpression, irrespective of the presence of CA3 surface-exposed cysteines and HaloTag orientation. These findings suggest that CA3 modulates key cellular processes beyond its enzymatic role, contributing to stress resilience through pathway-level regulation and protein interactions, potentially impacting autophagy and neurodegenerative disease. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

31 pages, 567 KB  
Review
From Skin to Brain: Key Genetic Mediators Associating Cutaneous Inflammation and Neurodegenerative Diseases
by Vasiliki-Sofia Grech, Kleomenis Lotsaris, Vassiliki Kefala and Efstathios Rallis
Genes 2025, 16(12), 1463; https://doi.org/10.3390/genes16121463 - 8 Dec 2025
Viewed by 1313
Abstract
Chronic inflammatory skin diseases and neurodegenerative disorders share overlapping genetic, immunologic, and metabolic pathways that may predispose individuals to cognitive decline. This review synthesizes current human genomic, transcriptomic, and bioinformatic evidence linking psoriasis, rosacea, atopic dermatitis, and bullous pemphigoid with Alzheimer’s and Parkinson’s [...] Read more.
Chronic inflammatory skin diseases and neurodegenerative disorders share overlapping genetic, immunologic, and metabolic pathways that may predispose individuals to cognitive decline. This review synthesizes current human genomic, transcriptomic, and bioinformatic evidence linking psoriasis, rosacea, atopic dermatitis, and bullous pemphigoid with Alzheimer’s and Parkinson’s disease. Literature from PubMed, IEEE Xplore, and Google Scholar was examined, prioritizing studies integrating genomic, transcriptomic, and proteomic analyses. Among inflammatory dermatoses, psoriasis exhibits the strongest overlap with dementia genetics, with shared susceptibility loci including APOE, IL12B, and HLA-DRB5, and transcriptional regulators such as ZNF384 that converge on IL-17/TNF signaling. Rare-variant and pleiotropy analyses further implicate SETD1A and BC070367 in psoriasis–Parkinson’s comorbidity. Rosacea demonstrates upregulation of neurodegeneration-related proteins SNCA, GSK3B, and HSPA8, together with shared regulatory hubs (PPARG, STAT4, RORA) driving NF-κB/IL-17/TNF-dependent inflammation. In atopic dermatitis, rare FLG variants interacting with BACE1 suggest a mechanistic bridge between barrier dysfunction and amyloidogenic processing. Bullous pemphigoid reveals an HLA-DQB1*03:01-mediated immunogenetic link hypothesis and cross-reactive autoantibodies targeting BP180 (collagen XVII) and BP230, highlighting an autoimmune route of neurocutaneous interaction. Other inflammatory and neurodegenerative diseases with currently weak or limited genetic evidence are also discussed, as they may represent emerging biological pathways or potential therapeutic targets within the skin–brain connection in the future. The aim of this work is to help clarify these genetic links and to advocate for the routine cognitive assessment of affected patients, enabling early detection, improved long-term quality of life, and the potential for timely therapeutic intervention. Full article
(This article belongs to the Special Issue Genetics and Treatment in Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 2457 KB  
Article
Marinesco–Sjögren Syndrome: A Novel SIL1 Variant with In Silico Analysis and Review of the Literature
by Elif Sibel Aslan, Sajjad Eslamkhah, Nermin Akcali, Cuneyd Yavas, Lutfiye Karcioglu Batur, Esma Sengenc and Adnan Yüksel
Life 2025, 15(12), 1855; https://doi.org/10.3390/life15121855 - 2 Dec 2025
Viewed by 508
Abstract
Marinesco–Sjögren syndrome (MSS) is a rare autosomal recessive disorder characterized by cerebellar ataxia, congenital cataracts, developmental delay, hypotonia, and progressive myopathy. Most reported cases are linked to pathogenic variants in SIL1, a gene encoding a co-chaperone essential for protein folding in the [...] Read more.
Marinesco–Sjögren syndrome (MSS) is a rare autosomal recessive disorder characterized by cerebellar ataxia, congenital cataracts, developmental delay, hypotonia, and progressive myopathy. Most reported cases are linked to pathogenic variants in SIL1, a gene encoding a co-chaperone essential for protein folding in the endoplasmic reticulum. Here, we present a comprehensive case study of a Turkish pediatric patient diagnosed with MSS, supported by genetic, bioinformatic, and structural modeling analyses. Whole-exome sequencing revealed a homozygous splice-site variant (SIL1 c.453+1G>T), confirmed by Sanger sequencing and segregation analysis. In silico annotation using Genomize, InterVar, Franklin, VarSome, ClinVar, OMIM, and PubMed classified the variant as pathogenic according to ACMG guidelines. Structural modeling by Phyre2 and I-TASSER demonstrated that the variant abolishes the intron 5 donor site, leading to truncation of the wild-type 461-amino-acid protein into a shortened ~189-amino-acid polypeptide. This truncation results in the loss of critical Armadillo (ARM) repeats required for HSPA5 interaction, explaining the observed instability and impaired chaperone function. Clinically, the patient presented with congenital cataracts, ataxia, developmental delay, and progressive muscle weakness, consistent with previously reported MSS cases. Comparison with the literature confirmed that splice-site variants frequently correlate with severe phenotypes, including early-onset ataxia and cataracts. This report highlights the importance of integrating genomic, structural, and clinical data to better understand genotype–phenotype correlations in MSS. Our findings expand the mutational spectrum of SIL1, reinforce the role of splicing defects in disease pathogenesis, and emphasize the necessity of comprehensive molecular diagnostics for rare neurogenetic syndromes. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

21 pages, 1456 KB  
Article
Surviving the Heat: Genetic Diversity and Adaptation in Sudanese Butana Cattle
by Guilherme B. Neumann, Paula Korkuć, Siham A. Rahmatalla, Monika Reißmann, Elhady A. M. Omer, Salma Elzaki and Gudrun A. Brockmann
Genes 2025, 16(12), 1429; https://doi.org/10.3390/genes16121429 - 30 Nov 2025
Viewed by 723
Abstract
Background: Butana are native Sudanese Bos indicus cattle that are well adapted to arid environments and valued for their relatively high milk performance and resilience under harsh conditions. Despite their adaptive advantages, Butana cattle face the risk of genetic erosion due to low [...] Read more.
Background: Butana are native Sudanese Bos indicus cattle that are well adapted to arid environments and valued for their relatively high milk performance and resilience under harsh conditions. Despite their adaptive advantages, Butana cattle face the risk of genetic erosion due to low production performance and the absence of structured breeding programs underscoring the urgent need to conserve their unique genetic potential for climate-resilient livestock development. Methods: In this study, we analyzed whole-genome sequencing data from 40 Butana cattle to assess their genetic diversity, population structure, signatures of selection, and potential pathogen load. Results: Butana cattle exhibited high nucleotide diversity and low levels of inbreeding, indicating a stable gene pool shaped by natural selection rather than by intensive breeding. Signatures of selection and functional variant analysis revealed candidate genes involved in heat stress adaptation (COL6A5, HSPA1L, TUBA8, XPOT), metabolic processes (G6PD, FAM3A, SLC10A3), and immune regulation (IKBKG, IRAK3, IL18RAP). Enrichment analyses and RoH island mapping consistently highlighted immune and thermoregulatory pathways as key selection targets, distinguishing Butana from both the geographically neighbored Kenana cattle and the specialized dairy cattle breed Holstein. Furthermore, metagenomic screening of unmapped reads detected the tick-borne parasite Theileria annulata and the opportunistic pathogen Burkholderia cenocepacia in all animals, underscoring the importance of integrating pathogen surveillance into genomic studies. Conclusions: Taken together, our findings highlight the distinct adaptive genomic profile of Butana cattle and reinforce their value in breeding programs aimed at improving climate resilience and disease resistance in livestock through the utilization of local breeds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3014 KB  
Article
Comprehensive Bioinformatics Analysis the circRNAs of Viral Infection Associated Pathway in HepG2 Expressing ORF3 of Genotype IV Swine Hepatitis E Virus
by Hanwei Jiao, Lingjie Wang, Chi Meng, Shengping Wu, Yubo Qi, Jianhua Guo, Jixiang Li, Liting Cao, Yu Zhao, Jake J. Wen and Fengyang Wang
Microorganisms 2025, 13(12), 2654; https://doi.org/10.3390/microorganisms13122654 - 22 Nov 2025
Viewed by 373
Abstract
The open reading frame 3 (ORF3) protein of the swine hepatitis E virus (SHEV) is a critical virulence factor implicated in viral infection, yet its precise mechanisms remain poorly understood. Circular RNAs (circRNAs) have emerged as key regulators of gene expression during viral [...] Read more.
The open reading frame 3 (ORF3) protein of the swine hepatitis E virus (SHEV) is a critical virulence factor implicated in viral infection, yet its precise mechanisms remain poorly understood. Circular RNAs (circRNAs) have emerged as key regulators of gene expression during viral infections by functioning as miRNA sponges. This study aimed to identify key circRNAs and construct a potential circRNA-miRNA-mRNA regulatory network associated with the viral infection pathway in HepG2 cells expressing genotype IV SHEV ORF3. Based on our previous high-throughput circRNA and transcriptome sequencing data from HepG2 cells with adenovirus-mediated ORF3 overexpression, we screened for differentially expressed circRNAs and mRNAs linked to viral infection pathways. Using bioinformatic tools, we predicted miRNAs targeted by these mRNAs and those that could bind to the circRNAs, ultimately constructing a competing endogenous RNA (ceRNA) network with Cytoscape. We identified 31 differentially expressed circRNAs and 7 mRNAs (HSPA8, HSPA1B, EGR2, CXCR4, SOCS3, NOTCH3, and ZNF527) related to viral infection. A potential ceRNA network comprising 32 circRNAs, 23 miRNAs, and the 7 mRNAs was constructed. Core circRNAs, including ciRNA203, circRNA14936, and circRNA5562, may act as miRNA sponges to regulate the expression of these mRNAs. This network suggests a novel mechanism by which SHEV ORF3 might modulate host cell functions to facilitate viral infection. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

20 pages, 2984 KB  
Article
Engineered Fenretinide- and Tocilizumab-Releasing Janus Nanoparticles for Site-Directed Immunochemoprevention of Squamous Cell Carcinoma of the Lung
by Daren Wang, Albert Chang, Fortune Shea, Yifei He, Richard Spinney, Jonathan D. Whitsett, Joerg Lahann and Susan R. Mallery
Pharmaceutics 2025, 17(11), 1471; https://doi.org/10.3390/pharmaceutics17111471 - 14 Nov 2025
Viewed by 694
Abstract
Background: Both clinical and research data support the contribution of IL6-mediated local immunosuppression coupled with IL6-initiated protumorigenic processes, e.g., sustained proliferation and angiogenesis in the development of many cancers, including lung cancer. By virtue of their pharmacologic advantage, controlled release, local delivery [...] Read more.
Background: Both clinical and research data support the contribution of IL6-mediated local immunosuppression coupled with IL6-initiated protumorigenic processes, e.g., sustained proliferation and angiogenesis in the development of many cancers, including lung cancer. By virtue of their pharmacologic advantage, controlled release, local delivery formulations can provide immunochemopreventive relevant agent levels at the target site with negligible systemic agent-related effects. Bioavailability is a major challenge with chemopreventive agents. Methods: Janus nanoparticles (JNPs), however, are a versatile drug delivery platform that addresses several major cancer preventive challenges including bioavailability and retention of bioactivity, with elimination of potential deleterious effects with systemic administration. Furthermore, JNPs feature two discrete compartments that enable concurrent delivery of two chemically distinct agents with complementary mechanisms of action. Results: Our data show that the synthetic vitamin A derivative, fenretinide (4HPR), and the IL6R inhibitor, tocilizumab (TCZ), inhibit pathways integral for the development of lung cancer. Initial molecular modeling and kinase activity assays confirmed that 4HPR serves as a competitive inhibitor for active-site ATP binding of two key IL6 downstream kinases (JAK1, CK2). Concurrent RNA-seq analyses that employed Qiagen Ingenuity Pathway Analysis showed significant inhibition of canonical pathways associated with DNA replication and division in conjunction with significant activation of immunogeneic cell death and TREM 1 signaling pathways and showed the immune-augmenting, cancer-preventive impact of 4HPR-TCZ treatment on gene expression in premalignant lung epithelial cells. Subsequent qRT-PCR analyses corroborated the RNA seq findings and demonstrated 3- to 6-fold increased expression of TREM 1 and immunogenic cell death genes, such as TREM1 and NLRC4 and HSPA6 and DDTT3, respectively. These data collectively guided the development of human serum albumin–chitosan JNPs for the co-delivery of 4HPR and TCZ, respectively. 4HPR-TCZ JNP characterization studies demonstrated high circularities and stability in suspension, as shown by consistency in diameter and minimal changes to the polydispersity index, while confocal microscopy confirmed their biocompartmental nature. Subsequent tertiary chemoprevention in vivo studies that employed a highly aggressive human lung cancer cell line showed that JNPs releasing 4HPR and 4HPR-TCZ significantly reduced tumor volume, as assessed by vital tumor tissue, suppressed proliferation, increased apoptosis, and promoted intratumor vascular instability. Conclusions: Collectively, these studies elucidate 4HPR-TCZ in vitro chemopreventive mechanisms of action and demonstrate proof of concept for JNP-4HPR-TCZ in vivo efficacy. Full article
Show Figures

Graphical abstract

24 pages, 4270 KB  
Article
HSPA5, a Host Cellular Heat-Shock Protein Required for Influenza a Virus Replication
by Mahamud-ur Rashid, Tamanna Yasmin and Kevin M. Coombs
Int. J. Mol. Sci. 2025, 26(22), 10998; https://doi.org/10.3390/ijms262210998 - 13 Nov 2025
Viewed by 716
Abstract
The Influenza A Virus (IAV) is known to hijack cellular proteins during its replication. IAV infection increases the expression of Heat-shock-protein family A (Hsp70) member 5 (HSPA5) in human cells, but its specific function in the viral life cycle remains unclear. This study [...] Read more.
The Influenza A Virus (IAV) is known to hijack cellular proteins during its replication. IAV infection increases the expression of Heat-shock-protein family A (Hsp70) member 5 (HSPA5) in human cells, but its specific function in the viral life cycle remains unclear. This study aims to elucidate the function of HSPA5 in IAV replication, by implementing HSPA5 knockdown (KD) in A549 cells and assessing its impact on IAV’s viral protein translation, genomic RNA transcription, and the host cellular proteome. HSPA5 KD significantly reduced progeny virus release, although viral RNA levels were unaffected. Interestingly, levels of viral structural proteins increased in HSPA5 KD cells after infection. Treatment with HSPA5 inhibitor also suppressed IAV replication, confirming its role as a host dependency factor. Proteomic profiling revealed 116 proteins altered in wild-type cells and 223 in HSPA5 KD cells, with 32 uniquely dysregulated in wild-type and 139 unique to HSPA5 KD cells. In HSPA5 knockdown cells, the altered proteins were linked to pathways such as EIF2, EGF, PEDF, CNTF, IL-13, and G-protein receptor signaling, as well as to cellular processes like lymphocyte activation and regulation of immune and blood cell death, which were not affected in wild-type cells after IAV infection. Overall, this study suggests that HSPA5 contributes to late stages of IAV replication, likely assembly or maturation, and represents a promising target for antiviral drug development. Full article
(This article belongs to the Special Issue Role of Proteomics in Human Diseases and Infections)
Show Figures

Figure 1

36 pages, 5976 KB  
Review
The Unfolded Protein Response—Novel Mechanisms, Challenges, and Key Considerations for Therapeutic Intervention
by P. M. Quan Mai, Tam-Anh Truong, Sai Kumar Samala, Bhoomika Muruvekere Lakshmisha, Prapannajeet Biswal, Khadijeh Koushki, Prudhvi Chand Mallepaddi, Geraldine Vijay and Sunil Krishnan
Cancers 2025, 17(22), 3639; https://doi.org/10.3390/cancers17223639 - 13 Nov 2025
Cited by 1 | Viewed by 2579
Abstract
Background: The unfolded protein response (UPR) is an evolutionarily conserved, synchronized, and orchestrated process triggered by eukaryotic cells in response to endoplasmic reticulum (ER) stress. UPR restores the ER’s capacity to handle large protein loads within it, and still fold and process these [...] Read more.
Background: The unfolded protein response (UPR) is an evolutionarily conserved, synchronized, and orchestrated process triggered by eukaryotic cells in response to endoplasmic reticulum (ER) stress. UPR restores the ER’s capacity to handle large protein loads within it, and still fold and process these proteins accurately. Many recent studies have documented the non-canonical roles of the UPR, outside of protein quality control, in the context of lipid metabolism and the immune system in cancer. Cancer cells have been known to hijack the UPR to promote survival and evade immune surveillance. However, the underlying mechanisms remain poorly understood. Objectives: Here, we critically summarize canonical and non-canonical UPR mechanisms in the contexts of tumor immune microenvironment and lipid metabolism, dissect their crosstalk with other cell fate signaling pathways within cancer, and propose therapeutic strategies to exploit this relationship. We also discuss the fundamental challenges of solely targeting UPR and emphasize the importance of patient stratification, biomarker development, and rational combination therapies to maximize the potential for therapeutic gain. We provide a deconvoluted mechanistic understanding of the UPR process in an attempt to spark prospective clinically relevant therapeutics research. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

24 pages, 7415 KB  
Systematic Review
Exploring the Impact of Nanotherapeutics on Histone H3 and H4 Acetylation Enrichment in Cancer Epigenome: A Systematic Scoping Synthesis
by Milad Shirvaliloo, Sepideh Khoee, Samideh Khoei, Roghayeh Sheervalilou, Parisa Mohammad Hosseini, Reza Afzalipour and Sakine Shirvalilou
Epigenomes 2025, 9(4), 44; https://doi.org/10.3390/epigenomes9040044 - 7 Nov 2025
Viewed by 1348
Abstract
Background/Objectives: Histone acetylation regulates gene expression and plays a key role in cancer pathophysiology. Nanotherapeutics are known to modulate histone acetylation and influence cancer progression. This systematic scoping review examines the effects of nanotherapeutics on histone acetylation enrichment across multiple cancers. Methods [...] Read more.
Background/Objectives: Histone acetylation regulates gene expression and plays a key role in cancer pathophysiology. Nanotherapeutics are known to modulate histone acetylation and influence cancer progression. This systematic scoping review examines the effects of nanotherapeutics on histone acetylation enrichment across multiple cancers. Methods: A systematic search of Embase, PubMed/MEDLINE, Scopus, and Web of Science was conducted in accordance with the PRISMA 2020 statement. A total of 13 studies were included. Data were analyzed and visualized in R, and risk of bias was assessed with ToxRTool (OSF Registration: 10.17605/OSF.IO/E643S). Results: Nanotherapeutics were most commonly evaluated against breast (21.4%), prostate (21.4%), pancreatic (14.3%), and bladder (14.3%) cancers. Primary nanomaterials used in the synthesis of nanotherapeutics included poly(lactic-co-glycolic acid) (25.0%), gold (21.4%) and arsenic oxide (21.4%) nanoparticles. Studied histone acetylation marks included H3K9ac, H3K14ac, H3K27ac and H4K16ac. Treatment with nanotherapeutics increased histone H3 and H4 acetylation enrichment, particularly H3K14ac in colorectal and prostate cancers and H4K16ac in ovarian cancer. Conversely, gold-based nanotherapeutics decreased H3K9ac and H3K14ac enrichment in breast cancer. The optimal concentration for most nanotherapeutics was ≤25 µM, with PpIX-FFYSV showing the strongest anticancer effect (viability <25%). Across four preclinical studies (n = 58), treatment with the nanotherapeutics reduced tumor size to less than 50% of control in 64% of animals (95% CI: 21–92%, I2 = 63.8%). Altered histone acetylation was associated with differential expression of CDKN1A, HSPA1, SREBF2 and TGFB. Conclusions: The evidence demonstrates that nanotherapeutics can alter histone acetylation patterns by modulating EP300/CBP, GCN5 and HDAC, preventing cancer progression and invasion. Full article
(This article belongs to the Special Issue Epigenetic Signatures in Metabolic Health and Cancer)
Show Figures

Graphical abstract

22 pages, 1061 KB  
Review
Heat Shock Proteins in Pancreatic Cancer: Pathogenic Mechanisms and Clinical Implications
by Jacek Kabut, Jakub Sokołowski, Wiktoria Żelazna, Mateusz Stępień, Marta Strauchman, Natalia Jaworska, Jakub Wnuk, Anita Gorzelak-Magiera, Łukasz Michalecki and Iwona Gisterek-Grocholska
Cells 2025, 14(20), 1627; https://doi.org/10.3390/cells14201627 - 18 Oct 2025
Viewed by 1239
Abstract
Heat shock proteins (HSPs) are highly conserved molecular chaperones that play a key role in maintaining protein homeostasis, or proteostasis, especially under stressful environmental conditions such as hyperthermia, hypoxia, or the presence of reactive oxygen species. In pancreatic cancer, the expression of many [...] Read more.
Heat shock proteins (HSPs) are highly conserved molecular chaperones that play a key role in maintaining protein homeostasis, or proteostasis, especially under stressful environmental conditions such as hyperthermia, hypoxia, or the presence of reactive oxygen species. In pancreatic cancer, the expression of many HSP isoforms is dysregulated, contributing to the activation of mechanisms that promote tumor development, including proliferation, invasion, angiogenesis, treatment resistance, and cancer cachexia syndrome. HSPs are significant diagnostic and prognostic biomarkers. Some of them, such as HSP27, HSP70, and HSP90, have been shown to correlate with treatment response and patient survival. Others, including HSPA2 and HSPB6, may indicate an increased risk of disease recurrence. These proteins also represent promising therapeutic targets. Preclinical and clinical studies suggest that inhibiting HSP activity and associated signaling pathways may inhibit tumor growth and increase treatment efficacy. These therapeutic effects include inducing apoptosis, autophagy, and ferroptosis, as well as sensitizing cancer cells to chemotherapy and immunotherapy. This article summarizes the current knowledge about the role of HSPs in pancreatic cancer biology, their significance as biomarkers, and their potential therapeutic applications in treating pancreatic ductal adenocarcinoma (PDAC). Most studies conducted so far have been preclinical, and due to the promising results, further clinical investigation is warranted. Full article
(This article belongs to the Special Issue Heat Shock Proteins and Human Cancers)
Show Figures

Figure 1

14 pages, 2863 KB  
Article
HSPA1A Can Alleviate CFA-Induced Inflammatory Pain by Modulating Macrophages
by Wenjie Zhang, Xiaojun Xie, Xiaomin Xiong and Feiyu Chen
Int. J. Mol. Sci. 2025, 26(19), 9591; https://doi.org/10.3390/ijms26199591 - 1 Oct 2025
Viewed by 904
Abstract
Current clinical approaches for managing inflammatory pain are frequently accompanied by adverse effects, significantly compromising patients’ quality of life. This study investigates the analgesic potential of Heat Shock Protein Family A Member 1A (HSPA1A) in alleviating Complete Freund’s Adjuvant (CFA)-induced inflammatory pain. The [...] Read more.
Current clinical approaches for managing inflammatory pain are frequently accompanied by adverse effects, significantly compromising patients’ quality of life. This study investigates the analgesic potential of Heat Shock Protein Family A Member 1A (HSPA1A) in alleviating Complete Freund’s Adjuvant (CFA)-induced inflammatory pain. The immunomodulatory mechanisms were elucidated through behavioral studies, flow cytometry, transcriptomics, proteomics, and cellular metabolic analyses. Findings indicate that HSPA1A mitigates CFA-induced mechanical allodynia, an effect independent of T or B lymphocytes and neutrophils but positively correlated with macrophage abundance. Transcriptomic RNA sequencing suggests involvement of inflammation-associated pathways. In vitro experiments demonstrate that HSPA1A suppresses the polarization of bone marrow-derived macrophages toward the pro-inflammatory M1 phenotype in an inflammatory model, with decreased mRNA expression of pro-inflammatory cytokines Interleukin-1β (Il1b) and Tumor Necrosis Factor (TNF). Macrophage metabolism undergoes reprogramming, characterized by reduced glycolysis and enhanced oxidative phosphorylation. Proteomic pathway analysis reveals suppression of pro-inflammatory and glycolytic proteins, coupled with upregulation of anti-inflammatory and tricarboxylic acid cycle-related proteins. In summary, HSPA1A likely exerts its analgesic effects by inhibiting glycolysis in macrophages, providing novel insights into inflammatory pain management and highlighting potential therapeutic targets for future clinical drug development with substantial translational potential. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop