Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = HOMA-B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 860 KB  
Article
Nutrition Patterns, Metabolic and Psychological State Among High-Weight Young Adults: A Network Approach
by Geovanny Genaro Reivan Ortiz, Roser Granero, Laura Maraver-Capdevila and Alejandra Aguirre-Quejada
Nutrients 2026, 18(1), 145; https://doi.org/10.3390/nu18010145 - 1 Jan 2026
Viewed by 440
Abstract
Background and Objectives: Studies suggest that overweight and obesity are major risk factors for various metabolic and psychological disorders, and that a better understanding of the interactions between these factors may lead to more effective intervention strategies. The main aim of this study [...] Read more.
Background and Objectives: Studies suggest that overweight and obesity are major risk factors for various metabolic and psychological disorders, and that a better understanding of the interactions between these factors may lead to more effective intervention strategies. The main aim of this study is to examine the structure of interrelationships among sociodemographic characteristics, nutritional patterns (NP), metabolic indicators, and psychopathological measures using network analysis in a sample of young university students with overweight and obesity, and to identify the most central variables and their empirical groupings. Methods: N = 188 overweight/obese young adults participated, university students, men and women, aged 18 to 25 years. Results: The variable with the highest centrality (relevance and connectivity capacity) was stress level, identified as the bridge node. Two other important features were an NP characterized by vitamin and mineral consumption, and the presence of arterial hypertension (HTN). Three clusters of nodes emerged, grouping: (a) insulin, glucose and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR index); (b) cholesterol and triacylglycerol; and (c) sociodemographic profile, psychological state, BMI and HTN. Conclusions: The results highlight stress levels as a central factor influencing the metabolic and mental health of overweight/obese young adults. Interventions aimed at reducing stress and improving nutrition patterns are crucial for improving the overall wellbeing of these individuals. Full article
(This article belongs to the Special Issue Featured Articles on Nutrition and Obesity Management (3rd Edition))
Show Figures

Figure 1

13 pages, 596 KB  
Brief Report
Expression of Serum and Exosomal microRNA-34a in Subjects with Increased Fat Mass
by Jacqueline Alejandra Noboa-Velástegui, Rodolfo Iván Valdez-Vega, Jorge Castro-Albarran, Perla Monserrat Madrigal-Ruiz, Ana Lilia Fletes-Rayas, Sandra Luz Ruiz-Quezada, Martha Eloisa Ramos-Márquez, José de Jesús López-Jiménez, Iñaki Álvarez and Rosa Elena Navarro-Hernández
Int. J. Mol. Sci. 2026, 27(1), 270; https://doi.org/10.3390/ijms27010270 - 26 Dec 2025
Viewed by 406
Abstract
Extracellular vesicles (EVs), particularly exosomes, are key mediators of intercellular communication, transporting biomolecules such as nucleic acids, lipids, and proteins that influence immune and metabolic pathways. In adipose tissue (AT), adipocyte-derived EVs (AdEVs) play a crucial role in maintaining metabolic homeostasis and have [...] Read more.
Extracellular vesicles (EVs), particularly exosomes, are key mediators of intercellular communication, transporting biomolecules such as nucleic acids, lipids, and proteins that influence immune and metabolic pathways. In adipose tissue (AT), adipocyte-derived EVs (AdEVs) play a crucial role in maintaining metabolic homeostasis and have been implicated in obesity-related dysfunction. Among their bioactive cargo, microRNAs regulate post-transcriptional gene expression and participate in immunometabolic regulation. This study aimed to determine whether miR-34a expression in serum and circulating EVs varies according to body fat percentage, to explore its potential utility as a non-invasive biomarker of AT dysfunction. A total of 142 adults (mean age 36 ± 11 years) were classified by body fat percentage (≥25% in men, ≥35% in women). Exosomes were isolated (Invitrogen®) and characterized by cryo-TEM, and miR-34a expression was quantified by qRT-PCR. miR-34a expression correlated negatively with Total Cholesterol, Triglycerides, LDLc/HDLc, TG/HDLc, BMI, C3, CRP, fasting insulin, HOMA-IR, HOMA-B, Body adiposity, Chemerin, CCL2, AdipoQT, and AdipoQ-H, but positively with HDLc and QUICKI. Notably, LDLc, sdLDLc, sdLDLc/LDLc, TC/HDLc, and fasting glucose showed opposite correlation patterns between serum and exosomes. Overall, serum miR-34a levels were higher than in exosomes, suggesting its potential as a biomarker of metabolic dysfunction and insulin resistance. Full article
Show Figures

Figure 1

15 pages, 1766 KB  
Systematic Review
The Effect of Semaglutide on Pancreatic β-Cell Function in Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis
by Omar Abusedera, Jana Sherif, Malak Smida and Salim Fredericks
J. Clin. Med. 2025, 14(24), 8734; https://doi.org/10.3390/jcm14248734 - 10 Dec 2025
Viewed by 1015
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) is characterized by progressive β-cell dysfunction and insulin resistance. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may enhance β-cell function. Semaglutide, a long-acting GLP-1 RA, improves glycemic control and weight, but its direct effects on β-cell function remain [...] Read more.
Background/Objectives: Type 2 diabetes mellitus (T2DM) is characterized by progressive β-cell dysfunction and insulin resistance. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may enhance β-cell function. Semaglutide, a long-acting GLP-1 RA, improves glycemic control and weight, but its direct effects on β-cell function remain uncertain. Methods: This systematic review and meta-analysis followed PRISMA guidelines and was registered in PROSPERO (CRD420251034071). PubMed, Embase, and Scopus were searched through April 2025 for randomized controlled trials evaluating semaglutide’s effects on β-cell function in adults with T2DM. Primary outcomes included HOMA-B, HOMA-IR, and the proinsulin/insulin ratio; secondary outcomes included insulin secretion rate, insulinogenic index, and C-peptide. Two reviewers independently performed data extraction and risk-of-bias assessment using the Cochrane RoB 1 tool. Random-effects models were used for pooling. Certainty of evidence was evaluated using GRADE. Results: Sixteen trials (n = 6591) met inclusion criteria, with nine included in the meta-analysis. Semaglutide improved β-cell function (HOMA-B log ratio of means 1.50, 95% confidence interval [CI]: 1.25–1.80) and reduced insulin resistance (HOMA-IR ratio 0.82, 95% CI: 0.73–0.94) compared with placebo or active comparators. The pooled treatment ratio for proinsulin/insulin was 0.70 (95% CI: 0.63–0.79). However, risk of bias was generally high due to open-label designs, and certainty of evidence for all primary outcomes was rated very low. Conclusions: Semaglutide appears to improve β-cell function and insulin sensitivity in adults with T2DM, but conclusions remain uncertain given the very low certainty of evidence and substantial heterogeneity. High-quality trials with standardized β-cell outcomes are needed to confirm these findings. Full article
(This article belongs to the Special Issue Clinical Advances in the Pharmacotherapy of Diabetes)
Show Figures

Figure 1

24 pages, 1605 KB  
Article
Beyond HOMA-IR: Comparative Evaluation of Insulin Resistance and Anthropometric Indices Across Prediabetes and Type 2 Diabetes Mellitus in Metabolic Syndrome Patients
by Mohamed-Zakaria Assani, Lidia Boldeanu, Anda Lorena Dijmărescu, Daniel Cosmin Caragea, Ionela Mihaela Vladu, Diana Clenciu, Adina Mitrea, Alexandra-Ștefania Stroe-Ionescu, Mariana-Emilia Caragea, Isabela Siloși and Mihail Virgil Boldeanu
Life 2025, 15(12), 1845; https://doi.org/10.3390/life15121845 - 30 Nov 2025
Cited by 1 | Viewed by 1699
Abstract
Insulin resistance is central in metabolic syndrome, but indices such as Homeostasis Model Assessment-estimated Insulin Resistance (HOMA-IR) require insulin assays that are costly and not always available. Non-insulin-based indices and refined anthropometric markers may offer simpler risk stratification in prediabetes and diabetes. Our [...] Read more.
Insulin resistance is central in metabolic syndrome, but indices such as Homeostasis Model Assessment-estimated Insulin Resistance (HOMA-IR) require insulin assays that are costly and not always available. Non-insulin-based indices and refined anthropometric markers may offer simpler risk stratification in prediabetes and diabetes. Our objective was to compare insulin and non-insulin-based indices of insulin resistance, together with advanced anthropometric and lipid markers, between prediabetes (PreDM) and type 2 diabetes (T2DM) and across hypertension grades in metabolic syndrome. We conducted a cross-sectional study in 200 adults with metabolic syndrome, 80 with PreDM and 120 with T2DM. Clinical, anthropometric and biochemical parameters were recorded, and HOMA-IR, Homeostasis Model Assessment of Beta-cell function (HOMA%B), Metabolic Score for Insulin Resistance (METS-IR), triglyceride to glucose index (TyG), triglyceride-to-glucose index to high-density lipoprotein cholesterol ratio (TyG/HDL-c) and other derived indices were calculated. Group comparisons, correlations and multiple linear regression were performed. Compared with PreDM, T2DM showed higher glycemic indices and inflammation, but similar body mass index (BMI) and triglycerides. Across glycemic categories and hypertension grades, METS-IR, TyG and TyG/HDL-c increased and correlated strongly with body roundness index (BRI), abdominal volume index (AVI) and weight-adjusted waist index (WWI), while HOMA-IR contributed little independent information. In regression models, lipid adipose product (LAP) and WWI best explained METS-IR in prediabetes, whereas TyG and BRI were the main determinants of METS-IR in diabetes. In metabolic syndrome with PreDM or T2DM, METS-IR and TyG, particularly combined with BRI, AVI and WWI, outperformed traditional lipid ratios and added value beyond HOMA-IR. These composite indices appear useful for insulin resistance assessment when insulin measurement is unavailable or unreliable. Full article
(This article belongs to the Special Issue Endocrinology and Metabolic Syndrome: Epidemiology)
Show Figures

Figure 1

24 pages, 2429 KB  
Article
Protective Role of Ginsenoside F1-Enriched Extract (SGB121) in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD)
by Bo Yoon Chang, In Kim, Hyungmin Park, Sunchang Kim and Sung Yeon Kim
Nutrients 2025, 17(23), 3693; https://doi.org/10.3390/nu17233693 - 25 Nov 2025
Viewed by 751
Abstract
Introduction/Objectives: Ginsenoside F1, a pharmacologically active saponin derived from Panax ginseng, exhibits diverse bioactivities, but its use is limited because it is difficult to purify and has high production costs. To overcome these challenges, a ginsenoside F1-enriched extract named SGB121 was developed. [...] Read more.
Introduction/Objectives: Ginsenoside F1, a pharmacologically active saponin derived from Panax ginseng, exhibits diverse bioactivities, but its use is limited because it is difficult to purify and has high production costs. To overcome these challenges, a ginsenoside F1-enriched extract named SGB121 was developed. This study aimed to evaluate the therapeutic efficacy of SGB121 in a high-fat, high-carbohydrate (HFHC) diet-induced metabolic dysfunction-associated fatty liver disease (MAFLD) mouse model and to elucidate its mechanism of action using F1-based cellular assays. Methods: Male C57BL/6 mice (6 weeks old) were fed an HFHC diet to induce MAFLD and were treated with SGB121. Hepatic lipid accumulation, oxidative stress markers, and metabolic parameters were analyzed. In parallel, human hepatocellular carcinoma (HepG2) cells exposed to free fatty acids (FFAs) were used to assess oxidative stress and lipid accumulation. Mechanistic studies were conducted using purified F1 to examine adenosine monophosphate-activated protein kinase (AMPK) activation and related pathways. Results: SGB121 reduced hepatic lipid accumulation, malondialdehyde (MDA) levels, and fasting insulin while restoring glutathione (GSH) content and improving the homeostasis model assessment of insulin resistance (HOMA-IR) in MAFLD mice. In FFA-treated HepG2 cells, both SGB121 and F1 decreased reactive oxygen species (ROS), suppressed sterol regulatory element-binding protein 1 (SREBP1), enhanced peroxisome proliferator-activated receptor-α (PPARα) and β-oxidation, and restored insulin receptor substrate (IRS)/protein kinase B (Akt)/glucose transporter 2 (GLUT2) signaling. Conclusions: SGB121 ameliorates MAFLD and related metabolic dysfunction through antioxidant, lipid-regulating, and insulin-sensitizing actions, highlighting its potential as a safe multifunctional nutraceutical for MAFLD management. Full article
Show Figures

Graphical abstract

21 pages, 2323 KB  
Article
Effects of Asparagus Powder Supplementation on Glycemic Control, Lipid Profile, and Oxidative Stress in Overweight and Obese Adults: An Exploratory Randomized Controlled Trial
by Jittima Mongraykang, Tadsawiya Padkao, Orachorn Boonla, Yothin Teethaisong, Thapanee Roengrit, Sukrisd Koowattanatianchai and Piyapong Prasertsri
Life 2025, 15(10), 1584; https://doi.org/10.3390/life15101584 - 10 Oct 2025
Cited by 1 | Viewed by 1560
Abstract
This study investigated the effects of asparagus powder supplementation on blood glucose regulation, insulin, lipid profile, and oxidative stress in overweight and obese individuals. Forty-four adults aged 18–59 years participated in a 12-week randomized controlled trial and were randomly assigned to receive either [...] Read more.
This study investigated the effects of asparagus powder supplementation on blood glucose regulation, insulin, lipid profile, and oxidative stress in overweight and obese individuals. Forty-four adults aged 18–59 years participated in a 12-week randomized controlled trial and were randomly assigned to receive either asparagus powder (40 mg/kg/day) or a placebo (maltodextrin, 40 mg/kg/day). Assessments included an oral glucose tolerance test (OGTT), fasting blood glucose (FBG), insulin, homeostasis model assessment of insulin resistance (HOMA-IR) and β-cell function (HOMA-B), lipid profile, and oxidative stress markers (malondialdehyde [MDA], protein carbonyl, and superoxide dismutase [SOD]). In the asparagus group, OGTT at 30 min and low-density lipoprotein cholesterol (LDL-C) significantly decreased, while SOD activity significantly increased (all p < 0.05). In contrast, the placebo group showed significant increases in OGTT at 30 min, insulin, HOMA-IR, HOMA-B, triglycerides (TG), the TG/high-density lipoprotein cholesterol (HDL-C) ratio, and the total cholesterol (TC)/HDL-C ratio (all p < 0.05). Between-group comparisons indicated that FBG, area under the BG curve at 30–120 min, TG, TG/HDL-C, and MDA levels were significantly lower in the asparagus group than in the placebo group (all p < 0.05), whereas OGTT, LDL-C, SOD activity, insulin, HOMA-IR, HOMA-B, and TC/HDL-C did not differ significantly. Other indices, including TC, HDL-C, and protein carbonyl, showed no significant within- or between-group differences. In conclusion, 12 weeks of asparagus powder supplementation partially improved glycemic control, lipid profile, and oxidative stress in overweight and obese individuals. These findings suggest a potential role of asparagus as a complementary nutritional strategy to reduce the risk of diabetes and cardiovascular disease in this population. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Chronic Diseases)
Show Figures

Figure 1

17 pages, 1488 KB  
Communication
Significant Association Between Abundance of Gut Microbiota and Plasma Levels of microRNAs in Individuals with Metabolic Syndrome and Their Potential as Biomarkers for Metabolic Syndrome: A Pilot Study
by Sanghoo Lee, Jeonghoon Hong, Yiseul Kim, Hee-Ji Choi, Jinhee Park, Jihye Yun, Yun-Tae Kim, Kyeonghwan Choi, SaeYun Baik, Mi-Kyeong Lee and Kyoung-Ryul Lee
Genes 2025, 16(10), 1161; https://doi.org/10.3390/genes16101161 - 30 Sep 2025
Viewed by 656
Abstract
Background/Objectives: The relationship between gut microbiota (GM) and microRNAs (miRs) related to lipid metabolism in individuals with metabolic syndrome (MetS) remains unclear. This pilot study examined the relationship between Bacteroidetes and Firmicutes abundance at the phylum level and the plasma levels of miR-122 [...] Read more.
Background/Objectives: The relationship between gut microbiota (GM) and microRNAs (miRs) related to lipid metabolism in individuals with metabolic syndrome (MetS) remains unclear. This pilot study examined the relationship between Bacteroidetes and Firmicutes abundance at the phylum level and the plasma levels of miR-122 and miR-370, both of which are associated with lipid metabolism, in Korean individuals with MetS and in healthy controls. We also evaluated the potential of these miRs as biomarkers for MetS. Methods: This study enrolled 7 individuals with MetS and 8 controls. The abundance of GM was analyzed by 16S rRNA amplicon sequencing. To evaluate the relationship between the dominant phyla in the 2 groups, the log ratio of Firmicutes to Bacteroidetes (F/B) was calculated using a centered log-ratio (CLR) transformation. The abundance of the 2 plasma miRs was also quantified by real-time quantitative PCR (RT-qPCR). Pearson’s and Spearman’s correlation analyses were then performed to evaluate the relationship between Bacteroidetes and Firmicutes abundance, the clinical parameters, and plasma levels of the 2 miRs. Additionally, the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was calculated to evaluate the potential of the 2 miRs as MetS biomarkers. Results: The 2 most abundant phyla were Bacteroidetes and Firmicutes. Bacteroidetes made up an average of 24.7% in the MetS group and 69.7% in the control group. Meanwhile, the average abundance of Firmicutes was 69.8% in the MetS group and 26.5% in the control group. The log F/B ratios in the MetS and control groups were 0.7 ± 0.5 and −0.4 ± 0.1 (p < 0.001), respectively. FDR analysis revealed significant correlations between Bacteroidetes abundance and BMI, DBP, FBG, total chol, insulin and HOMA-IR (FDR-adjusted p < 0.05), as well as between Firmicutes abundance and BMI, FBG, total chol, insulin and HOMA-IR (FDR-adjusted p < 0.05). Plasma levels of the 2 miRs differed significantly between the MetS and control groups: miR-122 (1.43 vs. 0.73; p = 0.0065) and miR-370 (1.39 vs. 0.83; p = 0.0089). The AUC values for miR-122 and miR-370 were 0.946 (p < 0.001) and 0.964 (p < 0.001), respectively. Pearson’s and Spearman’s correlation analyses revealed significant negative correlations between Bacteroidetes abundance and levels of miR-122 (p = 0.0048 and p = 0.0045, respectively) and miR-370 (p = 0.0003 and p < 0.0001, respectively), as well as significant positive correlations between Firmicutes abundance and levels of miR-122 (p = 0.0038 and p = 0.0027, respectively) and miR-370 (p = 0.0004 and p < 0.0001, respectively). However, as our exploratory findings were based on a small sample size, the high correlation results may partly reflect the separation between the MetS and control groups. Conclusions: Our exploratory findings suggest that the GM abundances of individuals with MetS may be significantly associated with plasma levels of miR-122 and miR-370, which are related to lipid metabolism. These miRs may therefore serve as potential MetS biomarkers. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

15 pages, 746 KB  
Article
Exploring Genetic Heterogeneity in Type 2 Diabetes Subtypes
by Yanina Timasheva, Olga Kochetova, Zhanna Balkhiyarova, Diana Avzaletdinova, Gulnaz Korytina, Tatiana Kochetova and Arie Nouwen
Genes 2025, 16(10), 1131; https://doi.org/10.3390/genes16101131 - 25 Sep 2025
Viewed by 1212
Abstract
Background/Objectives: Type 2 diabetes (T2D) is a clinically and genetically heterogeneous disease. In this study, we aimed to stratify patients with T2D from the Volga-Ural region of Eurasia into distinct subgroups based on clinical characteristics and to investigate the genetic underpinnings of [...] Read more.
Background/Objectives: Type 2 diabetes (T2D) is a clinically and genetically heterogeneous disease. In this study, we aimed to stratify patients with T2D from the Volga-Ural region of Eurasia into distinct subgroups based on clinical characteristics and to investigate the genetic underpinnings of these clusters. Methods: A total of 254 Tatar individuals with T2D and 361 ethnically matched controls were recruited. Clinical clustering was performed using k-means and hierarchical algorithms on five variables: age at diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), insulin resistance (HOMA-IR), and β-cell function (HOMA-B). Genetic association analysis was conducted using logistic regression under an additive model, adjusted for age and sex, and corrected for multiple comparisons using the Benjamini–Hochberg method. Results: Four distinct T2D subtypes were identified—mild age-related diabetes (MARD, n = 25), mild obesity-related diabetes (MOD, n = 72), severe insulin-resistant diabetes (SIRD, n = 66), and severe insulin-deficient diabetes (SIDD, n = 52)—each with unique clinical and comorbidity profiles. SIDD patients exhibited the highest burden of microvascular complications and lowest estimated glomerular filtration rate. Nine genetic variants showed significant associations with T2D and/or specific subtypes, including loci in genes related to neurotransmission (e.g., HTR1B, CHRM5), appetite regulation (NPY2R), insulin signaling (TCF7L2, PTEN), and other metabolic pathways. Some variants demonstrated subtype-specific associations, underscoring the genetic heterogeneity of T2D. Conclusions: Our findings support the utility of clinical clustering in uncovering biologically and clinically meaningful T2D subtypes and reveal genetic variants that may contribute to this heterogeneity. These insights may inform future precision medicine approaches for T2D diagnosis and management. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 3497 KB  
Article
Substituent Effect in Histamine and Its Impact on Interactions with the G Protein-Coupled Human Receptor H1 Modelled by Quantum-Chemical Methods
by Anna Jezuita, Małgorzata Makowska-Janusik, Krzysztof Ejsmont and Wojciech Marczak
Molecules 2025, 30(18), 3736; https://doi.org/10.3390/molecules30183736 - 15 Sep 2025
Cited by 1 | Viewed by 1051
Abstract
Neutral and protonated histamine tautomers, mono-substituted with twelve functional groups, were studied theoretically as isolated molecules and complexes with the H1 receptor. Geometry and energy of tautomers were optimized using the DFT method with the B3LYP functional and the aug-cc-pVTZ basis set. [...] Read more.
Neutral and protonated histamine tautomers, mono-substituted with twelve functional groups, were studied theoretically as isolated molecules and complexes with the H1 receptor. Geometry and energy of tautomers were optimized using the DFT method with the B3LYP functional and the aug-cc-pVTZ basis set. The approach was based on the charge of the substituent active region (cSAR) parameters and the Harmonic Oscillator Model of Aromaticity (HOMA) indices. The cSAR parameters characterized the electron density better than the conventional Hammett’s constants σ. In general, the cSAR parameters correlate with other characteristics of the charge distribution, particularly those for substituents at the carbon atom in the ring adjacent to the side chain. Substituents at this atom affected the aromaticity less strongly than those located between two nitrogen atoms, which confirmed recent reports. Our results suggest that the 3H tautomer isomerizes into the 1H one after binding to the H1 receptor. Moreover, the electron structure of the molecule hydrogen-bonded to the receptor may significantly depend on the electron donor-acceptor properties of the substituent. The strong electron-accepting substituents, e.g., NO2, favor the imidazole configuration of the ring in the bonded molecule, while the strong electron-donating ones, e.g., NH2, promote the imidazolium one. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

25 pages, 3309 KB  
Article
Protective Effect of Marjoram Against Letrozole-Induced Ovarian Damage in Rats with Polycystic Ovarian Syndrome Entails Activation of Nrf2 and Suppression of NF-κB
by Laila Naif Al-Harbi, Sahar Abdulaziz ALSedairy, Ghedeir M. Alshammari, Manal Abdulaziz Binobead and Shaista Arzoo
Pharmaceuticals 2025, 18(9), 1291; https://doi.org/10.3390/ph18091291 - 28 Aug 2025
Cited by 1 | Viewed by 2631
Abstract
Objectives: This study aimed to evaluate marjoram’s ameliorative effects in a letrozole-induced PCOS rat model and to explore its mechanism of action, focusing on Nrf2 activation and NF-κB suppression in ovarian tissue. Methods: In this study, PCOS was induced by the [...] Read more.
Objectives: This study aimed to evaluate marjoram’s ameliorative effects in a letrozole-induced PCOS rat model and to explore its mechanism of action, focusing on Nrf2 activation and NF-κB suppression in ovarian tissue. Methods: In this study, PCOS was induced by the oral administration of letrozole (1 mg/kg/day) for 21 days. Rats were then divided into six groups: control (0.5% CMC), letrozole, letrozole + metformin (2 mg/100 g), and letrozole + MRJ extract (20, 40, or 60 mg/kg). All groups received oral treatment for 21 days. Biochemical analysis was performed using serum and plasma; while ovarian tissue homogenate was used for antioxidant enzymes and inflammatory and apoptosis biomarkers. Results: The letrozole-treated animals exhibited significant increases in final body weights, as well as ovary length and weight. In terms of biochemical parameters, there were significant increases in fasting blood glucose and insulin, HOMA-IR, and serum levels of cholesterol, triglycerides (TGs), and LDL-c and a decrease in HDL levels. Concerning the hormonal profile, testosterone and LH levels were significantly elevated while a notable decrease in FSH and estradiol levels was observed. Similarly, letrozole-treated rats showed significantly elevated levels of MDA and many other inflammatory mediators such as IL-6, TNF-α, and ICAM-1. A significant increase in the markers of intrinsic cell apoptosis, such as Bax and caspase-3, and the reduced levels of Bcl-2 and antioxidant mediators, including GSH, SOD, and HO-1, as well as mRNA and nuclear expression of Nrf2, compared to control rats, have been reported. The ovaries of the rats with PCOS treated with metformin and MRJ (60 mg/kg) showed the most significant improvements. Similarly, TEM also demonstrated a dose-dependent ameliorating effect. Conclusions: The current study highlights marjoram’s protective effect against letrozole-induced ovarian damage in rats with polycystic ovarian syndrome, suggesting its potential as a complementary and therapeutic agent for managing PCOS. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Graphical abstract

17 pages, 1080 KB  
Article
Combined Effects of Exercise and Broccoli Supplementation on Metabolic and Lipoprotein Biomarkers in Adults with Type 2 Diabetes: A Randomized Controlled Trial
by Maryam Delfan, Masoumeh Gharedaghi, Farzaneh Zeynali, Rawad El Hage, Anthony C. Hackney, Halil İbrahim Ceylan, Ayoub Saeidi, Ismail Laher, Nicola Luigi Bragazzi and Hassane Zouhal
Nutrients 2025, 17(17), 2735; https://doi.org/10.3390/nu17172735 - 23 Aug 2025
Viewed by 2786
Abstract
Aim: To investigate the synergistic effects of exercise training and Brassica oleracea var. italica (broccoli sprout) supplementation on Apolipoprotein A-I, B-100, and J levels in men with Type 2 diabetes mellitus (T2DM). Methods: Forty-four males with T2DM were randomly assigned to four groups: [...] Read more.
Aim: To investigate the synergistic effects of exercise training and Brassica oleracea var. italica (broccoli sprout) supplementation on Apolipoprotein A-I, B-100, and J levels in men with Type 2 diabetes mellitus (T2DM). Methods: Forty-four males with T2DM were randomly assigned to four groups: Control (CG), Supplement (SG), Training (TG), and Training + Supplement (TSG) groups. Participants in the supplement groups (SG and TSG) received 10 g of broccoli supplement after meals for 12 weeks, while those in the training groups (TG and TSG) participated in a structured exercise program (resistance and aerobic), performed three times per week for 12 weeks, at intensities of 60–70% one-repetition maximum (1RM) for resistance training and 60–70% peak oxygen uptake (VO2peak) for aerobic training. Results: Circulating levels of apolipoproteins improved after 12 weeks in the TSG, TG, and SG groups. However, the TSG group exhibited the most pronounced improvements across metabolic and lipoprotein markers, reflecting an additive effect of both interventions. Specifically, the TSG group demonstrated absolute reductions in ApoB-100 (−48.30 ± 7.20 mg/dL) and ApoJ (−44.05 ± 5.76 mg/dL), along with an increase in ApoA-I (+44.92 ± 6.05 mg/dL). Main effect analysis revealed that exercise training elicited the most substantial improvements across metabolic and lipoprotein markers, with large effect sizes for glucose (η2p = 0.787), insulin (η2p = 0.640), HOMA-IR (η2p = 0.856), ApoA-I (η2p = 0.685), ApoB-100 (η2p = 0.774), ApoJ (η2p = 0.848), and HDL-C (η2p = 0.535). Supplementation showed moderate effects, particularly on HOMA-IR (η2p = 0.370), ApoA-I (η2p = 0.383), and ApoB-100 (η2p = 0.334), supporting an additive but exercise-dominant benefit. The combined intervention group (TSG) showed the most pronounced improvements across all measured outcomes, with large effect sizes for ApoA-I (η2p = 0.883), glucose (η2p = 0.946), insulin (η2p = 0.881), HOMA-IR (η2p = 0.904), and ApoJ (η2p = 0.852). Conclusions: The effects of combining training and broccoli sprout supplementation on apolipoprotein levels are likely to result from the activation of two separate pathways, one from training and the other from supplementation. This dual-modality intervention could serve as an effective complementary strategy in managing metabolic and cardiovascular risk factors for individuals with T2DM. However, the magnitude of change induced by the combination of exercise training and broccoli supplementation was largely driven by the training component, with supplementation providing complementary but less consistent benefits. Full article
Show Figures

Figure 1

15 pages, 2372 KB  
Article
Geniposide Mitigates Insulin Resistance and Hepatic Fibrosis via Insulin Signaling Pathway
by Seung-Hyun Oh, Min-Seong Lee and Byung-Cheol Lee
Int. J. Mol. Sci. 2025, 26(16), 8079; https://doi.org/10.3390/ijms26168079 - 21 Aug 2025
Cited by 2 | Viewed by 1640
Abstract
Insulin resistance is a key driver of metabolic disorders, including type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), progressing to non-alcoholic steatohepatitis (NASH). This study investigated the effects of geniposide (GP) on insulin sensitivity and hepatic fibrosis in a high-fat diet (HFD)-induced [...] Read more.
Insulin resistance is a key driver of metabolic disorders, including type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), progressing to non-alcoholic steatohepatitis (NASH). This study investigated the effects of geniposide (GP) on insulin sensitivity and hepatic fibrosis in a high-fat diet (HFD)-induced NASH model. C57BL/6 mice were fed an HFD for five weeks and subsequently divided into normal chow (NC), HFD, HFD with GP 50 mg/kg (GP50), and HFD with GP 100 mg/kg (GP100) groups. The treatments were administered orally for 12 weeks. GP treatment significantly reduced body weight as well as epididymal fat and liver weights, while no differences were observed in food intake. Improvements in glucose and lipid metabolism were observed in oral glucose tolerance tests, homeostatic model assessment of insulin resistance (HOMA-IR), and blood lipid profiles. Histological analyses revealed that GP suppressed adipocyte hypertrophy and hepatic lipid accumulation and hepatic fibrosis. To further elucidate molecular mechanisms of GP, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted in the liver tissue. GP downregulated expression of inflammatory markers, including F4/80, tumor necrosis factor (TNF)-α, and interleukin (IL)-6. GP treatment modulated genes involved in insulin signaling including Janus kinase 2 (JAK2), insulin receptor (INSR), insulin receptor substrate 2 (IRS-2), and protein kinase B (AKT1) gene expression levels. This suggests GP suppresses inflammation and mitigates insulin resistance by activating the INSR–IRS2–Akt pathway. Additionally, GP enhanced adenosine monophosphate-activated protein kinase (AMPK) expression, suggesting its potential role in improving glucose and lipid metabolism. In conclusion, GP improves insulin resistance, inflammation, and hepatic fibrosis, highlighting its therapeutic potential for NASH and related metabolic disorders. Full article
Show Figures

Figure 1

17 pages, 1709 KB  
Article
Interplays of ADH1B Genotype, Alcohol Consumption, and Gut Microbiota in Relation to Insulin Resistance
by Brian Wang, Brandilyn A. Peters-Samuelson, Kai Luo, Christina Cordero, Krista M. Perreira, Amber Pirzada, Martha L. Daviglus, Yang Li, Robert C. Kaplan, Robert D. Burk and Qibin Qi
Nutrients 2025, 17(16), 2669; https://doi.org/10.3390/nu17162669 - 18 Aug 2025
Viewed by 2037
Abstract
Background/Objective: Alcohol consumption has been linked to alterations in gut microbiota and insulin resistance. The alcohol dehydrogenase 1B (ADH1B) gene plays a crucial role in alcohol catabolism, where rs1229984 variant carriers (CT/TT) catabolize ethanol at an 80-fold faster rate than non-carriers (CC). This [...] Read more.
Background/Objective: Alcohol consumption has been linked to alterations in gut microbiota and insulin resistance. The alcohol dehydrogenase 1B (ADH1B) gene plays a crucial role in alcohol catabolism, where rs1229984 variant carriers (CT/TT) catabolize ethanol at an 80-fold faster rate than non-carriers (CC). This study investigates the relationships between ADH1B gene rs1229984 mutation, alcohol consumption, gut microbiota, and insulin resistance. Methods: We performed cross-sectional analysis on fecal metagenomic sequencing data from diabetes-free participants in a longitudinal cohort of the Hispanic Community Health Study/Study of Latinos. We used Analysis of Composition of Microbiomes to identify gut microbial species associated with alcohol consumption in non-carriers (n = 1399) and carriers (n = 193). We constructed genotype-specific gut microbiome scores (GMSs) based on the identified species associated with alcohol consumption to examine how gut microbiota may influence the relationship between alcohol consumption and insulin resistance across ADH1B genotypes. Insulin resistance was defined as Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) > 2.5. Results: Distinct microbial species associated with alcohol consumption were identified in non-carriers (54 species) and carriers (16 species). In non-carriers, the genotype-specific GMS modified the relationship between alcohol consumption and insulin resistance (Pinteraction = 0.011). The odds ratios (OR) for insulin resistance with increasing alcohol consumption levels across low, moderate, and high tertiles of GMS were 0.75 (95%CI 0.58–0.96), 0.82 (0.67–1), and 1.13 (0.93–1.39), respectively. We identified that individual alcohol-related species, such as Prevotella copri, Ruminococcus callidus, and Erysipelatoclostridium ramosum, modified the relationship between alcohol consumption and insulin resistance in non-carriers. Conclusions: This study suggests that the ADH1B gene rs1229984 mutation is associated with gut microbiota profiles altered by alcohol consumption. Our findings also suggest a potential role of gut microbiota in the protective association between alcohol consumption and insulin resistance in the ADH1B variant non-carriers. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

14 pages, 279 KB  
Article
FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome
by Maciej Migacz, Dagmara Pluta, Kamil Barański, Anna Kujszczyk, Marta Kochanowicz and Michał Holecki
Biomedicines 2025, 13(8), 1878; https://doi.org/10.3390/biomedicines13081878 - 1 Aug 2025
Viewed by 1110
Abstract
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an [...] Read more.
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an association between PCOS and MASLD. This study was designed to compare the FIB-4 score (based on age, alanine aminotransferase, aspartate aminotransferase and platelet count) and the results of shear wave elastography in assessing the risk of developing MASLD by patients with PCOS divided by phenotypes. Methods: The study enrolled 242 women age 18–35 years with PCOS diagnosed according to Rotterdam criteria, hospitalized at the Department of Gynaecological Endocrinology of the University Clinical Centre in Katowice. The study subjects were assigned to phenotypes A to D. Clinical and biochemical assessments were performed (including androgens and metabolic parameters), and the FIB-4 index was calculated. Liver fibrosis was evaluated by shear wave elastography. To balance the group sizes of phenotypes, oversampling with replacement was applied (PROC SURVEYSELECT, SAS), increasing the number of observations for phenotypes B, C, and D fivefold. Statistical analyses were performed based on data distribution (Shapiro–Wilk test), using ANOVA or the Kruskal–Wallis test with Dunn’s correction. Statistical significance was set at p < 0.05. Results: The FIB-4 score was the highest in phenotype B patients (0.50 ± 0.15), and the lowest in phenotypes A and C (0.42 ± 0.14). The highest rate of positive elastography findings was recorded in phenotype A patients (34.7%) and the lowest in phenotype C group (13.5%). Significant differences between the phenotypes were also found in terms of androgen levels, insulin, HOMA-IR, and the lipid profile. Among patients with positive elastography, the highest FIB-4 scores were recorded in phenotype C group (0.44 ± 0.06), but the differences between the phenotypes were not statistically significant. Conclusions: The FIB-4 score was the highest in phenotype B patients and differed significantly from phenotypes A, C and D. In the elastography exam, the fibrosis index was statistically significantly higher in phenotype A compared to other phenotypes. No correlation was detected between the FIB-4 index and positive elastography. The findings suggest that the FIB-4 index may be used for MASLD screening, but its usefulness as a predictor of eligibility for elastography requires more research. Full article
12 pages, 1302 KB  
Article
Exploring the Relationship Between Insulin Resistance, Liver Health, and Restrictive Lung Diseases in Type 2 Diabetes
by Mani Roshan, Christian Mudrack, Alba Sulaj, Ekaterina von Rauchhaupt, Thomas Fleming, Lukas Schimpfle, Lukas Seebauer, Viktoria Flegka, Valter D. Longo, Elisabeth Kliemank, Stephan Herzig, Anna Hohneck, Zoltan Kender, Julia Szendroedi and Stefan Kopf
J. Pers. Med. 2025, 15(8), 340; https://doi.org/10.3390/jpm15080340 - 1 Aug 2025
Cited by 1 | Viewed by 1213
Abstract
Background: Restrictive lung disease (RLD) is a potential complication in type 2 diabetes (T2D), but its relationship with insulin resistance and liver-related metabolic dysfunction remains unclear. This study evaluated the association between lung function and metabolic markers in T2D and retrospectively assessed [...] Read more.
Background: Restrictive lung disease (RLD) is a potential complication in type 2 diabetes (T2D), but its relationship with insulin resistance and liver-related metabolic dysfunction remains unclear. This study evaluated the association between lung function and metabolic markers in T2D and retrospectively assessed whether metabolic improvements from dietary intervention were accompanied by changes in lung function. Methods: This cross-sectional analysis included 184 individuals (101 with T2D, 33 with prediabetes, and 50 glucose-tolerant individuals). Lung function parameters—vital capacity (VC), total lung capacity by plethysmography (TLC-B), and diffusion capacity for carbon monoxide (TLCO)—were assessed alongside metabolic markers including HOMA2-IR, fatty liver index (FLI), NAFLD score, and Fibrosis-4 index (FIB-4). In a subset of 54 T2D participants, lung function was reassessed after six months following either a fasting-mimicking diet (FMD, n = 14), Mediterranean diet (n = 13), or no dietary intervention (n = 27). Results: T2D participants had significantly lower VC and TLC-B compared to glucose-tolerant and prediabetic individuals, with 18–21% falling below clinical thresholds for RLD. Lung volumes were negatively correlated with HOMA2-IR, FLI, NAFLD score, and FIB-4 across the cohort and within the T2D group. Although the FMD intervention led to significant improvements in HOMA2-IR and FLI, no corresponding changes in lung function were observed over the six-month period. Conclusions: Restrictive lung impairment in T2D is associated with insulin resistance and markers of liver steatosis and fibrosis. While short-term dietary interventions can improve metabolic parameters, their effect on lung function may require a longer duration or additional interventions and targeted follow-up. These findings highlight the relevance of pulmonary assessment in individuals with metabolic dysfunction. Full article
Show Figures

Figure 1

Back to TopTop