Exploring Genetic Heterogeneity in Type 2 Diabetes Subtypes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Clinical Measurements
2.3. Genotyping
2.4. Clustering Analysis
2.5. Association Analysis
3. Results
3.1. Clustering Analysis Results
3.2. Association Analysis Results
4. Discussion
Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahlqvist, E.; Prasad, R.B.; Groop, L. Subtypes of Type 2 Diabetes Determined from Clinical Parameters. Diabetes 2020, 69, 2086–2093. [Google Scholar] [CrossRef]
- Zaharia, O.P.; Strassburger, K.; Strom, A.; Bönhof, G.J.; Karusheva, Y.; Antoniou, S.; Bódis, K.; Markgraf, D.F.; Burkart, V.; Müssig, K.; et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: A 5-year follow-up study. Lancet. Diabetes Endocrinol. 2019, 7, 684–694. [Google Scholar] [CrossRef]
- Zou, X.; Zhou, X.; Zhu, Z.; Ji, L. Novel subgroups of patients with adult-onset diabetes in Chinese and US populations. Lancet. Diabetes Endocrinol. 2019, 7, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.B.; Asplund, O.; Shukla, S.R.; Wagh, R.; Kunte, P.; Bhat, D.; Parekh, M.; Shah, M.; Phatak, S.; Käräjämäki, A.; et al. Subgroups of patients with young-onset type 2 diabetes in India reveal insulin deficiency as a major driver. Diabetologia 2022, 65, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Bondar, I.A.; Shabelnikova, O.Y. Clinical features and complication rates in type 2 diabetes mellitus clusters on five variables: Glycated hemoglobin, age at diagnosis, body mass index, HOMA-IR, HOMA-B. Probl. Endokrinol. 2023, 69, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Yajnik, C.S.; Wagh, R.; Kunte, P.; Asplund, O.; Ahlqvist, E.; Bhat, D.; Shukla, S.R.; Prasad, R.B. Polygenic scores of diabetes-related traits in subgroups of type 2 diabetes in India: A cohort study. Lancet Reg. Health Southeast Asia 2023, 14, 100182. [Google Scholar] [CrossRef]
- Mansour Aly, D.; Dwivedi, O.P.; Prasad, R.B.; Karajamaki, A.; Hjort, R.; Thangam, M.; Akerlund, M.; Mahajan, A.; Udler, M.S.; Florez, J.C.; et al. Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nat. Genet. 2021, 53, 1534–1542. [Google Scholar] [CrossRef]
- Deutsch, A.J.; Ahlqvist, E.; Udler, M.S. Phenotypic and genetic classification of diabetes. Diabetologia 2022, 65, 1758–1769. [Google Scholar] [CrossRef]
- Timasheva, Y.; Balkhiyarova, Z.; Avzaletdinova, D.; Rassoleeva, I.; Morugova, T.V.; Korytina, G.; Prokopenko, I.; Kochetova, O. Integrating common risk factors with polygenic scores improves the prediction of type 2 diabetes. Int. J. Mol. Sci. 2023, 24, 984. [Google Scholar] [CrossRef]
- Kochetova, O.V.; Avzaletdinova, D.S.; Kochetova, T.M.; Viktorova, T.V.; Korytina, G.F. Polymorphic Variants of Long Noncoding RNA Genes in the Development of Type 2 Diabetes Mellitus. Russ. J. Genet. 2024, 60, 1224–1232. [Google Scholar] [CrossRef]
- Dedov, I.I.; Shestakova, M.V.; Mayorov, A.Y.; Vikulova, O.K.; Galstyan, G.R.; Kuraeva, T.L.; Peterkova, V.A.; Smirnova, O.M.; Starostina, E.G.; Surkova, E.V. Standards of specialized diabetes care. Diabetes Mellit. 2019, 22, 1–144. [Google Scholar] [CrossRef]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry; Report of a WHO Expert Committee; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 1995; Volume 854, pp. 1–452. [Google Scholar]
- Gutch, M.; Kumar, S.; Razi, S.M.; Gupta, K.K.; Gupta, A. Assessment of insulin sensitivity/resistance. Indian J. Endocrinol. Metab. 2015, 19, 160–164. [Google Scholar] [CrossRef]
- Singh, Y.; Garg, M.K.; Tandon, N.; Marwaha, R.K. A study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 245–251. [Google Scholar] [CrossRef]
- Canela-Xandri, O.; Rawlik, K.; Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. Genet. 2018, 50, 1593–1599. [Google Scholar] [CrossRef]
- Timasheva, Y.; Kochetova, O.; Balkhiyarova, Z.; Korytina, G.; Prokopenko, I.; Nouwen, A. Polygenic Score Approach to Predicting Risk of Metabolic Syndrome. Genes 2024, 16, 22. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Chua, E.W.; Ooi, J.; Nor Muhammad, N.A. A concise guide to essential R packages for analyses of DNA, RNA, and proteins. Mol. Cells 2024, 47, 100120. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Moore, C.M.; Jacobson, S.A.; Fingerlin, T.E. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. Hum. Hered. 2020, 84, 256–271. [Google Scholar] [CrossRef]
- Anney, R.J.L.; Lotfi-Miri, M.; Olsson, C.A.; Reid, S.C.; Hemphill, S.A.; Patton, G.C. Variation in the gene coding for the M5 Muscarinic receptor (CHRM5) influences cigarette dose but is not associated with dependence to drugs of addiction: Evidence from a prospective population based cohort study of young adults. BMC Genet. 2007, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Merzah, M.; Natae, S.; Sándor, J.; Fiatal, S. Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review. Genes 2024, 15, 109. [Google Scholar] [CrossRef]
- Tang, L.; Ye, H.; Hong, Q.; Chen, F.; Wang, Q.; Xu, L.; Bu, S.; Liu, Q.; Ye, M.; Wang, D.W.; et al. Meta-analyses between 18 candidate genetic markers and overweight/obesity. Diagn. Pathol. 2014, 9, 56. [Google Scholar] [CrossRef]
- Grarup, N.; Moltke, I.; Andersen, M.K.; Dalby, M.; Vitting-Seerup, K.; Kern, T.; Mahendran, Y.; Jørsboe, E.; Larsen, C.V.L.; Dahl-Petersen, I.K.; et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 2018, 50, 172–174. [Google Scholar] [CrossRef]
- Chen, X.; Luo, J.; Leng, Y.; Yang, Y.; Zweifel, L.S.; Palmiter, R.D.; Storm, D.R. Ablation of Type III Adenylyl Cyclase in Mice Causes Reduced Neuronal Activity, Altered Sleep Pattern, and Depression-like Phenotypes. Biol. Psychiatry 2016, 80, 836–848. [Google Scholar] [CrossRef]
- Tong, T.; Shen, Y.; Lee, H.W.; Yu, R.; Park, T. Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice. Sci. Rep. 2016, 6, 34179. [Google Scholar] [CrossRef]
- Pitman, J.L.; Wheeler, M.C.; Lloyd, D.J.; Walker, J.R.; Glynne, R.J.; Gekakis, N. A gain-of-function mutation in adenylate cyclase 3 protects mice from diet-induced obesity. PLoS ONE 2014, 9, e110226. [Google Scholar] [CrossRef] [PubMed]
- Vaisse, C.; Reiter, J.F.; Berbari, N.F. Cilia and Obesity. Cold Spring Harb. Perspect. Biol. 2017, 9, a028217. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Tachmazidou, I.; Süveges, D.; Min, J.L.; Ritchie, G.R.S.; Steinberg, J.; Walter, K.; Iotchkova, V.; Schwartzentruber, J.; Huang, J.; Memari, Y.; et al. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. Am. J. Hum. Genet. 2017, 100, 865–884. [Google Scholar] [CrossRef]
- Toumba, M.; Fanis, P.; Vlachakis, D.; Neocleous, V.; Phylactou, L.A.; Skordis, N.; Mantzoros, C.S.; Pantelidou, M. Molecular modelling of novel ADCY3 variant predicts a molecular target for tackling obesity. Int. J. Mol. Med. 2022, 49, 10. [Google Scholar] [CrossRef]
- Grant, S.F.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320–323. [Google Scholar] [CrossRef]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef]
- Del Bosque-Plata, L.; Martínez-Martínez, E.; Espinoza-Camacho, M.; Gragnoli, C. The Role of TCF7L2 in Type 2 Diabetes. Diabetes 2021, 70, 1220–1228. [Google Scholar] [CrossRef]
- Geoghegan, G.; Simcox, J.; Seldin, M.M.; Parnell, T.J.; Stubben, C.; Just, S.; Begaye, L.; Lusis, A.J.; Villanueva, C.J. Targeted deletion of Tcf7l2 in adipocytes promotes adipocyte hypertrophy and impaired glucose metabolism. Mol. Metab. 2019, 24, 44–63. [Google Scholar] [CrossRef]
- Nguyen-Tu, M.S.; Martinez-Sanchez, A.; Leclerc, I.; Rutter, G.A.; da Silva Xavier, G. Adipocyte-specific deletion of Tcf7l2 induces dysregulated lipid metabolism and impairs glucose tolerance in mice. Diabetologia 2021, 64, 129–141. [Google Scholar] [CrossRef]
- Beetz, N.; Kalsch, B.; Forst, T.; Schmid, B.; Schultz, A.; Hennige, A.M. A randomized phase I study of BI 1820237, a novel neuropeptide Y receptor type 2 agonist, alone or in combination with low-dose liraglutide in otherwise healthy men with overweight or obesity. Diabetes Obes. Metab. 2025, 27, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.; Cavadas, C.; Grouzmann, E. Neuropeptide Y and its receptors as potential therapeutic drug targets. Clin. Chim. Acta Int. J. Clin. Chem. 2002, 326, 3–25. [Google Scholar] [CrossRef]
- Sloth, B.; Holst, J.J.; Flint, A.; Gregersen, N.T.; Astrup, A. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1062–E1068. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.S.; Nunn, N.; Chambers, A.P.; Østergaard, S.; Wulff, B.S.; Luckman, S.M. Modified Peptide YY Molecule Attenuates the Activity of NPY/AgRP Neurons and Reduces Food Intake in Male Mice. Endocrinology 2019, 160, 2737–2747. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Moffett, R.C.; Thomas, K.G.; Irwin, N.; Flatt, P.R. Vasopressin receptors in islets enhance glucose tolerance, pancreatic beta-cell secretory function, proliferation and survival. Biochimie 2019, 158, 191–198. [Google Scholar] [CrossRef]
- Mohan, S.; Lafferty, R.; Tanday, N.; Flatt, P.R.; Moffett, R.C.; Irwin, N. Beneficial impact of Ac3IV, an AVP analogue acting specifically at V1a and V1b receptors, on diabetes islet morphology and transdifferentiation of alpha- and beta-cells. PLoS ONE 2021, 16, e0261608. [Google Scholar] [CrossRef]
- Calabrò, M.; Mandelli, L.; Crisafulli, C.; Lee, S.J.; Jun, T.Y.; Wang, S.M.; Patkar, A.A.; Masand, P.S.; Han, C.; Pae, C.U.; et al. Genes Involved in Neurodevelopment, Neuroplasticity and Major Depression: No Association for CACNA1C, CHRNA7 and MAPK1. Clin. Psychopharmacol. Neurosci. Off. Sci. J. Korean Coll. Neuropsychopharmacol. 2019, 17, 364–368. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Xie, Q.; Zeng, X.; Zhang, R.; Dang, W.; Zhu, Y.; Zhang, J. Methylation and expression quantitative trait locus rs6296 in the HTR1B gene is associated with susceptibility to opioid use disorder. Psychopharmacology 2022, 239, 2515–2523. [Google Scholar] [CrossRef]
- Binienda, A.; Salaga, M.; Patel, M.; Włodarczyk, J.; Fichna, J.; Venkatesan, T. Serotonin Receptors Polymorphisms Are Associated With Cyclic Vomiting Syndrome. Neurogastroenterol. Motil. 2025, 37, e15012. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Shi, Y.; Pu, M.; Yuan, Y.; Zhang, X.; Li, L.; Reynolds, G.P. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J. Psychopharmacol. 2012, 26, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-M.; Liu, Y.S.; Hong, S.; Liu, C.; Cao, J.; Chen, X.-R.; Lv, Z.; Cao, B.; Wang, H.-G.; Wang, W.; et al. The prediction of self-harm behaviors in young adults with multi-modal data: An XGBoost approach. J. Affect. Disord. Rep. 2024, 16, 100723. [Google Scholar] [CrossRef]
- Yang, P.; Yang, M.; Li, P.; Cao, D.; Gong, D.; Lv, J.; Pu, L.; Huang, S.; Liang, Y. A Meta-Analysis of 5-Hydroxytryptamine Receptor 1B Polymorphisms With Risk of Major Depressive Disorder and Suicidal Behavior. Front. Psychiatry 2021, 12, 696655. [Google Scholar] [CrossRef] [PubMed]
- Dolcini, J.; Chiavarini, M.; Firmani, G.; Ponzio, E.; D’Errico, M.M.; Barbadoro, P. Consumption of Bottled Water and Chronic Diseases: A Nationwide Cross-Sectional Study. Int. J. Environ. Res. Public Health 2024, 21, 1074. [Google Scholar] [CrossRef]
Parameter | MARD (n = 25) | MOD (n = 72) | SIRD (n = 66) | SIDD (n = 52) | 1 p | 2 PFDR |
---|---|---|---|---|---|---|
Age (years) | 67 (59–71) | 61 (55.75–64.25) | 52 (48.5–55) | 51 (43.75–55.25) | 1.69 × 10−19 | 4.24 × 10−19 |
T2D duration (years) | 5 (1–8) | 3 (1–7) | 4 (1.25–6) | 8 (4–14) | 2.10 × 10−5 | 3.49×10−5 |
3 BMI (kg/m2) | 29.8 (27.2–32.4) | 29.05 (26.35–32.08) | 32.6 (30.2–35.9) | 27.95 (24.28–31.05) | 1.42 × 10−9 | 2.66×10−9 |
Fasting glucose (mmol/L) | 4.9 (4.3–5.8) | 6.1 (5.57–6.5) | 7.3 (6.73–7.97) | 7.15 (6.68–7.3) | 4.37 × 10−26 | 2.19×10−25 |
Postprandial glucose (mmol/L) | 7.8 (7.8–8.3) | 8.4 (7.8–8.9) | 10.3 (9.95–10.8) | 9.95 (9.3–10.38) | 8.51 × 10−13 | 1.82×10−12 |
4 HbA1c (%) | 6.8 (6.7–6.8) | 7 (6.9–7.1) | 7.4 (7.12–7.68) | 7.4 (7.2–7.6) | 2.01 × 10−21 | 6.02×10−21 |
C peptide (ng/mL) | 3.1 (2.4–3.4) | 1.9 (1.64–2.61) | 3 (2.48–3.39) | 1 (0.72–1.61) | 1.84 × 10−33 | 2.76×10−32 |
HOMA-IR (%) | 1.59 (1.57–1.62) | 1.58 (1.56–1.6) | 1.64 (1.61–1.66) | 1.55 (1.53–1.57) | 8.39 × 10−33 | 6.29×10−32 |
HOMA-B (%) | 226.67 (141.3–295.71) | 82.45 (60.3–118.93) | 77.25 (60.67–95.62) | 29.22 (21.52–46.63) | 6.79 × 10−24 | 2.54×10−23 |
Total cholesterol (mmol/L) | 4.9 (4.2–6.1) | 5.4 (4.7–6) | 5.3 (4.62–6.1) | 5.3 (4.5–6.55) | 0.528 | 0.61 |
Triglycerides (mmol/L) | 1.43 (0.89–1.8) | 1.32 (0.98–2) | 1.31 (1.01–2.13) | 1.4 (0.9–1.84) | 0.857 | 0.857 |
5 HDL-C (mmol/L) | 1.1 (0.87–1.4) | 1.2 (0.88–1.42) | 1.1 (0.8–1.46) | 1.2 (0.94–1.5) | 0.846 | 0.857 |
6 LDL-C (mmol/L) | 3.1 (2.2–3.79) | 2.42 (1.92–3.79) | 2.42 (1.8–4.52) | 3.33 (2.11–4.57) | 0.241 | 0.301 |
7 eGFR (mL/min/1.73 m2) | 63 (56–69) | 66.5 (56–77) | 75 (59–92) | 61.5 (53–75) | 1.49 × 10−4 | 0.088 |
Comorbidity | MARD (n = 25) | MOD (n = 72) | SIRD (n = 66) | SIDD (n = 52) | 1 p | PFDR |
---|---|---|---|---|---|---|
Retinopathy | 36.00 ± 9.60 | 33.33 ± 5.56 | 31.82 ± 5.73 | 67.31 ± 6.51 | 5.00 × 10−4 | 0.001 |
Nephropathy | 36.00 ± 9.60 | 25.00 ± 5.10 | 25.76 ± 5.38 | 57.69 ± 6.85 | 5.00 × 10−4 | 0.001 |
Polyneuropathy | 56.00 ± 9.93 | 38.89 ± 5.75 | 31.82 ± 5.73 | 78.85 ± 5.66 | 5.00 × 10−4 | 0.001 |
Ischemic heart disease | 64.00 ± 9.60 | 41.67 ± 5.81 | 24.24 ± 5.28 | 34.62 ± 6.60 | 5.00 × 10−3 | 0.006 |
Arterial hypertension | 100.00 ± 0.00 | 86.11 ± 4.08 | 74.24 ± 5.38 | 86.54 ± 4.73 | 1.95 × 10−2 | 0.020 |
Cerebrovascular disease | 48.00 ± 9.99 | 36.11 ± 5.66 | 15.15 ± 4.41 | 23.08 ± 5.84 | 3.00 × 10−3 | 0.005 |
Compared Groups | Gene | 1 SNV | 2 EA | 3 OR (4 95% CI) | 5 p | 6 PFDR |
---|---|---|---|---|---|---|
Control vs. T2D | ADCY3 | rs17799872 | A | 0.25 (0.16–0.39) | 2.79 × 10−9 | 1.12 × 10−7 |
CHRM5 | rs7162140 | T | 2.76 (1.87–4.05) | 2.49 × 10−7 | 4.97 × 10−6 | |
NPY2R | rs1047214 | C | 2.56 (1.78–3.69) | 4.67 × 10−7 | 6.22 × 10−6 | |
HTR1B | rs6296 | C | 0.49 (0.36–0.67) | 6.20 × 10−6 | 5.86 × 10−5 | |
LINC02227 | rs2149954 | A | 0.42 (0.29–0.62) | 7.33 × 10−6 | 5.86 × 10−5 | |
AVPR1B | rs33911258 | C | 0.42 (0.28–0.63) | 2.88 × 10−5 | 1.92 × 10−4 | |
TCF7L2 | rs7903146 | T | 0.53 (0.39–0.71) | 4.16 × 10−5 | 2.38 × 10−4 | |
PTEN | rs2735343 | C | 0.47 (0.32–0.68) | 8.20 × 10−5 | 4.10 × 10−4 | |
CHRNA7 | rs3826029 | A | 0.51 (0.34–0.76) | 9.90 × 10−4 | 0.004 | |
Control vs. MARD | HTR1B | rs6296 | C | 0.10 (0.03–0.27) | 9.36 × 10−6 | 3.74 × 10−4 |
AVPR1B | rs33911258 | C | 0.14 (0.05–0.41) | 3.09 × 10−4 | 0.006 | |
TCF7L2 | rs7903146 | T | 0.27 (0.12–0.60) | 1.25 × 10−3 | 0.017 | |
Control vs. MOD | CHRM5 | rs7162140 | T | 4.43 (2.23–8.81) | 2.15 × 10−5 | 0.001 |
ADCY3 | rs17799872 | A | 0.31 (0.17–0.59) | 3.00 × 10−4 | 0.006 | |
AVPR1B | rs33911258 | C | 0.36 (0.20–0.64) | 4.47 × 10−4 | 0.006 | |
NPY2R | rs1047214 | C | 2.63 (1.51–4.60) | 6.92 × 10−4 | 0.006 | |
TCF7L2 | rs7903146 | T | 0.44 (0.27–0.71) | 7.42 × 10−4 | 0.006 | |
LINC02227 | rs2149954 | A | 0.42 (0.25–0.73) | 1.95 × 10−3 | 0.013 | |
Control vs. SIRD | ADCY3 | rs17799872 | A | 0.26 (0.15–0.48) | 9.55 × 10−6 | 3.82 × 10−4 |
HTR1B | rs6296 | C | 0.42 (0.28–0.64) | 4.33 × 10−5 | 7.68 × 10−4 | |
TCF7L2 | rs7903146 | T | 0.41 (0.27–0.63) | 5.76 × 10−5 | 7.68 × 10−4 | |
NPY2R | rs1047214 | C | 2.83 (1.64–4.87) | 1.79 × 10−4 | 0.002 | |
LINC02227 | rs2149954 | A | 0.40 (0.24–0.66) | 3.38 × 10−4 | 0.003 | |
CHRM5 | rs7162140 | T | 2.77 (1.57–4.86) | 4.17 × 10−4 | 0.003 | |
PTEN | rs2735343 | C | 0.42 (0.26–0.69) | 5.03 × 10−4 | 0.003 | |
CHRNA7 | rs3826029 | A | 0.40 (0.23–0.70) | 1.09 × 10−3 | 0.005 | |
AVPR1B | rs33911258 | C | 0.42 (0.24–0.72) | 1.71 × 10−3 | 0.008 | |
Control vs. SIDD | ADCY3 | rs17799872 | A | 0.24 (0.13–0.46) | 1.55 × 10−5 | 5.57 × 10−4 |
LINC02227 | rs2149954 | A | 0.30 (0.17–0.53) | 2.79 × 10−5 | 5.57 × 10−4 | |
MOD vs. MARD | HTR1B | rs6296 | C | 0.31 (0.15–0.62) | 1.06 × 10−3 | 0.042 |
Trait | Gene | 1 SNV | 2 RA | Beta ± 3 SE | 4 95% CI | 5 p | 6 PFDR |
---|---|---|---|---|---|---|---|
Body mass index | ADCY3 | rs17799872 | G | 1.26 ± 0.62 | 0.05–2.47 | 0.042 | 0.561 |
HTR2A | rs6313 | A | 1.04 ± 0.43 | 0.19–1.88 | 0.017 | 0.341 | |
HTR2C | rs6318 | G | 1.3 ± 0.5 | 0.31–2.29 | 0.011 | 0.341 | |
Fasting glucose | PTEN | rs2735343 | G | 0.37 ± 0.16 | 0.05–0.69 | 0.023 | 0.715 |
GABRA | rs279845 | T | −0.24 ± 0.11 | −0.46–−0.02 | 0.036 | 0.715 | |
Postprandial glucose | BDNF | rs11030107 | A | −0.49 ± 0.24 | −0.97–−0.02 | 0.042 | 0.845 |
TCF7L2 | rs7903146 | C | −0.35 ± 0.16 | −0.65–−0.04 | 0.026 | 0.845 | |
7 HbA1c | LINC02227 | rs2149954 | G | 0.09 ± 0.05 | 0–0.18 | 0.049 | 0.577 |
GABRA | rs279845 | T | −0.08 ± 0.04 | −0.16–−0.01 | 0.037 | 0.577 | |
TCF7L2 | rs7903146 | C | −0.08 ± 0.04 | −0.15–−0.01 | 0.024 | 0.577 | |
C-peptide | LRP5 | rs3736228 | C | −0.29 ± 0.15 | −0.58–0 | 0.048 | 0.633 |
CDKN2BAS1 | rs4977574 | G | 0.22 ± 0.09 | 0.05–0.4 | 0.014 | 0.566 | |
TCF7L2 | rs7903146 | C | 0.18 ± 0.08 | 0.01–0.34 | 0.038 | 0.633 | |
HOMA-B | LINC00305 | rs2850711 | A | 18.96 ± 9.5 | 0.35–37.58 | 0.047 | 0.628 |
HOMA-IR | CDKN2BAS1 | rs4977574 | G | 0.01 ± 0 | 0–0.02 | 0.022 | 0.698 |
8 LDL-C | GRIK3 | rs534131 | G | −0.41 ± 0.17 | −0.73–−0.09 | 0.014 | 0.542 |
Triglycerides | GABRA | rs279845 | T | −0.28 ± 0.12 | −0.5–−0.05 | 0.018 | 0.71 |
Aterogenic coefficient | CHRNA7 | rs3826029 | G | −0.43 ± 0.17 | −0.76–−0.1 | 0.011 | 0.433 |
9 eGFR | LINC02227 | rs2149954 | G | −4.24 ± 1.78 | −7.72–−0.76 | 0.018 | 0.375 |
CDKN2BAS1 | rs4977574 | G | 3.18 ± 1.51 | 0.22–6.14 | 0.036 | 0.386 | |
MALAT1 | rs619586 | A | 6.92 ± 2.92 | 1.2–12.63 | 0.019 | 0.375 | |
HTR2A | rs6313 | A | −3.11 ± 1.55 | −6.14–−0.07 | 0.047 | 0.386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timasheva, Y.; Kochetova, O.; Balkhiyarova, Z.; Avzaletdinova, D.; Korytina, G.; Kochetova, T.; Nouwen, A. Exploring Genetic Heterogeneity in Type 2 Diabetes Subtypes. Genes 2025, 16, 1131. https://doi.org/10.3390/genes16101131
Timasheva Y, Kochetova O, Balkhiyarova Z, Avzaletdinova D, Korytina G, Kochetova T, Nouwen A. Exploring Genetic Heterogeneity in Type 2 Diabetes Subtypes. Genes. 2025; 16(10):1131. https://doi.org/10.3390/genes16101131
Chicago/Turabian StyleTimasheva, Yanina, Olga Kochetova, Zhanna Balkhiyarova, Diana Avzaletdinova, Gulnaz Korytina, Tatiana Kochetova, and Arie Nouwen. 2025. "Exploring Genetic Heterogeneity in Type 2 Diabetes Subtypes" Genes 16, no. 10: 1131. https://doi.org/10.3390/genes16101131
APA StyleTimasheva, Y., Kochetova, O., Balkhiyarova, Z., Avzaletdinova, D., Korytina, G., Kochetova, T., & Nouwen, A. (2025). Exploring Genetic Heterogeneity in Type 2 Diabetes Subtypes. Genes, 16(10), 1131. https://doi.org/10.3390/genes16101131