Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = HMAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

14 pages, 2802 KiB  
Article
Interactions of Fe, Mn, Zn, and Cd in Soil–Rice Systems: Implications for Reducing Cd Accumulation in Rice
by Yan Zhang, Su Jiang, Han Wang, Linfei Yu, Chunfu Li, Liqun Ding and Guosheng Shao
Toxics 2025, 13(8), 633; https://doi.org/10.3390/toxics13080633 - 28 Jul 2025
Viewed by 276
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with [...] Read more.
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with high (MY46) or low (ZS97B) Cd accumulation capacities grown in acidic and alkaline soils. Results demonstrated that Cd stress significantly inhibited plant growth, reducing plant height, shoot biomass, and grain yield in both soil types. Cd accumulation increased in roots, shoots, and grains, while Fe, Mn, and Zn concentrations decreased markedly. Molecular analysis revealed upregulation of metal transporter genes (OsIRT1, OsNRAMP1, OsNRAMP5) and the vacuolar sequestration gene (OsHMA3) in roots under Cd exposure. The translocation factor (TF) values of Mn and Zn from root to shoot were reduced in acidic soils, whereas Mn and Zn TFs exhibited an increasing trend in alkaline soils despite Cd exposure. Furthermore, correlation analyses indicated Mn and Zn play crucial roles in suppressing Cd accumulation in both acidic and alkaline soils. These findings provide critical insights for developing soil-specific strategies to reduce Cd accumulation in rice through micronutrient management. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

23 pages, 1324 KiB  
Review
Advances and Challenges in the Management of Myelodysplastic Syndromes
by Jessica M. Stempel, Tariq Kewan and Amer M. Zeidan
Cancers 2025, 17(15), 2469; https://doi.org/10.3390/cancers17152469 - 25 Jul 2025
Viewed by 817
Abstract
Myelodysplastic syndromes/neoplasms (MDS) represent a biologically and clinically diverse group of myeloid malignancies marked by cytopenias, morphological dysplasia, and an inherent risk of progression to acute myeloid leukemia. Over the past two decades, the field has made significant advances in characterizing the molecular [...] Read more.
Myelodysplastic syndromes/neoplasms (MDS) represent a biologically and clinically diverse group of myeloid malignancies marked by cytopenias, morphological dysplasia, and an inherent risk of progression to acute myeloid leukemia. Over the past two decades, the field has made significant advances in characterizing the molecular landscape of MDS, leading to refined classification systems to reflect the underlying genetic and biological diversity. In 2025, the treatment of MDS is increasingly individualized, guided by integrated clinical, cytogenetic, and molecular risk stratification tools. For lower-risk MDS, the treatment paradigm has evolved beyond erythropoiesis-stimulating agents (ESAs) with the introduction of novel effective agents such as luspatercept and imetelstat, as well as shortened schedules of hypomethylating agents (HMAs). For higher-risk disease, monotherapy with HMAs continue to be the standard of care as combination therapies of HMAs with novel agents have, to date, failed to redefine treatment paradigms. The recognition of precursor states like clonal hematopoiesis of indeterminate potential (CHIP) and the increasing use of molecular monitoring will hopefully enable earlier intervention/prevention strategies. This review provides a comprehensive overview of the current treatment approach for MDS, highlighting new classifications, prognostic tools, evolving therapeutic options, and ongoing challenges. We discuss evidence-based recommendations, treatment sequencing, and emerging clinical trials, with a focus on translating biological insights into improved outcomes for patients with MDS. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Figure 1

16 pages, 679 KiB  
Article
Length of Washout Period After Remission Does Not Influence Relapse Risk in Patients with Acute Myeloid Leukemia Treated with Hypomethylating Agents Combined with Venetoclax
by Fanny Erika Palumbo, Andrea Duminuco, Laura Longo, Daniela Cristina Vitale, Cinzia Maugeri, Serena Brancati, Marina Silvia Parisi, Giuseppe Alberto Palumbo, Giovanni Luca Romano, Filippo Drago, Francesco Di Raimondo, Lucia Gozzo and Calogero Vetro
J. Clin. Med. 2025, 14(14), 5007; https://doi.org/10.3390/jcm14145007 - 15 Jul 2025
Viewed by 309
Abstract
Background/Objectives: The combination of venetoclax (VEN) and hypomethylating agents (HMA), such as azacitidine (AZA) or decitabine (DEC), has transformed the treatment landscape for acute myeloid leukemia (AML) in patients unfit for intensive chemotherapy. However, optimal management of neutropenia and the impact of post-remission [...] Read more.
Background/Objectives: The combination of venetoclax (VEN) and hypomethylating agents (HMA), such as azacitidine (AZA) or decitabine (DEC), has transformed the treatment landscape for acute myeloid leukemia (AML) in patients unfit for intensive chemotherapy. However, optimal management of neutropenia and the impact of post-remission treatment interruptions (washouts) remain unclear. This study aimed to evaluate the safety and efficacy of post-remission washouts and their effect on clinical outcomes. Methods: We conducted a retrospective single-center study of 44 AML patients treated with HMA/VEN between 2020 and 2021. Clinical, molecular, and treatment-related data were collected, including treatment duration, post-remission washout duration, response rates, disease-free survival (DFS), and overall survival (OS). Statistical analyses included Fisher’s exact test and univariate and multivariate Cox models. Results: Overall, 61% of patients responded to therapy, with significantly higher response rates among those potentially eligible for the VIALE-A trial (86% vs. 39%, p = 0.002). Neither treatment duration nor post-remission washout length was associated with DFS or OS. DFS was significantly longer in patients treated with AZA compared to DEC (p = 0.006). Median OS was 7.7 months, with longer OS observed in patients who did not meet VIALE-A trial eligibility criteria (p = 0.021). Achieving complete remission (CR) was associated with improved OS (14.5 months). Conclusions: Post-remission treatment interruptions (washouts) did not negatively impact DFS or OS, suggesting they may be a safe strategy to support hematologic recovery. However, the choice of HMA appears to influence response duration, with AZA outperforming DEC in maintaining disease control. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

21 pages, 11006 KiB  
Article
Heavy Metal-Associated (HMA) Domain-Containing Proteins: Insight into Their Features and Roles in Bread Wheat (Triticum aestivum L.)
by Mehak Taneja and Santosh Kumar Upadhyay
Biology 2025, 14(7), 818; https://doi.org/10.3390/biology14070818 - 5 Jul 2025
Viewed by 363
Abstract
The heavy metal-associated (HMA) domain-harboring proteins constitute critical players involved in the transport of various metal ions in plants, and are associated with development and stress responses. Herein, a total of 243 TaHMA genes were identified in the bread wheat genome, each of [...] Read more.
The heavy metal-associated (HMA) domain-harboring proteins constitute critical players involved in the transport of various metal ions in plants, and are associated with development and stress responses. Herein, a total of 243 TaHMA genes were identified in the bread wheat genome, each of which had a characteristic molecular profile and a distinct chromosomal localization. The TaHMA proteins were distributed in five clades in phylogeny, which differed with respect to the distribution of the key HMA domain. Sub-cellular localization was variable for the TaHMA proteins. Gene structure analysis yielded similar results when compared with the orthologous counterparts. Cis-regulatory element analysis produced a range of promoter elements, suggesting their diverse biological roles. Gene duplication analysis revealed a crucial role played by tandem and segmental duplication events in the expansion of TaHMA genes. Synteny analysis highlighted the evolutionary relatedness of TaHMA genes with those derived from Arabidopsis and rice. Expression analysis provided crucial information about the role of TaHMAs in mediating vital responses in the plant body, including the development of tissues and the regulation of various abiotic stress conditions. Overall, the study provides significant cues and evidence to functionally annotate and characterize the differentially expressed TaHMAs in order to validate their role. Full article
Show Figures

Figure 1

18 pages, 2199 KiB  
Article
Orai1 Expression and Vascular Function in Kidney Donors Determine Graft Outcomes at Short/Mid-Term
by Esther García-Rojo, Javier Angulo, Mariam El Assar, Rocío Santos-Pérez de la Blanca, Borja García-Gómez, José Medina-Polo, Alejandro Sevilleja-Ortiz, Leocadio Rodríguez-Mañas, Argentina Fernández, Eduardo Gutiérrez-Martínez, Enrique Morales-Ruiz, Alfredo Rodríguez-Antolín and Javier Romero-Otero
Cells 2025, 14(13), 1005; https://doi.org/10.3390/cells14131005 - 1 Jul 2025
Viewed by 390
Abstract
We aimed to determine the influence of donors’ vascular function on renal function in recipients and to evaluate the role of Orai1 calcium channels as a potential marker. A prospective collaborative multicenter study was designed. Blood, aorta (HA), mesenteric arteries (HMAs) and corpus [...] Read more.
We aimed to determine the influence of donors’ vascular function on renal function in recipients and to evaluate the role of Orai1 calcium channels as a potential marker. A prospective collaborative multicenter study was designed. Blood, aorta (HA), mesenteric arteries (HMAs) and corpus cavernosum (HCC) specimens were obtained from organ donors at the kidney procurement procedure (n = 60). Evolution (up to 2 years) of renal function measured as serum creatinine (SCr) and glomerular filtration rate (GFR) was evaluated in respective recipients (n = 64). Vascular responses were determined in HA, HMA and HCC from donors. Tumor necrosis factor-α, asymmetric dimethyl arginine and Orai1 were measured in plasma. Orai1 protein expression was also evaluated in each donor’s aorta. Endothelium-dependent vasodilation (HMA, HCC) and adrenergic contraction (HA) in donors determined renal function in recipients, 12 months post-transplantation. Donors in the best quartile of vascular function predicted lower SCr and higher GFR in kidney recipients for 12/24 months. Plasma Orai1 in donors was negatively correlated with vascular function and predicted renal function at 3–6 months post-transplantation. Donor Orai1 vascular content was associated with reduced vascular function and with poorer recipient renal function for 1-year post-transplantation. Systemic vascular function of kidney donors determines recipients’ renal function at short/mid-term. Donors’ vascular function and recipients’ renal function are negatively associated with donors’ Orai1 vascular expression, being a potential biomarker of renal outcomes. Full article
Show Figures

Figure 1

17 pages, 5483 KiB  
Article
Genome-Wide Analysis of HIPP Gene Family in Maize Reveals Its Role in the Cadmium Stress Response
by Chunyan Gao, Zhirui Zhang, Yuxuan Zhu, Jiaxin Tian, Kaili Yu, Jinbo Hou, Dan Luo, Jian Cai and Youcheng Zhu
Genes 2025, 16(7), 770; https://doi.org/10.3390/genes16070770 - 30 Jun 2025
Viewed by 395
Abstract
Background: Phytoremediation is an efficient approach for remediating heavy metal-contaminated soils. Heavy metal-associated isoprenylated plant proteins (HIPPs)—crucial for metal ion homeostasis—are unique to vascular plants, featuring a heavy metal-associated (HMA) domain and an isoprenylated CaaX motif. However, ZmHIPP genes have not been systematically [...] Read more.
Background: Phytoremediation is an efficient approach for remediating heavy metal-contaminated soils. Heavy metal-associated isoprenylated plant proteins (HIPPs)—crucial for metal ion homeostasis—are unique to vascular plants, featuring a heavy metal-associated (HMA) domain and an isoprenylated CaaX motif. However, ZmHIPP genes have not been systematically or functionally characterized in maize. Methods: This study characterizes ZmHIPP at the genome-wide level, including phylogenetic classification, motif/gene structure, chromosome location, gene duplication events, promoter elements, and tissue expression patterns. Cadmium (Cd) responses were evaluated by specific ZmHIPP expression and Cd accumulation in shoots and roots under Cd treatment. Results: A total of 66 ZmHIPPs were distributed unevenly across ten chromosomes, classified into five phylogenetic groups phylogenetically. Gene collinearity revealed 26 pairs of segmental duplications in ZmHIPPs. Numerous synteny genes were detected in rice and sorghum, but none in Arabidopsis, suggesting high conservation of HIPP genes in crop evolution. Transcriptomic analysis revealed tissue-specific expression patterns of ZmHIPP members in maize. Cis-acting element analysis linked several binding elements to abscisic acid, MeJA response, and MYB and MYC transcription factors. Under Cd stress, 53 out of 66 ZmHIPP genes were significantly induced, exhibiting three expression patterns. Cd exposure confirmed that the expression of ZmHIPP11, ZmHIPP30, and ZmHIPP48 was generally higher in shoots than roots, while ZmHIPP02 and ZmHIPP57 exhibited the opposite. Cd accumulation was higher in roots than shoots, peaking at 72 h (96 mg/kg) in shoots and exceeding 1000 mg/kg in roots after 120 h. Conclusions: This study not only provides fundamental genetic and molecular insights into HIPP function in maize but also identifies specific ZmHIPP genes as promising genetic resources for breeding Cd-tolerant maize, aiding in phytoremediation of Cd-contaminated soils. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant: Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4046 KiB  
Article
Dielectric-Based Estimation of HMA Dynamic Modulus
by Konstantina Georgouli and Andreas Loizos
Constr. Mater. 2025, 5(3), 43; https://doi.org/10.3390/constrmater5030043 - 26 Jun 2025
Viewed by 223
Abstract
This research aims to investigate the possibility of measuring dielectric constant as an alternative proxy for estimating E* through a non-destructive procedure. An experimental program was conducted on dense-graded (DG) and open-graded (OG) asphalt mixtures, where variable asphalt contents and compaction levels were [...] Read more.
This research aims to investigate the possibility of measuring dielectric constant as an alternative proxy for estimating E* through a non-destructive procedure. An experimental program was conducted on dense-graded (DG) and open-graded (OG) asphalt mixtures, where variable asphalt contents and compaction levels were controlled to achieve different air voids. The measurements of dielectric constant were performed with a Percometer, and E* values were obtained using standard laboratory tests. For DG mixtures, a clear correlation was observed between dielectric constant, air void content and effective binder ratio. The less consistent relationships for OG mixtures were likely due to the more heterogeneous structure of the OG mixtures, the conductive slag aggregates and a limited dataset. Using dielectric values, two predictive models were developed (DIME_DG and DIME_OG), with the former showing higher reliability. Verification with independent specimens confirmed model robustness. This dielectric-based approach offers a practical, cost-effective alternative to traditional modulus testing. The key innovation of this study is the integration of the asphalt mix dielectric constant into established dynamic modulus predictive models, offering a novel approach that enhances the sensitivity of these models to mixture-specific characteristics beyond traditional volumetric and binder properties. Full article
Show Figures

Figure 1

17 pages, 1133 KiB  
Article
Effect of Cement Kiln Dust on the Mechanical and Durability Performance of Asphalt Composites
by Anmar Dulaimi, Yasir N. Kadhim, Hussein Ahmed Issa, Raghad Ahmed Hashim, Ghazi Jalal Kashesh, Jorge Miguel de Almeida Andrade and Luís Filipe Almeida Bernardo
J. Compos. Sci. 2025, 9(6), 312; https://doi.org/10.3390/jcs9060312 - 19 Jun 2025
Viewed by 381
Abstract
With increasing traffic loads and the continuous deterioration of asphalt pavements, it has become necessary to explore alternative materials that enhance both performance and sustainability. This study aims to investigate the effect of using cement kiln dust (CKD) as a filler substitute in [...] Read more.
With increasing traffic loads and the continuous deterioration of asphalt pavements, it has become necessary to explore alternative materials that enhance both performance and sustainability. This study aims to investigate the effect of using cement kiln dust (CKD) as a filler substitute in hot mix asphalt composites, focusing on the mechanical and durability properties of pavements. The results indicate that replacing conventional filler with CKD in different proportions (1.5%, 3%, 4.5%, and 6%) positively affects the properties of asphalt mixtures. Marshall stability values increased by 58.4% when using 100% CKD, indicating a significant improvement in the mixture’s ability to withstand traffic loads. Flow tests revealed that replacing CKD by up to 50% enhances the flexibility of the mixture, but exceeding this percentage makes the mixture stiffer, which may lead to premature cracking. In terms of moisture sensitivity, incorporating CKD by 25% improves the mixture’s resistance to water damage, while increasing it to 100% reduces this resistance, highlighting the need to improve the adhesion properties of asphalt. Indirect tensile strength tests have confirmed that CKD enhances the cohesion of the mixture, reducing the likelihood of cracking under pressure and contributing to longer pavement life. Based on these results, it is recommended that CKD be used for up to 50% to achieve a balanced combination of strength, flexibility, and moisture resistance, with further studies being needed to evaluate the long-term performance and potential improvements through additional material modifications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

27 pages, 2491 KiB  
Article
Advancing Pavement Sustainability: Assessing Recycled Aggregates as Substitutes in Hot Mix Asphalt
by Saadeddine Ramadan, Hussein Kassem, Adel Elkordi and Rouba Joumblat
Sustainability 2025, 17(12), 5472; https://doi.org/10.3390/su17125472 - 13 Jun 2025
Viewed by 716
Abstract
The integration of Recycled Concrete Aggregate (RCA) and Reclaimed Asphalt Pavement (RAP) into Hot Mix Asphalt (HMA) presents a sustainable solution to mitigate environmental impacts and reduce reliance on virgin materials. This study investigates the influence of RCA and RAP as partial replacements [...] Read more.
The integration of Recycled Concrete Aggregate (RCA) and Reclaimed Asphalt Pavement (RAP) into Hot Mix Asphalt (HMA) presents a sustainable solution to mitigate environmental impacts and reduce reliance on virgin materials. This study investigates the influence of RCA and RAP as partial replacements for natural limestone aggregates on the volumetric, mechanical, and performance properties of asphalt mixtures. Replacement levels of 11%, 33%, and 66% (by total aggregate weight) were evaluated through comprehensive testing, including dynamic modulus, flow number, stiffness factor, and loss modulus assessments under varying temperatures and loading frequencies. Findings indicate that recycled aggregate incorporation results in a progressive reduction in optimum asphalt binder content, voids in mineral aggregates (VMAs), and voids filled with asphalt (VFAs). While all mixtures demonstrated acceptable stiffness-frequency behavior, the 33% replacement mix provided the best balance of rutting resistance and fatigue performance, satisfying Superpave volumetric criteria. The 11% mix exhibited enhanced fatigue resistance, whereas the 66% mix, despite showing the highest rutting stiffness, failed to meet minimum volumetric thresholds and is therefore unsuitable for structural applications. Statistical analysis (one-way ANOVA) confirmed the significant effect of RCA and RAP content on the mechanical response across performance zones. The results highlight the potential of using moderate recycled aggregate levels (particularly 33%) to produce durable, sustainable, and cost-efficient asphalt mixtures. For regions with mixed distress conditions, a 33% replacement is recommended, while 11% may be preferable in fatigue-critical environments. Further research incorporating viscoelastic continuum damage models and life cycle cost analysis is suggested to optimize design strategies and quantify long-term benefits. Full article
(This article belongs to the Special Issue Sustainable Development of Asphalt Materials and Pavement Engineering)
Show Figures

Figure 1

15 pages, 3526 KiB  
Article
Simple and Cost-Effective Design of a THz-Metamaterial-Based Hybrid Sensor on a Single Substrate
by Uddipan Nath, Sagnik Banerjee, Carlo Santini, Rocco Citroni, Fabio Mangini and Fabrizio Frezza
Sensors 2025, 25(12), 3660; https://doi.org/10.3390/s25123660 - 11 Jun 2025
Viewed by 413
Abstract
This study presents a cost-effective Hybrid Metamaterial Absorber (HMA) featuring a simple circular-patterned cylindrical design, comprising an indium antimonide (InSb) resonator on a thin copper sheet. Through numerical simulations, we demonstrate that the structure exhibits temperature-tunable properties and refractive index sensitivity. At 300 [...] Read more.
This study presents a cost-effective Hybrid Metamaterial Absorber (HMA) featuring a simple circular-patterned cylindrical design, comprising an indium antimonide (InSb) resonator on a thin copper sheet. Through numerical simulations, we demonstrate that the structure exhibits temperature-tunable properties and refractive index sensitivity. At 300 K (refractive index = 1), a peak absorption of 99.94% is achieved at 1.797 THz. Efficient operation is observed across a 40 K temperature range and a refractive index spectrum of 1.00–1.05, relevant for thermal imaging and spatial bio-sensing. The simulated temperature sensing sensitivity is 13.07 GHz/K, and the refractive index sensitivity is 1146 GHz/RIU. Parametric analyses reveal tunable absorption through adjustments of the InSb resonator design parameters. Owing to its high efficiency and sensitivity demonstrated in simulations, this HMA shows promise for sensing applications in biotechnology, semiconductor fabrication, and energy harvesting. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

14 pages, 1234 KiB  
Article
Metabolic Engineering of Escherichia coli for De Novo Biosynthesis of Mandelic Acid
by Chang Liu, Xuefeng Xiao, Wanbin Xing, Rina Na, Yunuo Song, Guoqiang Cao and Pengchao Wang
Fermentation 2025, 11(6), 331; https://doi.org/10.3390/fermentation11060331 - 9 Jun 2025
Viewed by 856
Abstract
Mandelic acid (MA) is a valuable α-hydroxy acid with applications in pharmaceuticals, cosmetics, and fine chemicals. While chemical synthesis is well established, concerns over toxicity and sustainability have driven interest in microbial production. Here, we engineered Escherichia coli for de novo MA biosynthesis [...] Read more.
Mandelic acid (MA) is a valuable α-hydroxy acid with applications in pharmaceuticals, cosmetics, and fine chemicals. While chemical synthesis is well established, concerns over toxicity and sustainability have driven interest in microbial production. Here, we engineered Escherichia coli for de novo MA biosynthesis by integrating enzyme screening, metabolic flux optimization, and pathway regulation. We first screened and identified an efficient hydroxymandelate synthase (HMAS) homolog from Actinosynnema mirum for MA synthesis, and subsequently enhanced the shikimate pathway along with the supply of the precursors erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP). Additionally, CRISPR interference (CRISPRi) was employed to repress competing pathways and redirect flux toward MA production. High-cell-density cultivation (HCDC) in a 5 L bioreactor demonstrated the strain’s industrial potential, achieving an MA titer of 9.58 g/L, the highest reported for microbial production. This study provides a systematic metabolic engineering approach for efficient MA biosynthesis from glucose, offering a foundation for sustainable large-scale production, demonstrating not only genetic-level optimizations, but also effective process scaling through high-cell-density cultivation, highlighting the power of pathway engineering in microbial cell factories. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

15 pages, 2011 KiB  
Article
Evaluation of the Rutting Performance of Hot-Mix Asphalt Concrete Containing Ferrochrome Slag Aggregate
by Hossam F. Hassan, Khalid Al-Shamsi, Khalifa Al-Jabri and Saba Al Amri
Constr. Mater. 2025, 5(2), 35; https://doi.org/10.3390/constrmater5020035 - 28 May 2025
Viewed by 355
Abstract
Ferrochrome (FeCr) slag is a by-product of high-carbon ferrochromium, which is used in the manufacturing of stainless steel. In this study, FeCr was evaluated as a replacement for natural aggregates in hot-mix asphalt (HMA) bituminous base and wearing course layers. Four mixes were [...] Read more.
Ferrochrome (FeCr) slag is a by-product of high-carbon ferrochromium, which is used in the manufacturing of stainless steel. In this study, FeCr was evaluated as a replacement for natural aggregates in hot-mix asphalt (HMA) bituminous base and wearing course layers. Four mixes were designed according to the Superpave mix design procedure, one control and three mixes, with FeCr slag replacing coarse, fine, or total aggregate. FeCr slag exhibited higher angularity and surface roughness than natural aggregates, resulting in an increased number of voids in mineral aggregate (VMA) and increased binder content. Performance testing using dynamic modulus, finite element analysis, and rutting evaluation using the MEPDG rut model showed that rutting increased with increased slag content. However, mixes with coarse aggregate replacement performed better than those with fine aggregate replacement. TCLP testing indicated that the FeCr slag is environmentally safe. The heavy metal leachate content was well below regulatory limits. Economic analysis showed material cost savings of up to 44% and 4% in the bituminous base and wearing course layers, respectively. The findings support the use of FeCr slag as a coarse aggregate replacement in asphalt mixes, offering both environmental and economic benefits. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

20 pages, 1691 KiB  
Article
MEMS-Based Micropacked Thermal Desorption GC/PID for In-Field Volatile Organic Compound Profiling from Hot Mix Asphalt
by Stefano Dugheri, Giovanni Cappelli, Riccardo Gori, Stefano Zampolli, Niccolò Fanfani, Ettore Guerriero, Donato Squillaci, Ilaria Rapi, Lorenzo Venturini, Alexander Pittella, Chiara Vita, Fabio Cioni, Domenico Cipriano, Mieczyslaw Sajewicz, Ivan Elmi, Luca Masini, Simone De Sio, Antonio Baldassarre, Veronica Traversini and Nicola Mucci
Separations 2025, 12(5), 133; https://doi.org/10.3390/separations12050133 - 19 May 2025
Viewed by 2382
Abstract
Background: In response to the growing demand for the real-time, in-field characterization of odorous anthropogenic emissions, this study develops and uses a MEMS-based micropacked thermal desorption Gas Chromatography system coupled with a PhotoIonization Detector (GC/PID) for Hot Mix Asphalt (HMA) plant emissions. Methods: [...] Read more.
Background: In response to the growing demand for the real-time, in-field characterization of odorous anthropogenic emissions, this study develops and uses a MEMS-based micropacked thermal desorption Gas Chromatography system coupled with a PhotoIonization Detector (GC/PID) for Hot Mix Asphalt (HMA) plant emissions. Methods: The innovative portable device, Pyxis GC, enables the high-sensitivity profiling of Volatile Organic Compounds (VOCs), particularly aldehydes and ketones, with sub-ppb detection limits using ambient air as the carrier gas. A comprehensive experimental design optimized the preconcentration parameters, resulting in an efficient, green analytical method evaluated via the Green Analytical Procedure Index (GAPI). Sorbent comparison showed quinoxaline-bridged cavitands outperform the conventional materials. Results and conclusions: The method was successfully deployed on site for source-specific sampling at an HMA plant, generating robust emission fingerprints. To assess environmental impact, a Generalized Additive Model (GAM) was developed, incorporating the process temperature and Sum of Odour Activity Values (SOAV) to predict odour concentrations. The model revealed a significant non-linear influence of temperature on emissions and validated its predictive capability despite the limited sample size. This integrated analytical–statistical approach demonstrates the utility of MEMS technology for real-time air quality assessment and odour dispersion modelling, offering a powerful tool for environmental monitoring and regulatory compliance. Full article
(This article belongs to the Special Issue Separation Techniques on a Miniaturized Scale)
Show Figures

Graphical abstract

16 pages, 1551 KiB  
Review
A Review of Reducing Cadmium Pollution in the Rice–Soil System in China
by Meiyan Guan, Yuchun Xia, Weixing Zhang, Mingxue Chen and Zhenzhen Cao
Foods 2025, 14(10), 1747; https://doi.org/10.3390/foods14101747 - 14 May 2025
Viewed by 837
Abstract
Cadmium (Cd) pollution in paddy soils causes a great threat to safe rice production in China. In this review, we summarized the key advances in the research of Cd pollution sources and statuses in Chinese soil and rice, explore the mechanisms of Cd [...] Read more.
Cadmium (Cd) pollution in paddy soils causes a great threat to safe rice production in China. In this review, we summarized the key advances in the research of Cd pollution sources and statuses in Chinese soil and rice, explore the mechanisms of Cd transformation in the rice–soil system, discuss the agronomic strategies for minimizing Cd accumulation in rice grains, and highlight advancements in developing rice cultivars with low Cd accumulation. Anthropogenic activity is a main source of Cd in farmland. Cd in soil solutions primarily enters rice roots through a symplastic pathway facilitated by transporters like OsNRAMP5, OsIRT1, and OsCd1, among which OsNRAMP5 is identified as the primary contributor. Subsequently, Cd translocation is from roots to grains through the xylem and phloem, regulated by transporters such as OsHMA2, OsLCT1, and OsZIP7. Meanwhile, Cd sequestration in vacuoles controlled by OsHMA3 plays a crucial role in regulating Cd mobility during its translocation. Cd accumulation in rice was limited by the available Cd concentration in soil solutions, Cd uptake, and translocation in rice plants. Conventional agronomic methods aimed at reducing grain Cd in rice by suppressing Cd bio-availability without decreasing soil Cd content have been proven limited in the remediation of Cd-polluted soil. In recent years, based on the mechanisms of Cd absorption and translocation in rice, researchers have screened and developed low-Cd-accumulation rice varieties using molecular breeding techniques. Among them, some new cultivars derived from the null mutants of OsNRAMP5 have demonstrated a more than 93% decrease in grain Cd accumulation and can be used for applications in the next years. Therefore, the issue of Cd contamination in the rice of China may be fully resolved within a few years. Full article
Show Figures

Figure 1

Back to TopTop