Advances in Sustainable Construction Materials for Asphalt Pavements

A special issue of Construction Materials (ISSN 2673-7108).

Deadline for manuscript submissions: 15 August 2025 | Viewed by 3308

Special Issue Editors


E-Mail Website
Guest Editor
Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA
Interests: asphalt binders; asphalt mixture design and performance testing; pavement analysis; construction design and modeling; materials testing and inspection; full-scale accelerated pavement testing and instrumentation; low-carbon and recycled materials; pavement preservation and rehabilitation

E-Mail Website
Guest Editor
National Center for Asphalt Technology, Auburn University, Auburn, AL 36830, USA
Interests: pavement preservation and rehabilitation; pavement management; pavement evaluation; performance analysis; low-carbon and recycled materials

Special Issue Information

Dear Colleagues,

This Special Issue will provide a comprehensive overview of state-of-the-art advancements in sustainable materials for asphalt pavements, particularly those that have the potential for large-scale implementation in both developed and emerging economies. This Special issue’s scope covers the development and application of environmentally friendly materials, recycling practices, and energy-efficient construction methods that ensure the sustainability of transportation infrastructure.

This Special Issue will highlight innovations such as the use of reclaimed asphalt pavement (RAP), which can significantly reduce the demand for virgin materials and decrease energy consumption during production. Additionally, the incorporation of recycled plastics, rubber, and other waste materials into asphalt pavements and preservation techniques is a promising avenue for reducing landfill waste and providing durable alternatives to traditional materials.

In this vein, this Special Issue will explore methodologies for assessing the environmental impacts of different materials throughout their life cycles, ranging from extraction to disposal. Life-cycle assessment (LCA) is a critical tool for evaluating the long-term sustainability of pavement and bridge materials and identifying areas for improvement. Papers discussing LCA models, strategies for extending material lifespan, and techniques for reducing resource consumption during construction and maintenance will be focal points.

Dr. Fabricio Leiva
Dr. Adriana Vargas-Nordcbeck
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Construction Materials is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • construction materials
  • asphalt pavements
  • preservation
  • sustainability
  • recycled materials
  • life-cycle assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 2114 KiB  
Article
Establishing Particle Size Recommendations for Cationic Asphalt Emulsions
by Tanner Turben, Pedro Diaz-Romero and Andrew Braham
Constr. Mater. 2025, 5(2), 26; https://doi.org/10.3390/constrmater5020026 - 21 Apr 2025
Viewed by 233
Abstract
Asphalt emulsions are used in flexible pavement maintenance and rehabilitation treatments. Emulsion specifications for material characterization are based on testing methodology dating to the 1930s. Newer test methods, including particle size analysis (PSA) of binder droplets in emulsion, have been explored but not [...] Read more.
Asphalt emulsions are used in flexible pavement maintenance and rehabilitation treatments. Emulsion specifications for material characterization are based on testing methodology dating to the 1930s. Newer test methods, including particle size analysis (PSA) of binder droplets in emulsion, have been explored but not implemented into specifications. The objective of this study is to observe the particle size and performance of cationic slow-setting (CSS) emulsions and establish baseline particle size recommendations for cationic emulsions. Four physical property tests (residue, oversize particles, viscosity, and particle size) and two cold mix asphalt performance tests (indirect tensile strength (IDT) and direct shear test (DST)) were conducted on two emulsions (CSS-1 and CSS-1H) over a six-month period. The physical properties of both emulsions were acceptable, and median particle size of the CSS-1H was approximately 3 microns larger than the CSS-1. The IDT strength and DST shear strength of the CSS-1H were higher than of the CSS-1. Recommendations for particle size were proposed by defining maximum limits on median, d10, d90, and span. It is recommended that the maximum median (d50) size of CSS emulsions is 6.0 microns. Future research is needed to standardize PSA procedures, assess recommendations for a wider range of emulsions, and evaluate applicability of minimum particle size limits. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

18 pages, 12970 KiB  
Article
The Effects of Reclaimed Asphalt Pavement Modification on the Delta Tc Parameter for PG58-XX and PG64-XX Asphalt Binders
by Masoud Darabi and Bisher Matalkeh
Constr. Mater. 2025, 5(1), 17; https://doi.org/10.3390/constrmater5010017 - 18 Mar 2025
Viewed by 244
Abstract
The use of reclaimed asphalt pavement (RAP) in asphalt mixtures has increased due to its economic and environmental benefits. However, RAP integration can negatively impact the durability and performance of asphalt binders, particularly at low temperatures. This study evaluates the effects of RAP [...] Read more.
The use of reclaimed asphalt pavement (RAP) in asphalt mixtures has increased due to its economic and environmental benefits. However, RAP integration can negatively impact the durability and performance of asphalt binders, particularly at low temperatures. This study evaluates the effects of RAP modification on the ΔTC parameter, a key indicator of binder brittleness and resistance to non-load-related cracking, focusing on PG XX-34 and PG XX-28 grades commonly used in Kansas. Laboratory testing was conducted on virgin and RAP binders subjected to Rolling Thin-Film Oven (RTFO) and Pressure Aging Vessel (PAV) aging. Blended binders were prepared with RAP replacement levels of 15%, 25%, and 40%. The critical temperatures TC,m, TC,S, and ΔTC values were calculated using data from Bending Beam Rheometer (BBR) testing. The results showed that increasing RAP content generally led to more negative ΔTC values, indicating reduced relaxation capacity and higher susceptibility to thermal cracking. RAP source variability also affected performance, with some sources causing more severe deterioration than others. These findings highlight the limitations of conventional linear blending assumptions and underscore the need for improved RAP characterization in binder selection. The study recommends limiting RAP replacement to 25% unless the RAP source demonstrates favorable properties, incorporating ΔTC thresholds (−2.5 °C and −5.0 °C) into binder specifications, and further investigating RAP–virgin binder interactions to enhance long-term pavement performance. The findings support the potential adoption of ΔTC as a specification criterion for binder evaluation, helping agencies like the Kansas Department of Transportation (KDOT) balance binder durability and RAP use. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

17 pages, 3846 KiB  
Article
Performance Evaluation of Recycled Fibers in Asphalt Mixtures
by Fabricio Leiva-Villacorta and Alvaro Cerdas-Murillo
Constr. Mater. 2024, 4(4), 839-855; https://doi.org/10.3390/constrmater4040045 - 18 Dec 2024
Viewed by 1002
Abstract
This study presents the results of using innovative and sustainable recycled fibers in different asphalt mixtures. Laboratory design and performance evaluation were focused on the cracking and rutting resistance of asphalt mixtures reinforced with recycled fibers. Two mixtures were designed for this research: [...] Read more.
This study presents the results of using innovative and sustainable recycled fibers in different asphalt mixtures. Laboratory design and performance evaluation were focused on the cracking and rutting resistance of asphalt mixtures reinforced with recycled fibers. Two mixtures were designed for this research: 1. A dense-graded hot-mix asphalt (HMA) mixture containing 15% reclaimed asphalt pavement (RAP) and a PG 64-22 asphalt binder. 2. A cold-recycled mixture (CRM) incorporating silica fume and Portland cement as a mineral filler and CSS-1H asphalt emulsion. The recycled fibers used in this study included PET, LDPE, and carbon and rubber fibers. A balanced mix design (BMD) approach based on cracking and rutting performance parameters was used to design the control mixtures. The IDEAL-CT (ASTM D8225) was conducted to assess the cracking resistance, and the IDEAL-RT (ASTM D8360) was applied for rutting resistance. For the HMA mixture, results showed that the addition of PET, carbon, and rubber fibers enhanced cracking resistance and influenced the rutting resistance; ANOVA analyses revealed statistically significant differences in both CT index and RT index between the control mixture and the fiber-reinforced mixtures. In the case of the cold-recycled mixtures, the addition of LDPE, PET, and rubber improved cracking resistance; however, a decrease in rutting resistance was also observed among the evaluated CRM samples. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 938 KiB  
Review
Biomass-Derived Bio-Oil for Asphalt Binder Applications: Production Feasibility and Performance Enhancement
by Aya A. El-Sherbeni, Ahmed M. Awed, Alaa R. Gabr and Sherif M. El-Badawy
Constr. Mater. 2025, 5(1), 11; https://doi.org/10.3390/constrmater5010011 - 18 Feb 2025
Viewed by 1101
Abstract
Biomass offers a renewable pathway for sustainable infrastructure, particularly in bio-oil production from biomass through processes such as fast pyrolysis to be used as an alternative to asphalt binders. This review explores biomass sources, production techniques, and the role of bio-oil in addressing [...] Read more.
Biomass offers a renewable pathway for sustainable infrastructure, particularly in bio-oil production from biomass through processes such as fast pyrolysis to be used as an alternative to asphalt binders. This review explores biomass sources, production techniques, and the role of bio-oil in addressing the demand for eco-friendly materials in the pavement construction industry. The review also examines the upgrading processes of bio-oil, its physical and chemical properties, and its application in producing bio-modified asphalt binder (BMA). The use of bio-oils in asphalt binders not only reduces the carbon footprint but also promotes the utilization of renewable resources, contributing to a more sustainable pavement industry. Additionally, bio-oil incorporation enhances asphalt binder performance by improving rutting resistance at high temperatures and stiffness at low temperatures, while reducing susceptibility to low-temperature cracking. Challenges include variability in high-temperature performance and moisture sensitivity. Based on the findings of this comprehensive review, future research directions should focus on optimizing production processes, broadening biomass feedstocks, and mitigating moisture issues to align bio-oil properties with asphalt binder specifications. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

Back to TopTop