Abiotic Stress in Plant: Molecular Genetics and Genomics

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Plant Genetics and Genomics".

Deadline for manuscript submissions: 15 February 2026 | Viewed by 37

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, China
Interests: omics; molecular marker; plant stress tolerance; herbicide; crop germplasm; GMO; genome editing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China
Interests: abiotic stress; epigentics; DNA methylation; transposon

Special Issue Information

Dear Colleagues,

We are excited to invite submissions for a Special Issue of the MDPI journal Genes, which is focused on “Abiotic Stress in Plant: Molecular Genetics and Genomics”. This collection aims to explore the latest advancements in understanding how plants respond to abiotic stresses such as drought, salinity, temperature extremes, and nutrient deficiencies at the molecular and genomic levels.

We welcome original research articles, reviews, and short communications that delve into (but are not limited to) the following areas:

  1. The identification and functional analysis of stress-responsive genes and regulatory networks.
  2. Genomic and transcriptomic approaches to unravel the complex mechanisms of stress tolerance.
  3. The role of epigenetics and non-coding RNAs in plant stress responses.
  4. Advances in breeding strategies and biotechnological interventions to enhance stress resilience.
  5. Case studies on model and non-model plants that provide new insights into stress adaptation.

This Special Issue seeks to bring together cutting-edge research that will contribute to the development of crops with improved stress tolerance, ultimately supporting global food security and sustainable agriculture.

Dr. Weicong Qi
Dr. Hongyan Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • molecular genetics
  • genomics
  • plant stress response
  • epigenetics
  • crop improvement
  • sustainable agriculture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5483 KiB  
Article
Genome-Wide Analysis of HIPP Gene Family in Maize Reveals Its Role in the Cadmium Stress Response
by Chunyan Gao, Zhirui Zhang, Yuxuan Zhu, Jiaxin Tian, Kaili Yu, Jinbo Hou, Dan Luo, Jian Cai and Youcheng Zhu
Genes 2025, 16(7), 770; https://doi.org/10.3390/genes16070770 (registering DOI) - 30 Jun 2025
Abstract
Background: Phytoremediation is an efficient approach for remediating heavy metal-contaminated soils. Heavy metal-associated isoprenylated plant proteins (HIPPs)—crucial for metal ion homeostasis—are unique to vascular plants, featuring a heavy metal-associated (HMA) domain and an isoprenylated CaaX motif. However, ZmHIPP genes have not been systematically [...] Read more.
Background: Phytoremediation is an efficient approach for remediating heavy metal-contaminated soils. Heavy metal-associated isoprenylated plant proteins (HIPPs)—crucial for metal ion homeostasis—are unique to vascular plants, featuring a heavy metal-associated (HMA) domain and an isoprenylated CaaX motif. However, ZmHIPP genes have not been systematically or functionally characterized in maize. Methods: This study characterizes ZmHIPP at the genome-wide level, including phylogenetic classification, motif/gene structure, chromosome location, gene duplication events, promoter elements, and tissue expression patterns. Cadmium (Cd) responses were evaluated by specific ZmHIPP expression and Cd accumulation in shoots and roots under Cd treatment. Results: A total of 66 ZmHIPPs were distributed unevenly across ten chromosomes, classified into five phylogenetic groups phylogenetically. Gene collinearity revealed 26 pairs of segmental duplications in ZmHIPPs. Numerous synteny genes were detected in rice and sorghum, but none in Arabidopsis, suggesting high conservation of HIPP genes in crop evolution. Transcriptomic analysis revealed tissue-specific expression patterns of ZmHIPP members in maize. Cis-acting element analysis linked several binding elements to abscisic acid, MeJA response, and MYB and MYC transcription factors. Under Cd stress, 53 out of 66 ZmHIPP genes were significantly induced, exhibiting three expression patterns. Cd exposure confirmed that the expression of ZmHIPP11, ZmHIPP30, and ZmHIPP48 was generally higher in shoots than roots, while ZmHIPP02 and ZmHIPP57 exhibited the opposite. Cd accumulation was higher in roots than shoots, peaking at 72 h (96 mg/kg) in shoots and exceeding 1000 mg/kg in roots after 120 h. Conclusions: This study not only provides fundamental genetic and molecular insights into HIPP function in maize but also identifies specific ZmHIPP genes as promising genetic resources for breeding Cd-tolerant maize, aiding in phytoremediation of Cd-contaminated soils. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant: Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop