Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,044)

Search Parameters:
Keywords = H2O2-induced damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5537 KiB  
Article
Different Light Wavelengths Differentially Influence the Progression of the Hypersensitive Response Induced by Pathogen Infection in Tobacco
by Bao Quoc Tran, Anh Trung Nguyen and Sunyo Jung
Antioxidants 2025, 14(8), 954; https://doi.org/10.3390/antiox14080954 (registering DOI) - 3 Aug 2025
Viewed by 115
Abstract
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red [...] Read more.
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red light, as indicated by reduced HR-associated programmed cell death, lower H2O2 production, and up to 64% reduction in membrane damage. During the late stage of HR, catalase and ascorbate peroxidase activities peaked under green and blue LEDs, with 5- and 10-fold increases, respectively, while superoxide dismutase activity was higher under white and red LEDs. Defense-related genes CHS1, PALa, PR1, and PR2 were more strongly induced by white and red light. The plants treated with green or blue LEDs during Pst infection prompted faster degradation of phototoxic Mg-porphyrins and exhibited smaller declines in Fv/Fm, electron transport rate, chlorophyll content, and LHCB expression compared to those treated with white or red LEDs. By contrast, the induction of the chlorophyll catabolic gene SGR was 54% and 77% lower in green and blue LEDs, respectively, compared to white LEDs. This study demonstrates that light quality differentially affects Pst-mediated HR, with green and blue light more effectively suppressing HR progression, mainly by reducing oxidative stress through enhanced antioxidative capacity and mitigation of photosynthetic impairments. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

16 pages, 1961 KiB  
Article
A Novel Glycosylated Ferulic Acid Conjugate: Synthesis, Antioxidative Neuroprotection Activities In Vitro, and Alleviation of Cerebral Ischemia–Reperfusion Injury (CIRI) In Vivo
by Jian Chen, Yongjun Yuan, Litao Tong, Manyou Yu, Yongqing Zhu, Qingqing Liu, Junling Deng, Fengzhang Wang, Zhuoya Xiang and Chen Xia
Antioxidants 2025, 14(8), 953; https://doi.org/10.3390/antiox14080953 (registering DOI) - 3 Aug 2025
Viewed by 176
Abstract
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between [...] Read more.
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between glucose at the C6 position and FA at the C4 position, was designed and synthesized. The hydrophilicity and chemical stability of FA-Glu were tested. FA-Glu’s protection against DNA oxidative cleavage was tested using pBR322 plasmid DNA under the Fenton reaction. The cytotoxicity of FA-Glu was examined via the PC12 cell and bEnd.3 cell tests. Antioxidative neuroprotection was evaluated, in vitro, via a H2O2-induced PC12 cell test, measuring cell viability and ROS levels. Antioxidative alleviation of cerebral ischemia–reperfusion injury (CIRI), in vivo, was evaluated using a rat middle cerebral artery occlusion (MCAO) model. The results indicated that FA-Glu was water-soluble (LogP −1.16 ± 0.01) and chemically stable. FA-Glu prevented pBR322 plasmid DNA cleavage induced via •OH radicals (SC% 88.00%). It was a non-toxic agent based on PC12 cell and bEnd.3 cell tests results. FA-Glu significantly protected against H2O2-induced oxidative damage in the PC12 cell (cell viability 88.12%, 100 μM) and inhibited excessive cell ROS generation (45.67% at 100 μM). FA-Glu significantly reduced the infarcted brain areas measured using TTC stain observation, quantification (FA-Glu 21.79%, FA 28.49%, I/R model 43.42%), and H&E stain histological observation. It sharply reduced the MDA level (3.26 nmol/mg protein) and significantly increased the GSH level (139.6 nmol/mg protein) and SOD level (265.19 U/mg protein). With superior performance to FA, FA-Glu is a safe agent with effective antioxidative DNA and neuronal protective actions and an ability to alleviate CIRI, which should help in the prevention of IS. Full article
Show Figures

Graphical abstract

21 pages, 2302 KiB  
Article
Antioxidant Effects of Exogenous Mitochondria: The Role of Outer Membrane Integrity
by Sadab Sipar Ibban, Jannatul Naima, Ryo Kato, Taichi Kuroda and Yoshihiro Ohta
Antioxidants 2025, 14(8), 951; https://doi.org/10.3390/antiox14080951 (registering DOI) - 2 Aug 2025
Viewed by 140
Abstract
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but [...] Read more.
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but differing in outer membrane integrity. To evaluate their stability in extracellular conditions, we examined their behavior in serum. Both types underwent mitochondrial permeability transition to a similar extent; however, under intracellular-like conditions after serum incubation, mitochondria with intact membranes retained more polarized mitochondria. Notably, mitochondria with intact outer membranes were internalized more efficiently than those with damaged membranes. In H9c2 cells, both types of mitochondria similarly increased intracellular ATP levels 1 h after administration under all tested conditions. When co-administered with H2O2, both suppressed oxidative damage to a comparable degree, as indicated by similar H2O2-scavenging activity in solution, comparable intracellular ROS levels, and equivalent preservation of electron transport chain activity. However, at higher H2O2 concentrations, cells treated with mitochondria possessing intact outer membranes exhibited greater survival 24 h after co-administration. Furthermore, when mitochondria were added after H2O2-induced damage and their removal, intact mitochondria conferred superior cell survival compared to damaged ones. These findings suggest that while both mitochondrial types exert comparable antioxidant effects, outer membrane integrity prior to administration plays a critical role in enhancing cell survival under conditions of oxidative stress. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 - 1 Aug 2025
Viewed by 176
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

27 pages, 3430 KiB  
Article
Systematic Characterization of Antioxidant Shielding Capacity Against Oxidative Stress of Aerial Part Extracts of Anacardium occidentale
by Alejandro Ponce-Mora, Lucia Gimeno-Mallench, José Luis Lavandera, Ryland T. Giebelhaus, Alicia Domenech-Bendaña, Antonella Locascio, Irene Gutierrez-Rojas, Salvatore Sauro, Paulina de la Mata, Seo Lin Nam, Vanessa Méril-Mamert, Muriel Sylvestre, James J. Harynuk, Gerardo Cebrián-Torrejón and Eloy Bejarano
Antioxidants 2025, 14(8), 935; https://doi.org/10.3390/antiox14080935 - 30 Jul 2025
Viewed by 349
Abstract
Oxidative stress is a biological imbalance that contributes to cellular damage and is a major driver of aging and age-related disorders, prompting the search for natural antioxidant agents. Our study is a phytochemical, electrochemical, and biological characterization of the antioxidant potential of aqueous [...] Read more.
Oxidative stress is a biological imbalance that contributes to cellular damage and is a major driver of aging and age-related disorders, prompting the search for natural antioxidant agents. Our study is a phytochemical, electrochemical, and biological characterization of the antioxidant potential of aqueous extracts from aerial parts of A. occidentale—leaves, bark, fruit, and cashew nuts—traditionally used in folklore medicine. Extracts were analyzed using FT-IR spectroscopy, GC × GC-TOFMS, polyphenol quantification, and antioxidant capacity assays (ABTS, FRAP, DPPH). Biological activity was tested in different mice and human cell lines (SH-SY5Y, MEF, ARPE-19, and HLECs). Aqueous extracts from the leaves and bark of A. occidentale exhibited significantly higher antioxidant activity compared to those from the fruit and cashew nut. These extracts showed elevated polyphenol content and strong performance in antioxidant capacity assays. In vitro, leaf and bark extracts enhanced cell viability under H2O2-induced oxidative stress, preserved mitochondrial membrane potential, and upregulated cytoprotective genes (HMOX1, NQO1, GCLC, and GCLM) in multiple cell lines. In contrast, fruit and nut extracts showed minimal antioxidant activity and no significant gene modulation. Our findings underscore the therapeutic potential of A. occidentale leaf and bark extracts as effective natural antioxidants and support their further development as candidates for phytotherapeutic interventions. Full article
Show Figures

Figure 1

22 pages, 1531 KiB  
Article
Evaluation of the Biological Properties and Antibacterial Activities of the Natural Food Supplement “Epavin” for Liver Detoxification and Protection
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Anita Caforio, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Foods 2025, 14(15), 2600; https://doi.org/10.3390/foods14152600 - 24 Jul 2025
Viewed by 401
Abstract
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients [...] Read more.
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients with advanced liver dysfunction. The global rise in these conditions underscores the need for effective interventions. Natural products have attracted attention for their potential to support liver health, particularly through synergistic combinations of plant extracts. Epavin, a dietary supplement from Erbenobili S.r.l., formulated with plant extracts like Taraxacum officinale (L.), Silybum marianum (L.) Gaertn., and Cynara scolymus (L.), known for their liver-supporting properties, has been proposed as adjuvant for liver functions. The aim of this work was to evaluate of Epavin’s antioxidant, anti-inflammatory, and protective effects against heavy metal-induced toxicity. In addition, the antibacterial effect of Epavin against a panel of bacterial strains responsible for infections associated with liver injuries has been evaluated. Methods: The protection against oxidative stress induced by H2O2 was evaluated in HepG2 and BALB/3T3 cells using the dichlorofluorescein diacetate (DCFH-DA) assay. Its anti-inflammatory activity was investigated by measuring the reduction in nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using the Griess assay. Additionally, the cytoprotecting of Epavin against heavy metal-induced toxicity and oxidative stress were evaluated in HepG2 cells using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) and DCFH-DA assays. The antibacterial activity of Epavin was assessed by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against Gram-positive (Enterococcus faecalis ATCC 29212, and BS, Staphylococcus aureus 25923, 29213, 43300, and BS) and Gram-negative (Escherichia coli 25922, and BS, Klebsiella pneumoniae 13883, 70063, and BS) bacterial strains using the microdilution method in broth, following the Clinical and Laboratory Standards Institute’s (CLSI) guidelines. Results: Epavin effectively reduced oxidative stress in HepG2 and BALB/3T3 cells and decreased NO production in LPS-stimulated RAW 264.7 macrophages. Moreover, Epavin demonstrated a protective effect against heavy metal-induced toxicity and oxidative damage in HepG2 cells. Finally, it exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains, with MIC values ranging from 1.5 to 6.0 mg/mL. Conclusions: The interesting results obtained suggest that Epavin may serve as a valuable natural adjuvant for liver health by enhancing detoxification processes, reducing inflammation, and exerting antibacterial effects that could be beneficial in the context of liver-associated infections. Full article
Show Figures

Figure 1

11 pages, 786 KiB  
Article
Methylene Blue Increases Active Mitochondria and Cellular Survival Through Modulation of miR16–UPR Signaling Axis
by Carlos Garcia-Padilla, David García-Serrano and Diego Franco
J. Mol. Pathol. 2025, 6(3), 16; https://doi.org/10.3390/jmp6030016 - 23 Jul 2025
Viewed by 1144
Abstract
Background: Methylene blue (MB), a versatile redox agent, is emerging as a promising therapeutic in diseases associated with mitochondrial dysfunction. Its ability to optimize the electron transport chain increases ATP synthesis (30–40%) and reduces oxidative stress, protecting cellular components such as mitochondrial [...] Read more.
Background: Methylene blue (MB), a versatile redox agent, is emerging as a promising therapeutic in diseases associated with mitochondrial dysfunction. Its ability to optimize the electron transport chain increases ATP synthesis (30–40%) and reduces oxidative stress, protecting cellular components such as mitochondrial DNA. The protective role of this compound has been described in several neurodegenerative disease such as Alzheimer’s and Parkinson’s diseases. However, its role in cardiovascular disease has been poorly explored. Methods: In this study, we explored the impact of MB on murine (HL1) and human (AC16) cardiomyocyte redox signaling and cellular survival using RT-Qpcr analysis and immunochemistry assays. Results: Our results revealed that MB increased functional mitochondria, reversed H2O2-induced oxidative damage, and modulated antioxidant gene expression. Furthermore, it regulated the microRNA16–UPR signaling axis, reducing CHOP expression and promoting cell survival. Conclusions: These findings underscore its potential in cardioprotective therapy; however, its putative use as a drug requires in vivo validation in preclinical animal models. Full article
Show Figures

Figure 1

16 pages, 7245 KiB  
Article
α-Ketoglutarate Attenuates Oxidative Stress-Induced Neuronal Aging via Modulation of the mTOR Pathway
by Ruoqing Guan, Zhaoyun Xue, Kaikun Huang, Yanqing Zhao, Gongyun He, Yuxing Dai, Mo Liang, Yanzi Wen, Xueshi Ye, Peiqing Liu and Jianwen Chen
Pharmaceuticals 2025, 18(8), 1080; https://doi.org/10.3390/ph18081080 - 22 Jul 2025
Viewed by 545
Abstract
Background/Objectives: Oxidative stress constitutes a principal pathophysiological mechanism driving neurodegeneration and brain aging. α-Ketoglutarate (AKG), a key intermediate of the tricarboxylic acid (TCA) cycle, has shown potential in longevity and oxidative stress resistance. However, the role of AKG in oxidative stress-induced neuronal [...] Read more.
Background/Objectives: Oxidative stress constitutes a principal pathophysiological mechanism driving neurodegeneration and brain aging. α-Ketoglutarate (AKG), a key intermediate of the tricarboxylic acid (TCA) cycle, has shown potential in longevity and oxidative stress resistance. However, the role of AKG in oxidative stress-induced neuronal senescence and its interaction with the mTOR signaling pathway during neuronal aging remain poorly understood, posing a key challenge for developing senescence-targeted therapies. Methods: We investigated the neuroprotective effects of AKG using H2O2-induced senescence in HT22 cells and a D-galactose-induced brain aging mouse model. Assessments encompassed SA-β-gal staining, EdU incorporation, mitochondrial membrane potential (JC-1), and ROS measurement. Antioxidant markers, ATP levels, and the NAD+/NADH ratio were also analyzed. Proteomic profiling (DIA-MS) and KEGG/GSEA enrichment analyses were employed to identify AKG-responsive signaling pathways, and Western blotting validated changes in mTOR signaling and downstream effectors. Results: AKG significantly alleviated H2O2-induced senescence in HT22 cells, evidenced by enhanced cell viability, reduced ROS level, restored mitochondrial function, and downregulated p53/p21 expression. In vivo, AKG administration improved cognitive deficits and vestibulomotor dysfunction while ameliorating brain oxidative damage in aging mice. Proteomics revealed mTOR signaling pathways as key targets for AKG’s anti-aging activity. Mechanistically, AKG suppressed mTOR phosphorylation and activated ULK1, suggesting modulation of autophagy and metabolic homeostasis. These effects were accompanied by enhanced antioxidant enzyme activities and improved redox homeostasis. Conclusions: Our study demonstrates that AKG mitigates oxidative stress-induced neuronal senescence through suppression of the mTOR pathway and enhancement of mitochondrial and antioxidant function. These findings highlight AKG as a metabolic intervention candidate for age-related neurodegenerative diseases. Full article
Show Figures

Graphical abstract

9 pages, 4992 KiB  
Communication
Corrosion Behavior of 347H Stainless Steel in NaCl-KCl-MgCl2 Molten Salt: Vapor, Liquid, and Interface Comparison
by Zhiwen Liu, Huigai Li, Yang Wang, Yanjie Peng, Luyan Sun and Jianping Liang
Materials 2025, 18(14), 3412; https://doi.org/10.3390/ma18143412 - 21 Jul 2025
Viewed by 249
Abstract
The suitability of 347H stainless steel (SS347H) for chloride salt environments is critical in selecting materials for next-generation concentrated solar power (CSP) systems. This study investigated the corrosion behavior of SS347H in a ton-scale purification system with continuously flowing chloride salt under three [...] Read more.
The suitability of 347H stainless steel (SS347H) for chloride salt environments is critical in selecting materials for next-generation concentrated solar power (CSP) systems. This study investigated the corrosion behavior of SS347H in a ton-scale purification system with continuously flowing chloride salt under three conditions: exposure to NaCl-KCl-MgCl2 molten salt vapor, immersion in molten salt, and at the molten salt surface interface. Results revealed that corrosion was most severe in the molten salt vapor, where HCl steam facilitated Cl reactions with Fe and Cr in the metal, causing dissolution and forming deep corrosion pits. At the interface, liquid Mg triggered displacement reactions with Fe2+/Cr2+ ions in the salt, depositing Fe and Cr onto the surface, which reduced corrosion intensity. Within the molten salt, Mg’s purification effect minimized impurity-induced corrosion, resulting in the least damage. In all cases, the primary corrosion mechanism involves the dissolution of Fe and Cr, with the formation of minor MgO. These insights provide valuable guidance for applying 347H stainless steel in chloride salt environments. Full article
Show Figures

Figure 1

22 pages, 31542 KiB  
Article
Pyrroloquinoline Quinone (PQQ) Attenuates Hydrogen Peroxide-Induced Injury Through the Enhancement of Mitochondrial Function in Human Trabecular Meshwork Cells
by Sabrina Petricca, Antonio Matrone, Daria Capece, Irene Flati, Vincenzo Flati, Enrico Ricevuto, Giuseppe Celenza, Nicola Franceschini, Mirco Mastrangelo, Cristina Pellegrini, Loredana Cristiano, Giuseppe Familiari, Benedetta Cinque, Giovanna Di Emidio, Carla Tatone and Roberto Iorio
Int. J. Mol. Sci. 2025, 26(14), 6938; https://doi.org/10.3390/ijms26146938 - 19 Jul 2025
Viewed by 931
Abstract
Mitochondrial metabolism in the trabecular meshwork (TM) plays a critical role in maintaining intraocular pressure homeostasis by supporting the energy-demanding processes involved in aqueous humour outflow. In primary open-angle glaucoma, oxidative stress impairs mitochondrial function, leading to TM dysfunction. Therefore, understanding and targeting [...] Read more.
Mitochondrial metabolism in the trabecular meshwork (TM) plays a critical role in maintaining intraocular pressure homeostasis by supporting the energy-demanding processes involved in aqueous humour outflow. In primary open-angle glaucoma, oxidative stress impairs mitochondrial function, leading to TM dysfunction. Therefore, understanding and targeting mitochondrial health in TM cells could offer a novel therapeutic strategy. Pyrroloquinoline quinone (PQQ) is a redox cofactor with antioxidant and mitochondrial-enhancing properties. However, its effects on human TM (HTM) cells remain largely unexplored. This study examined PQQ cytoprotective effects against H2O2-induced oxidative stress in HTM cells. Seahorse analyses revealed that PQQ alone improves mitochondrial respiration and ATP production. Moreover, PQQ mitigates H2O2-induced cellular damage and preserves mitochondrial function by normalising proton leak and increasing ATP levels. Furthermore, TEM and confocal microscopy showed that PQQ can partially alleviate structural damage, restoring mitochondrial network morphology, thereby leading to reduced cell death. Although these protective effects seem not to be mediated by changes in mitochondrial content or activation of the SIRT1/PGC1-α pathway, they may involve modulation of SIRT3, a key factor of mitochondrial metabolism and homeostasis. Overall, these results suggest that PQQ may represent a promising candidate for restoring mitochondrial function and reversing oxidative damage in HTM cells. Full article
(This article belongs to the Special Issue Mitochondrial Functions and Dynamics)
Show Figures

Figure 1

17 pages, 1471 KiB  
Article
American Basil, Ocimum americanum, Has Neuroprotective Properties in the Aging Process
by Ionara Rodrigues Siqueira, Cláudia Vanzella, Gisele Agustini Lovatel, Karine Bertoldi, Christiano Spindler, Felipe dos Santos Moysés, Adriana Vizuete, Gilsane Lino von Poser and Carlos Alexandre Netto
Nutrients 2025, 17(14), 2368; https://doi.org/10.3390/nu17142368 - 19 Jul 2025
Viewed by 699
Abstract
Background/Objectives: There is evidence concerning herbal medicines and plant-based compounds, including Lamiaceae species, as putative senolytic agents; however, there are only a few reports on Ocimum americanum properties using rat models. The aim of this study was to investigate the neuroprotective effects [...] Read more.
Background/Objectives: There is evidence concerning herbal medicines and plant-based compounds, including Lamiaceae species, as putative senolytic agents; however, there are only a few reports on Ocimum americanum properties using rat models. The aim of this study was to investigate the neuroprotective effects and potential modes of action of Ocimum americanum L. using ex vivo and in vivo assays to assess the effects of OAEE on hippocampal tissue from young adult and late middle-aged Wistar rats, with a focus on oxidative stress, cholinesterase activity, and neuroinflammatory markers. Methods: Ocimum americanum ethanol extract (OAEE) was incubated with hippocampal slices of young adult and late middle-aged male Wistar rats exposed to H2O2; an acute treatment with OAEE was evaluated in aversive memory performance and neurochemical parameters, such as hippocampal cellular oxidative state, and anticholinesterase activity, and a diet supplementation of OAEE were evaluated on several hippocampal biochemical parameters, such as oxidative state, anticholinesterase activity, and neuroinflammatory parameters in young adult and late middle-aged male rats. Results: OAEE reversed the H2O2-induced impaired cellular viability in hippocampal slices from young adult rats, as well as protected hippocampal slices against H2O2-induced damage in both young adult and late middle-aged Wistar rats, indicating its neuroprotective action. Chronic dietary OAEE supplementation reduced aging-induced increases in reactive species and lipid peroxidation levels in the hippocampus. Indeed, this supplementation reduced the TNF-α content in hippocampus from both ages, and IL-1β levels in young adult rats. Conclusions: The antioxidant actions of OAEE here observed, preventing the lipoperoxidation, as well as its anti-neuroinflammatory effect, might be related to neuroprotective effect. Our findings add evidence to support the idea of the potential use of Ocimum americanum as a nutraceutical or functional food in the aging process. Full article
(This article belongs to the Special Issue Functional Foods and Sustainable Health (2nd Edition))
Show Figures

Figure 1

18 pages, 5392 KiB  
Article
Kaempferol Alleviates Carbon Tetrachloride-Induced Liver Fibrosis in Mice by Regulating Intestinal Short-Chain Fatty Acids
by Siqi Zhang, Fei Tang, Zhe Zhou, Linhui Li, Yang Tang, Kaiwen Fu, Yang Tan and Ling Li
Int. J. Mol. Sci. 2025, 26(14), 6666; https://doi.org/10.3390/ijms26146666 - 11 Jul 2025
Viewed by 348
Abstract
Liver fibrosis remains a critical health concern with limited therapeutic options. Kaempferol (Kae) is a natural flavonoid widely present in natural plants, yet its role in modulating gut–liver axis interactions during fibrosis is unexplored. This study investigates the hepatoprotective effects of Kae on [...] Read more.
Liver fibrosis remains a critical health concern with limited therapeutic options. Kaempferol (Kae) is a natural flavonoid widely present in natural plants, yet its role in modulating gut–liver axis interactions during fibrosis is unexplored. This study investigates the hepatoprotective effects of Kae on alleviating carbon tetrachloride (CCl4)-induced liver fibrosis, and its underlying mechanisms, focusing on oxidative stress, gut microbiota, and short-chain fatty acids (SCFAs), are revealed. A mouse model of hepatic fibrosis was built by the subcutaneous injection of CCl4. Meanwhile, Kae was administered by gavage at doses of 25, 50, and 100 mg/kg body weight. Serum biomarkers, liver histopathology, oxidative damage markers, and nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase 1 (HO-1) signaling were analyzed. AML12 hepatocytes were pretreated with Kae or SCFAs (acetate, propionate, butyrate) before H2O2-induced oxidative injury. The changes in gut microbiota and the levels of SCFAs were assessed via 16S rRNA sequencing and GC-MS, respectively. Kae effectively alleviated the destruction of the liver morphology and tissue structure, reduced the infiltration of inflammatory cells, collagen deposition in the liver, and the expression of fibrotic factors, and downregulated the oxidative stress level in the liver of mice with liver fibrosis by activating the Nrf2/Keap1/HO-1 pathway (p < 0.05 or 0.01). In vitro, Kae significantly mitigated H2O2-induced cytotoxicity and oxidative damage (p < 0.05 or 0.01). Furthermore, Kae restored gut microbiota diversity, increased beneficial genera (e.g., Lactobacillus), and elevated both intestinal and hepatic SCFA levels (p < 0.01). The discrepant SCFA pretreatment similarly protected AML12 cells by activating Nrf2 signaling (p < 0.05 or 0.01). Our research suggests that Kae could inhibit CCl4-induced liver fibrosis by restoring the levels of intestinal metabolite SCFAs to reduce oxidative damage. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 3851 KiB  
Article
Neuroprotective Terpenoids Derived from Hericium erinaceus Fruiting Bodies: Isolation, Structural Elucidation, and Mechanistic Insights
by Ying Cao, Qiaona Wang, Lu Li, Haitao Jiang, Bianjiang Zhang, Yulong Wu, Feng Zhou, Chun Hua, Guangming Huo, Shengjie Li and Jianmei Li
Int. J. Mol. Sci. 2025, 26(14), 6606; https://doi.org/10.3390/ijms26146606 - 10 Jul 2025
Viewed by 341
Abstract
Hericium erinaceus, a medicinal macrofungus, is renowned for its potential neuroprotective benefits. Here, we isolated and characterized secondary metabolites from H. erinaceus fruiting bodies and explored their neuroprotective effects and primary mechanisms of action. A novel terpenoid (4) and four known compounds [...] Read more.
Hericium erinaceus, a medicinal macrofungus, is renowned for its potential neuroprotective benefits. Here, we isolated and characterized secondary metabolites from H. erinaceus fruiting bodies and explored their neuroprotective effects and primary mechanisms of action. A novel terpenoid (4) and four known compounds (1, 2, 3, and 5) were identified. Their chemical structures were determined using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), and x-ray diffraction (XRD). Bioactivity screening using PC12 cells indicated that (3R,4R)-4-acetyl-3,4-dihydro-6,8-dihydroxy-3-methoxy-5-methyl-1H-2-benzopyran (3) and the terpenoid, (1R,4S,8aS)-1,4-dihydroxy-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carbaldehyde (4), demonstrated protective properties against hydrogen peroxide (H2O2)-induced damage. Transcriptomics, network pharmacology, and molecular docking showed that compound 4 counteracted H2O2-induced oxidative stress and inflammation by substantially attenuating pro-inflammatory cytokine (IL-1β, IL-6) expression, downregulating pro-oxidant factors (Aoc3, Dusp3), and decreasing reactive oxygen species levels, while boosting superoxide dismutase activity. Compound 4 exerted neuroprotective effects via the NF-κB pathway. H. erinaceus represents a valuable natural reservoir of bioactive compounds for treating and preventing neurodegenerative diseases. Full article
Show Figures

Figure 1

19 pages, 3265 KiB  
Article
Biofortified Calcium Phosphate Nanoparticles Elicit Secondary Metabolite Production in Carob Callus via Biosynthetic Pathway Activation
by Doaa E. Elsherif, Fatmah A. Safhi, Mai A. El-Esawy, Alaa T. Mohammed, Osama A. Alaziz, Prasanta K. Subudhi and Abdelghany S. Shaban
Plants 2025, 14(14), 2093; https://doi.org/10.3390/plants14142093 - 8 Jul 2025
Viewed by 347
Abstract
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate [...] Read more.
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate nanoparticles, which refer to CaP-NPs that have been enriched with bioactive compounds via green synthesis using Jania rubens extract, thereby enhancing their functional properties as elicitors in carob callus. CaP-NPs were green-synthesized using Jania rubens extract and applied to 7-week-old callus cultures at 0, 25, 50, and 75 mg/L concentrations. At the optimal concentration (50 mg/L), CaP-NPs increased callus fresh weight by 23.9% and dry weight by 35.1%. At 50 mg/L CaP-NPs, phenolic content increased by 95.7%, flavonoids by 34.4%, tannins by 131.8%, and terpenoids by 211.9% compared to controls. Total antioxidant capacity rose by 76.2%, while oxidative stress markers malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased by 34.8% and 14.1%, respectively. Gene expression analysis revealed upregulation of PAL (4-fold), CHI (3.15-fold), FLS (1.16-fold), MVK (8.3-fold), and TA (3.24-fold) at 50 mg/L CaP-NPs. Higher doses (75 mg/L) induced oxidative damage, demonstrating a hormetic threshold. These findings indicate that CaP-NPs effectively enhance secondary metabolite production in carob callus by modulating biosynthetic pathways and redox balance, offering a scalable, eco-friendly approach for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

21 pages, 7342 KiB  
Article
Synergistic Antioxidant Effects of C3G-Enriched Oryza sativa L. cv. RD83 Extract and α-Tocopherol Against H2O2-Induced Oxidative Stress in SH-SY5Y Cells
by Nootchanat Mairuae and Nut Palachai
Int. J. Mol. Sci. 2025, 26(13), 6490; https://doi.org/10.3390/ijms26136490 - 5 Jul 2025
Viewed by 351
Abstract
Oxidative stress, which contributes to neuronal cell dysfunction, is a critical factor in the pathogenesis of neurodegenerative diseases. Anthocyanins and α-tocopherol have shown potential in mitigating oxidative damage, and their combination may provide synergistic effects. This study investigated the combined effects of a [...] Read more.
Oxidative stress, which contributes to neuronal cell dysfunction, is a critical factor in the pathogenesis of neurodegenerative diseases. Anthocyanins and α-tocopherol have shown potential in mitigating oxidative damage, and their combination may provide synergistic effects. This study investigated the combined effects of a cyanidin-3-glucoside (C3G)-enriched extract derived from Oryza sativa L. cv. RD83 and α-tocopherol (C3GE) on hydrogen peroxide (H2O2)-induced oxidative stress in SH-SY5Y cells. Cells were treated with C3GE during exposure to 200 µM H2O2. Cell viability, intracellular reactive oxygen species (ROS), and oxidative stress biomarkers, including the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as malondialdehyde (MDA) levels, were evaluated. Protein expression levels of histone deacetylase 1 (HDAC1), nuclear factor erythroid 2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and SOD1 were also assessed. The combined treatment markedly improved cell viability, suppressed ROS accumulation, enhanced antioxidant enzyme activities, and significantly reduced MDA levels, suggesting effective protection against oxidative damage. Mechanistically, C3GE downregulated HDAC1 expression while upregulating Nrf2, HO-1, and SOD1, indicating that its antioxidant and neuroprotective effects are mediated, at least in part, through epigenetic modulation of redox-related signaling pathways. These results demonstrate a synergistic interaction between C3G and α-tocopherol that enhances cellular antioxidant defenses and supports redox homeostasis. In conclusion, the C3GE combination offers a promising therapeutic approach for preventing or attenuating oxidative stress-induced neuronal injury, with potential relevance for the treatment of neurodegenerative disorders. Full article
(This article belongs to the Special Issue Oxidative Stress and Disease: Basic and Biochemical Approaches)
Show Figures

Figure 1

Back to TopTop