Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = Green Roofs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2566 KiB  
Article
Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5)
by Helene Schmelzing and Britta Schmalz
Hydrology 2025, 12(8), 200; https://doi.org/10.3390/hydrology12080200 - 31 Jul 2025
Viewed by 280
Abstract
To date, few studies have been published for cities in Germany that take into account climate change and changing hydrologic patterns due to increases in building density. This study investigates the efficiency of LID for past and future climate in the polycentric agglomeration [...] Read more.
To date, few studies have been published for cities in Germany that take into account climate change and changing hydrologic patterns due to increases in building density. This study investigates the efficiency of LID for past and future climate in the polycentric agglomeration area Frankfurt, Main (Central Germany) using observed and projected climate (model) data for a standard reference period (1961–1990) and a high emission scenario (RCP 8.5) as well as a climate protection scenario (RCP 2.6), under 40 to 75 percent building density. LID elements included green roofs, permeable pavement and bioretention cells. SWMM5 was used as model for simulation purposes. A holistic evaluation of simulation results showed that effectiveness increases incrementally with LID implementation percentage and inverse to building density if implemented onto at least 50 percent of available impervious area. Building density had a higher adverse effect on LID efficiency than climate change. The results contribute to the understanding of localized effects of climate change and the implementation of adaption strategies to that end. The results of this study can be helpful for the scientific community regarding future investigations of LID implementation efficiency in dense residential areas and used by local governments to provide suggestions for urban water balance revaluation. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

16 pages, 2460 KiB  
Article
Continuous Chamber Gangue Storage for Sustainable Mining in Coal Mines: Principles, Methods, and Environmental Benefits
by Jinhai Liu, Yuanhang Wang, Jiajie Li, Desire Ntokoma, Zhengxing Yu, Sitao Zhu and Michael Hitch
Sustainability 2025, 17(15), 6865; https://doi.org/10.3390/su17156865 - 28 Jul 2025
Viewed by 275
Abstract
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution [...] Read more.
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution for coal mines. The principles of this approach emphasize minimizing disturbance to overlying strata, enabling uninterrupted mining operations, and reducing both production costs and environmental risks. By storing the surface or underground gangue in continuous chambers, the proposed method ensures the roof stability, maximizes the waste storage, and prevents the interaction between mining and waste management processes. Detailed storage sequences and excavation methods are discussed, including continuous and jump-back excavation strategies tailored to varying roof conditions. The process flows for both underground and ground-based chamber storage are described, highlighting the integration of gangue crushing, paste preparation, and pipeline transport for efficient underground storage. In a case study with annual storage of 500,000 t gangue, the annual economic benefit reached CNY 1,111,425,000. This technology not only addresses the urgent need for sustainable coal gangue management, but also aligns with the goals of resource conservation, ecological protection, and the advancement of green mining practices in the coal industry. Full article
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Heat Impact of Urban Sprawl: How the Spatial Composition of Residential Suburbs Impacts Summer Air Temperatures and Thermal Comfort
by Mahmuda Sharmin, Manuel Esperon-Rodriguez, Lauren Clackson, Sebastian Pfautsch and Sally A. Power
Atmosphere 2025, 16(8), 899; https://doi.org/10.3390/atmos16080899 - 23 Jul 2025
Viewed by 282
Abstract
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established [...] Read more.
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established residential suburbs in Western Sydney, Australia. Established areas featured larger housing lots and mature street trees, while newly developed suburbs had smaller lots and limited vegetation cover. Microclimate data were collected during summer 2021 under both heatwave and non-heatwave conditions in full sun, measuring air temperature, relative humidity, wind speed, and wet-bulb globe temperature (WBGT) as an index of heat stress. Daily maximum air temperatures reached 42.7 °C in new suburbs, compared to 39.3 °C in established ones (p < 0.001). WBGT levels during heatwaves were in the “extreme caution” category in new suburbs, while remaining in the “caution” range in established ones. These findings highlight the benefits of larger green spaces, permeable surfaces, and lighter roof colours in the context of urban heat exposure. Maintaining mature trees and avoiding dark roofs can significantly reduce summer heat and improve outdoor thermal comfort across a range of conditions. Results of this work can inform bottom-up approaches to climate-responsive urban design where informed homeowners can influence development outcomes. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

22 pages, 37656 KiB  
Article
Investigating Urban Heat Islands in Miami, Florida, Utilizing Planet and Landsat Satellite Data
by Suraj K C, Anuj Chiluwal, Lalit Pun Magar and Kabita Paudel
Atmosphere 2025, 16(7), 880; https://doi.org/10.3390/atmos16070880 - 18 Jul 2025
Viewed by 475
Abstract
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization [...] Read more.
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization and climate change. Our study addresses the critical issue of mapping and investigating UHIs in complex urban settings. This study leveraged Planet satellite data and Landsat data to conceptualize and develop appropriate mitigation strategies for UHIs in Miami. Utilizing the Planet satellite imagery and Landsat data, we conducted a combined study of land cover and land surface temperature variations within the city. This approach fuses remotely sensed data to identify the UHI hotspots. This study aims for dynamic approaches for UHI mitigation. This includes studying the status of green spaces present in the city, possible expansion of urban green spaces, the propagation of cool roof initiatives, and exploring the recent climatic trend of the city. The research revealed that built-up areas consistently showed higher land surface temperatures while zones with dense vegetation have lower surface temperatures, supporting the role of urban green spaces in surface temperature reduction. This research can also set a robust model for addressing UHIs in other cities facing rapid urbanization and experiencing mounting temperatures each passing year by helping in assessing LST, land cover, and related spectral indices as well. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

25 pages, 1049 KiB  
Review
The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure
by Anna Kwarciak-Kozłowska and Magdalena Madeła
Water 2025, 17(14), 2089; https://doi.org/10.3390/w17142089 - 13 Jul 2025
Viewed by 698
Abstract
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable [...] Read more.
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable surfaces contains a variety of plastic particles originating from tire abrasion or waste disposal. This article presents an overview of current research on the occurrence of MPs in stormwater. The potential of selected green infrastructure solutions—particularly bioretention systems, constructed wetlands, and permeable pavements—for their reduction is assessed. Individual solutions present how the change in filter material, selection of vegetation, or the method of conducting the process (e.g., direction of stormwater flow in constructed wetlands) affects their effectiveness. The potential of green infrastructure is also compared with the traditional gray solution of sewage management in cities. This article emphasizes the importance of integrating such solutions in spatial planning as an effective tool to combat climate change and limit the spread of microplastics in the environment. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

25 pages, 7566 KiB  
Article
Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale
by Zexin Lei, Lijun Li, Yanrou Wei, Wenzheng Zhang, Junjie Luo and Xuqiang Zhao
Land 2025, 14(7), 1434; https://doi.org/10.3390/land14071434 - 8 Jul 2025
Viewed by 414
Abstract
Low-impact development (LID) offers environmental, economic, and social benefits, yet research on optimizing facility combinations remains limited. This study evaluates four representative LID types—green roofs, sunken green spaces, permeable pavement, and rain gardens—using an integrated framework combining the Storm Water Management Model (SWMM), [...] Read more.
Low-impact development (LID) offers environmental, economic, and social benefits, yet research on optimizing facility combinations remains limited. This study evaluates four representative LID types—green roofs, sunken green spaces, permeable pavement, and rain gardens—using an integrated framework combining the Storm Water Management Model (SWMM), NSGA-II genetic algorithm, and Analytic Hierarchy Process (AHP) at Taiyuan University of Technology in Shanxi Province, China. Based on site constraints, each LID type was pre-assigned to suitable subareas, and optimization focused on determining proportional allocations within these areas. SWMM simulations revealed that permeable paving achieved the highest runoff reduction (up to 19.4% at 65% coverage) and strong cost-effectiveness (0.013 USD per % reduction). NSGA-II was used to generate a set of optimal solutions by minimizing construction costs and maximizing runoff and pollutant reductions. AHP then ranked these solutions according to their environmental, economic, and social benefits. In this case, the ideal mix—subject to site-specific constraints and model assumptions—includes 28.58% green roofs, 19.37% sunken green spaces, 48.68% permeable paving, and 3.37% rain gardens. The study proposes a sponge campus renewal strategy, offering theoretical and practical insights for sustainable urban development and precise environmental management. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

16 pages, 1889 KiB  
Article
Experimental Evaluation of the Sustainable Performance of Filtering Geotextiles in Green Roof Systems: Tensile Properties and Surface Morphology After Long-Term Use
by Olga Szlachetka, Joanna Witkowska-Dobrev, Anna Baryła and Marek Dohojda
Sustainability 2025, 17(14), 6242; https://doi.org/10.3390/su17146242 - 8 Jul 2025
Viewed by 319
Abstract
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system [...] Read more.
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system functionality. The filter layer, responsible for preventing clogging of the drainage layer with fine substrate particles, directly affects the hydrological performance and service life of green roofs. While most existing studies focus on the initial material properties, there is a clear gap in understanding how geotextile filters behave after prolonged exposure to real-world environmental conditions. This study addresses this gap by assessing the mechanical and structural integrity of geotextile filters after five years of use in both extensive and intensive green roof systems. By analyzing changes in surface morphology, microstructure, and porosity through tensile strength tests, digital imaging, and scanning electron microscopy, this research offers new insights into the long-term performance of geotextiles. Results showed significant retention of tensile strength, particularly in the machine direction (MD), and a 56% reduction in porosity, which may affect filtration efficiency. Although material degradation occurs, some geotextiles retain their structural integrity over time, highlighting their potential for long-term use in green infrastructure applications. This research emphasizes the importance of material selection, long-term monitoring, and standardized evaluation techniques to ensure the ecological and functional resilience of green roofs. Furthermore, the findings contribute to advancing knowledge on the durability and life-cycle performance of filter materials, promoting sustainability and longevity in urban green infrastructure. Full article
Show Figures

Figure 1

26 pages, 918 KiB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Viewed by 966
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

13 pages, 3291 KiB  
Article
Experimental Work to Investigate the Effect of Rooftop PV Panel Shading on Building Thermal Performance
by Saad Odeh and Luke Pearling
Energies 2025, 18(13), 3429; https://doi.org/10.3390/en18133429 - 30 Jun 2025
Viewed by 361
Abstract
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their [...] Read more.
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their overall thermal performance. This paper presents a long-term experimental investigation into the changes in roof temperature caused by PV panels. The experiment was conducted over the course of a year, with measurements taken on four sample days each month. The study is based on measurements of the covered roof temperature, the uncovered roof temperature, PV surface temperature, ambient air temperature, as well as solar irradiation, wind speed, and rainfall. The results reveal that the annual energy savings (MJ/m2) in the cooling load due to the covered roof are about 26% higher than the energy loss from the heating load due to shading. The study shows that the effect of the rooftop PV panels on the house’s total heating and cooling load savings is between 5.3 to 6.1%. This difference is significant in thermal performance analyses, especially if most of the roof is covered by PV panels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

16 pages, 2103 KiB  
Article
Improving Green Roof Runoff Modeling for Sustainable Cities: The Role of Site-Specific Calibration in SCS-CN Parameters
by Thiago Masaharu Osawa, Fabio Ferreira Nogueira, Brenda Chaves Coelho Leite and José Rodolfo Scarati Martins
Sustainability 2025, 17(13), 5976; https://doi.org/10.3390/su17135976 - 29 Jun 2025
Viewed by 351
Abstract
Green roofs are increasingly recognized as effective Nature-Based Solutions (NBS) for urban stormwater management, contributing to sustainable and climate-resilient cities. The Soil Conservation Service Curve Number (SCS-CN) model is commonly used to simulate their hydrological performance due to its simplicity and low data [...] Read more.
Green roofs are increasingly recognized as effective Nature-Based Solutions (NBS) for urban stormwater management, contributing to sustainable and climate-resilient cities. The Soil Conservation Service Curve Number (SCS-CN) model is commonly used to simulate their hydrological performance due to its simplicity and low data requirements. However, the standard assumption of a fixed initial abstraction ratio (Ia/S = 0.2), long debated in hydrology, has been largely overlooked in green roof applications. This study investigates the variability of Ia/S and its impact on runoff simulation accuracy for a green roof under a humid subtropical climate. Event-based analysis across multiple storms revealed Ia/S values ranging from 0.01 to 0.62, with a calibrated optimal value of 0.17. This variability is primarily driven by the physical and biological characteristics of the green roof rather than short-term rainfall conditions. Using the fixed ratio introduced consistent biases in runoff estimation, while intermediate ratios (0.17–0.22) provided higher accuracy, with the optimal ratio yielding a median Curve Number (CN) of 89 and high model performance (NSE = 0.95). Additionally, CN values followed a positively skewed Weibull distribution, highlighting the value of probabilistic modeling. Though limited to one green roof design, the findings underscore the importance of site-specific parameter calibration to improve predictive reliability. By enhancing model accuracy, this research supports better design, evaluation, and management of green roofs, reinforcing their contribution to integrated urban water systems and global sustainability goals. Full article
(This article belongs to the Special Issue Green Roof Benefits, Performances and Challenges)
Show Figures

Figure 1

16 pages, 1563 KiB  
Article
Hydrological Benefits of Green Roof Retrofitting Policies: A Case Study of an Urban Watershed in Brazil
by Thiago Masaharu Osawa, Fábio Ferreira Nogueira, Stephanie Caroline Machado Gonzaga, Fernando Garcia Silva, Sabrina Domingues Miranda, Brenda Chaves Coelho Leite and José Rodolfo Scarati Martins
Water 2025, 17(13), 1936; https://doi.org/10.3390/w17131936 - 28 Jun 2025
Viewed by 418
Abstract
Green roofs (GRs) are emerging as effective tools for mitigating urban runoff, particularly in cities facing challenges related to increased impervious surfaces and flooding risks. This study evaluates the potential hydrological performance of GR retrofitting in São José dos Campos, Brazil, based on [...] Read more.
Green roofs (GRs) are emerging as effective tools for mitigating urban runoff, particularly in cities facing challenges related to increased impervious surfaces and flooding risks. This study evaluates the potential hydrological performance of GR retrofitting in São José dos Campos, Brazil, based on municipal legislation, focusing on the effects of reducing the Effective Impervious Area (EIA) in urban watersheds. Using a range of projected EIA reduction scenarios (Mandatory, Incentivized, and Ideal), this study compares key hydrological indicators such as peak flow attenuation, runoff volume reduction, and hydrograph delay during rainfall events with different return periods. The results show that retrofitting with GRs significantly attenuates peak flows and delays runoff, with the ‘Ideal’ scenario (EIA = 16%) achieving peak flow reductions of up to 41% and runoff volume reductions of 35%. However, the effectiveness of GRs diminishes for high-intensity rainfall events, suggesting that GRs are most effective for frequent, low-intensity storms. These findings demonstrate the potential of GRs in reducing flooding risks in urban environments, highlighting the importance of integrating GRs into broader sustainable drainage systems. This study further emphasizes that while financial support is crucial for promoting GR adoption, it alone is not sufficient. Policies should be complemented by educational efforts and urban regulatory measures to ensure widespread adoption and long-term impact. This research provides urban planners and stakeholders with evidence to enhance urban resilience, sustainability, and effective flood risk management. Full article
Show Figures

Figure 1

20 pages, 1669 KiB  
Article
Assessing the Energy and Economic Performance of Green and Cool Roofs: A Life Cycle Approach
by Taylana Piccinini Scolaro and Enedir Ghisi
Sustainability 2025, 17(13), 5782; https://doi.org/10.3390/su17135782 - 23 Jun 2025
Viewed by 365
Abstract
Green and cool roofs have significant potential to reduce energy consumption in buildings, but high initial costs and the need for local adaptation limit their adoption. This study aims to compare the life cycle energy assessment (LCEA) and life cycle cost analysis (LCCA) [...] Read more.
Green and cool roofs have significant potential to reduce energy consumption in buildings, but high initial costs and the need for local adaptation limit their adoption. This study aims to compare the life cycle energy assessment (LCEA) and life cycle cost analysis (LCCA) of green, cool, and standard (fibre cement) roofs in three Brazilian cities with different climatic and economic contexts. Computer simulations were carried out on a multifamily residential building model to assess the energy performance of the roofs. The simulation results and literature data were used to estimate the roofs’ energy consumption and cost over the life cycle. Over a 40-year life cycle, green and cool roofs reduced energy consumption by 13% to 22% compared to standard roofs. Cool roofs showed the lowest life cycle costs, while green roofs faced cost-effectiveness challenges due to high initial and maintenance costs. However, in areas with high energy demands and electricity tariffs, the life cycle cost of green roofs may be decreased. The study highlights the crucial role of material selection in embodied energy and emphasises the dominant impact of the operational phase on energy consumption and life cycle costs. These findings underscore the need for customised design strategies and localised assessments to support decision-making. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Figure 1

25 pages, 34285 KiB  
Article
Optimizing Public Space Quality in High-Density Old Districts of Asian Megacities: Thermal Environment Analysis of Shenzhen’s Urban Fringe
by Jie Ren, Xiaohui Xu and Jielong Jiang
Buildings 2025, 15(13), 2166; https://doi.org/10.3390/buildings15132166 - 21 Jun 2025
Viewed by 342
Abstract
High density old districts at the urban fringes of Asian megacities, such as Shenzhen, face significant thermal challenges due to dense building clusters, limited airflow, and heat retention. This study adopts an integrated approach combining Phoenics wind simulation, geographic information system (GIS) modeling, [...] Read more.
High density old districts at the urban fringes of Asian megacities, such as Shenzhen, face significant thermal challenges due to dense building clusters, limited airflow, and heat retention. This study adopts an integrated approach combining Phoenics wind simulation, geographic information system (GIS) modeling, and spatial prototype analysis to assess and optimize the wind and thermal environments in these urban areas. It investigates how spatial configurations, including building density, height distribution, orientation, and green space integration, influence wind flow and thermal comfort. The results demonstrate that optimized spatial arrangements, including reduced building density, height adjustments, and strategic landscape design, improve ventilation and temperature regulation. Comparative analyses of different spatial prototypes reveal that radial configurations effectively channel external winds into the urban core, enhancing internal airflow, whereas rectangular layouts create wind shadows that hinder ventilation. Adjustments to building façades and vertical arrangements further mitigate pedestrian-level heat accumulation. Interventions in public spaces, including green roofs and vertical greening, offer cooling benefits and mitigate urban heat island effects. This study underscores the importance of aligning urban design with natural wind flow and offers a framework for sustainable landscape and architectural strategies in high-density, heat-prone environments. The findings offer valuable insights for urban planners and policymakers seeking sustainable development in similar megacities. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 7133 KiB  
Article
The Potential of Informal Green Space (IGS) in Enhancing Urban Green Space Accessibility and Optimization Strategies: A Case Study of Chengdu
by Yu Zou, Liwei Zhang, Wen Huang and Jiao Chen
Land 2025, 14(7), 1313; https://doi.org/10.3390/land14071313 - 20 Jun 2025
Viewed by 556
Abstract
The inequity in the distribution of green spaces in megacities has a detrimental effect on the physical and mental well-being of their inhabitants, highlighting the necessity for careful and strategic urban planning, along with appropriate regulatory interventions. Nevertheless, scholarly articles addressing the equity [...] Read more.
The inequity in the distribution of green spaces in megacities has a detrimental effect on the physical and mental well-being of their inhabitants, highlighting the necessity for careful and strategic urban planning, along with appropriate regulatory interventions. Nevertheless, scholarly articles addressing the equity of access to urban green spaces primarily concentrate on urban parks, with limited studies examining the influence of alternative types of green spaces. This research initially recognized and categorized informal green spaces (IGS) located within the Third Ring Road of Chengdu, utilizing the UGS-1m dataset and area of interest (AOI) data, in accordance with a well-defined classification framework. Then, the G2SFCA method and Gini coefficient were employed to assess the impact of IGS on the green space accessibility, especially scenario analysis of open and shared use of green space. The findings indicate that (1) IGS in the narrow sense constitute 21.2% of the overall green spaces within the study area, resulting in a reduction of the Gini coefficient by 0.103; (2) IGS in the broad sense, including public affiliated green spaces, shows an even more positive effect on improving the equity of green space supply, with a reduction of the Gini coefficient by 0.28; (3) there exists great spatial disparity in accessibility improvement effect by different types of IGS, so public policies must be customized to reflect local circumstances, taking into account the practicality and associated costs of management and maintenance of various IGS as well as accessibility enhancement; (4) certain older residential areas may not be amenable to effective enhancement through the use of IGS alone, and these should then adopt a multidimensional greening strategy such as green-roof. The findings of this research offer valuable insights for the planning and management of green spaces in densely populated urban environments, thereby aiding in the development of more refined models for the development of “Garden Cities”. Full article
Show Figures

Figure 1

17 pages, 3175 KiB  
Article
Impact of Different Building Roof Types on Hydrological Processes at the Urban Community Scale
by Chaohui Chen, Hao Hou, Yongguo Shi, Ping Zhao, Yao Li, Yong Wang, Yindong Zhang and Tangao Hu
Hydrology 2025, 12(6), 154; https://doi.org/10.3390/hydrology12060154 - 18 Jun 2025
Viewed by 472
Abstract
As urbanization accelerates and urban hydrological cycles evolve, roof typology emerges as a pivotal role in water retention capacity and drainage efficiency. To systematically evaluate the influence of various roof types on urban hydrological processes, this study designed four distinct catchment scenarios: Thiessen [...] Read more.
As urbanization accelerates and urban hydrological cycles evolve, roof typology emerges as a pivotal role in water retention capacity and drainage efficiency. To systematically evaluate the influence of various roof types on urban hydrological processes, this study designed four distinct catchment scenarios: Thiessen Polygon Scenarios (TS), Roof Type Consideration Scenarios (RS), Full Flat-Roof Scenarios (FS), and Full Pitched-Roof Scenarios (PS). This study employed the Urban Flood Intelligent Model (UFIM) to simulate urban flooding scenarios, utilizing precipitation data from 21 August 2024 combined with four distinct return periods (1a, 5a, 10a, and 20a) as hydrological inputs. The results show that roof types significantly affected hydrological processes in urban communities. Flat roofs accumulate water and drain slowly, making it easy to form larger areas of accumulated water during peak rainfall periods, thereby increasing the risk of urban flooding. Pitched roofs drain quickly but experience a brief rise in water level during peak hours due to rapid drainage. Based on these insights, priority should be given to the use of sloped roof design in areas prone to accumulated water to accelerate drainage. In areas requiring runoff mitigation, the strategic integration of flat roofs with green roofs enhances rainwater retention capacity, thereby optimizing urban hydrological regulation and bolstering flood resilience. Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
Show Figures

Figure 1

Back to TopTop