Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Research Methodology
2.2.1. SWMM Stormwater Management Model
- Model setup
- 2.
- Model validation
- 3.
- Rainfall determination
2.2.2. LID Settings
- LID Selection and Parameter Setting
- 2.
- LID application scenarios
2.2.3. NSGA-II Genetic Algorithm
- Algorithm setup
- 2.
- Optimization objectives and decision variables
2.2.4. AHP Hierarchical Analysis
- Construction of the indicator system
- 2.
- Determination of indicator values
- 3.
- Benefit calculation
- 4.
- Evaluation levels and criteria
3. Results and Discussion
3.1. Effectiveness of SWMM-Based Single LID Runoff Management
3.2. NSGA-II-Based LID Combination Optimization Results
3.2.1. Comparative Analysis of Cost-Runoff Curves at Different Return Periods
3.2.2. Pareto Frontier Analysis at p = 10
3.3. Selection of Optimal Combination Arrangement Options Based on Comprehensive Benefit Evaluation
3.3.1. AHP-Integrated Benefit Evaluation System
3.3.2. Integrated Benefit Evaluation of LID Portfolios with Multi-Objectives
- Comprehensive evaluation of LID portfolio optimization
- 2.
- Optimal program selection
3.4. Analysis of the Best Solution with LID Multi-Objective Optimization
3.4.1. Evaluation of Optimal LID Solutions
- Stormwater reduction
- 2.
- Peak runoff control
- 3.
- Pollutant reduction
3.4.2. Countermeasures for Campus Landscape Improvement Based on the Best Option
- Construction of a sponge landscape complex
- 2.
- Improve the campus financial system
- 3.
- Enhance public participation and experience
3.5. Limitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter Name | Parameter Value | |
---|---|---|
permeable zone | initial loss | 10 mm |
initial percolation rate | 82 mm/h | |
stable permeability | 5 mm/h | |
infiltration attenuation coefficient | 2 h | |
Manning’s coefficient | 0.5 | |
impervious area | initial loss | 3 mm |
constant runoff coefficient | 8 | |
Manning’s coefficient | 0.013 | |
conduit | confluence | dynamic wave method (physics) |
roughness | 0.0013 |
LID | Runoff Coefficient |
---|---|
Green Roofs | 0.328 |
Sunken Green Space | 0.164 |
Permeable Paving | 0.455 |
Rain Gardens | 0.158 |
LID | SS Removal Rate | TP Removal Rate | TN Removal Rate | COD Removal Rate |
sunken green space | 65% | 45% | 40% | 25% |
green roof | 50% | 60% | 25% | 30% |
permeable pavement | 75% | 55% | 30% | 30% |
rain garden | 35% | 35% | 45% | 30% |
Norm | Formulas | Account |
---|---|---|
Improvement in air quality | = I × S × T means reduction, I refers to the retention factor, kg/(m2-yr), S refers to the area of the facility, m2, and T refers to the pollutant concentration, μg/m3 | Retention factor: Sunken green space: 0.001 kg/(m2-yr) Green roofs: 0.010 kg/(m2-yr) Rain gardens: 0.050 kg/(m2-yr) The baseline PM2.5 concentration in the air is 50 μg/m3 |
Carbon sequestration | GCO2 carbon sequestration, kg /yr, refers to the carbon fixation factor, kg /m2/yr. Area covered by vegetation, m2 | Carbon fixation factor: Grassland: 0.5 kg /m2/yr Shrubs: 2.0 kg /m2/yr Trees: 10.0 kg /m2/yr |
Species diversity | H refers to the diversity indicator, refers to the area of each patch type | |
Temperature regulation | KC means the coefficient of reduction of surface temperature, means the temperature reduction factor, °C/m2. refers to the area of green space or water body, m2 | Temperature reduction factor: Grassland: 0.3 °C/m2 Shrubs: 0.5 °C/m2 Trees: 0.7 °C/m2 |
Humidity regulation | H refers to humidity increase, E refers to evapotranspiration, E = 4 mm/day, S refers to the area covered by trees, m2 h refers to the humidity regulation factor, h = 0.05%/m2-mm/day | |
Water cost savings | Y refers to the cost of water conservation, refers to the price of tap water, USD/m3, and H refers to the volume of rainwater harvesting, m3 | |
Savings in input costs | Y = − | Y refers to the input cost savings indicator, F refers to the economic construction cost, USD million, and S refers to the total area of the facility construction, m2 |
Facility maintenance costs | Y refers to facility maintenance costs, S refers to facility area, m2, and a refers to maintenance costs | Maintenance cost factor: Sunken green space 2.75/m2/year Permeable paving 4.13/m2/year Roof garden 6.88/m2/year Rain garden 3.44/m2/year |
Scenario Number | Area (hm2) | Scenario Number | Area (hm2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Green Roofs | Sunken Green Space | Permeable Pavement | Rainwater Garden | Green Roofs | Sunken Green Space | Permeable Pavement | Rainwater Garden | ||
1 | 3.7148 | 2.7350 | 3.4105 | 3.0569 | 51 | 4.6937 | 2.7182 | 5.0126 | 2.7469 |
2 | 2.2345 | 2.7314 | 3.6727 | 3.0561 | 52 | 4.6990 | 2.7163 | 2.6232 | 2.7424 |
3 | 4.1418 | 2.7419 | 4.2527 | 3.0368 | 53 | 0.0000 | 2.7488 | 2.1472 | 2.7144 |
4 | 4.7221 | 2.7063 | 3.6846 | 3.0301 | 54 | 4.9735 | 2.6926 | 4.2479 | 2.7099 |
5 | 5.4333 | 2.7506 | 4.3087 | 3.0104 | 55 | 5.3560 | 2.7410 | 5.2255 | 2.7059 |
6 | 4.7804 | 2.7164 | 1.4538 | 2.9863 | 56 | 5.4344 | 2.5902 | 3.7965 | 2.6905 |
7 | 0.0000 | 2.7231 | 4.4093 | 2.9807 | 57 | 5.0350 | 2.7444 | 4.8565 | 2.6792 |
8 | 5.7414 | 2.7321 | 3.4543 | 2.9787 | 58 | 5.8256 | 2.7634 | 4.3178 | 2.6645 |
9 | 5.7814 | 2.7347 | 4.4271 | 2.9687 | 59 | 4.6797 | 2.7300 | 3.6272 | 2.6630 |
10 | 5.5977 | 0.0000 | 8.6239 | 2.9646 | 60 | 2.9138 | 2.7318 | 4.7782 | 2.6554 |
11 | 5.3261 | 2.7295 | 4.2629 | 2.9634 | 61 | 5.3624 | 2.7708 | 4.6194 | 2.6446 |
12 | 5.0655 | 2.7284 | 3.1554 | 2.9625 | 62 | 5.9382 | 2.6420 | 2.3446 | 2.6370 |
13 | 5.4941 | 2.7311 | 4.7587 | 2.9620 | 63 | 5.8344 | 2.7506 | 4.3764 | 2.6355 |
14 | 5.6171 | 2.7211 | 3.7469 | 2.9576 | 64 | 4.8975 | 2.6789 | 4.1060 | 2.6341 |
15 | 2.8908 | 2.9110 | 4.0691 | 2.9548 | 65 | 4.9664 | 2.7180 | 0.0000 | 2.6125 |
16 | 5.3947 | 2.7369 | 3.2737 | 2.9521 | 66 | 4.0032 | 2.7100 | 4.7317 | 2.6097 |
17 | 5.6477 | 2.7097 | 4.0663 | 2.9518 | 67 | 5.6322 | 2.5827 | 3.7386 | 2.6069 |
18 | 5.6146 | 2.7107 | 4.0849 | 2.9407 | 68 | 2.8636 | 2.8522 | 4.5690 | 2.5863 |
19 | 5.5012 | 2.7030 | 4.0583 | 2.9366 | 69 | 5.3764 | 2.6531 | 5.1957 | 2.5642 |
20 | 5.6437 | 2.9000 | 4.5308 | 2.9346 | 70 | 5.0480 | 2.6743 | 2.6941 | 2.5564 |
21 | 5.1546 | 2.7297 | 4.3238 | 2.9296 | 71 | 3.8652 | 2.7206 | 3.4817 | 2.5445 |
22 | 5.8868 | 2.7528 | 4.0480 | 2.9295 | 72 | 4.9642 | 2.7027 | 4.6111 | 2.5135 |
23 | 5.9854 | 2.7216 | 1.6156 | 2.9274 | 73 | 4.7158 | 2.8062 | 7.0956 | 2.4873 |
24 | 5.5296 | 2.7063 | 4.0272 | 2.9253 | 74 | 4.9403 | 2.7155 | 5.5518 | 2.4351 |
25 | 5.9715 | 2.7086 | 3.9775 | 2.9223 | 75 | 4.7814 | 2.7045 | 4.1852 | 2.3872 |
26 | 5.0055 | 2.8569 | 7.3010 | 2.9198 | 76 | 4.8250 | 2.8263 | 2.4007 | 2.3180 |
27 | 5.4775 | 2.8368 | 7.0581 | 2.9107 | 77 | 4.8949 | 2.7120 | 6.3301 | 2.2652 |
28 | 5.6794 | 2.6623 | 3.0096 | 2.8973 | 78 | 5.0804 | 2.8884 | 6.6622 | 2.2480 |
29 | 5.8597 | 2.7602 | 4.0436 | 2.8956 | 79 | 4.8387 | 2.8257 | 3.5124 | 2.2317 |
30 | 5.6074 | 2.7709 | 4.5637 | 2.8942 | 80 | 4.8474 | 2.7432 | 8.5740 | 2.0713 |
31 | 5.4050 | 2.7368 | 3.6536 | 2.8881 | 81 | 4.8398 | 2.7447 | 4.5467 | 1.9393 |
32 | 5.8881 | 2.7635 | 4.0125 | 2.8843 | 82 | 3.7704 | 2.7135 | 2.6402 | 1.9158 |
33 | 4.8195 | 2.7247 | 4.6527 | 2.8797 | 83 | 5.0277 | 2.8588 | 8.0283 | 1.8926 |
34 | 5.5762 | 2.8088 | 5.4431 | 2.8646 | 84 | 0.8075 | 2.6919 | 3.5416 | 1.7147 |
35 | 5.4821 | 2.7119 | 2.9284 | 2.8592 | 85 | 5.1678 | 3.0317 | 9.1387 | 1.7055 |
36 | 5.5252 | 2.7438 | 2.6882 | 2.8573 | 86 | 3.8734 | 2.7240 | 4.6484 | 1.6578 |
37 | 5.5011 | 2.7342 | 4.3231 | 2.8420 | 87 | 3.5897 | 2.7065 | 4.7534 | 1.5367 |
38 | 4.3475 | 2.7417 | 7.2032 | 2.8375 | 88 | 4.8256 | 2.7164 | 4.6357 | 1.5351 |
39 | 5.7068 | 2.7418 | 4.3353 | 2.8352 | 89 | 5.0780 | 2.7024 | 4.1332 | 1.4658 |
40 | 0.0000 | 3.0800 | 4.3575 | 2.8348 | 90 | 3.2387 | 2.7366 | 4.6780 | 1.3549 |
41 | 0.0000 | 2.6495 | 3.6358 | 2.8276 | 91 | 4.8133 | 2.7143 | 4.2584 | 1.2780 |
42 | 2.6611 | 2.7080 | 4.3792 | 2.8269 | 92 | 4.1057 | 2.7173 | 5.0664 | 1.0018 |
43 | 4.9901 | 2.8160 | 3.5043 | 2.8080 | 93 | 3.3680 | 2.7375 | 2.7022 | 0.7804 |
44 | 4.2851 | 2.6983 | 4.4642 | 2.7980 | 94 | 3.4309 | 2.7075 | 5.2056 | 0.1395 |
45 | 5.5077 | 2.9302 | 3.2694 | 2.7880 | 95 | 2.8277 | 3.0471 | 6.4255 | 0.1324 |
46 | 1.0429 | 2.9372 | 6.0820 | 2.7858 | 96 | 2.3802 | 2.7195 | 5.1957 | 0.0000 |
47 | 3.6601 | 2.6702 | 3.8791 | 2.7843 | 97 | 3.3850 | 2.7103 | 3.9501 | 3.0600 |
48 | 5.3593 | 2.7181 | 4.0138 | 2.7750 | 98 | 6.1200 | 2.7638 | 3.8453 | 3.0538 |
49 | 5.7575 | 2.7286 | 4.1527 | 2.7715 | 99 | 0.0000 | 3.0800 | 4.0977 | 2.8348 |
50 | 5.2890 | 2.7332 | 5.5654 | 2.7482 | 100 | 5.7501 | 0.2014 | 9.2700 | 2.7880 |
Appendix B. Model Validation Metrics
Appendix C. Sensitivity Analysis of the SWMM Model Parameters
Parameter | Base Value | ±20% Change | ±40% Change | Sensitivity Trend |
---|---|---|---|---|
Impervious Manning’s n | 0.013 | −0.0104–+0.0156 | −0.0078–+0.0182 | Moderate |
Initial loss (impervious) | 3 mm | 2.4–3.6 mm | 1.8–4.2 mm | High |
Initial infiltration rate | 82 mm/h | 65.6–98.4 mm/h | 49.2–114.8 mm/h | Moderate |
Decay coefficient | 2/h | 1.6–2.4/h | 1.2–2.8/h | Low |
Appendix D. Robustness Evaluation of the Pareto Frontier Under Input Uncertainty
Appendix D.1. Perturbation Method
Appendix D.2. Evaluation Indicators
- Hypervolume (HV): Measures the volume in objective space dominated by the Pareto front and bounded by a reference point. A higher HV value indicates better diversity and quality.
- Spacing (SP): Quantifies the spread (uniformity) of solutions on the Pareto front. A lower SP value reflects better convergence and even distribution.
Metric | Mean Value | Standard Deviation | Interpretation |
---|---|---|---|
HV | 0.745 | 0.018 | Stable diversity across solutions |
SP | 0.024 | 0.005 | Low dispersion, indicating good convergence |
Appendix D.3. Interpretation and Implications
References
- Liu, T.; Lawluvy, Y.; Shi, Y.; Yap, P.-S. Low impact development (LID) practices: A review on recent developments, challenges and prospects. Water Air Soil Pollut. 2021, 232, 344. [Google Scholar] [CrossRef]
- Chang, N.-B.; Lu, J.-W.; Chui, T.F.M.; Hartshorn, N. Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy 2018, 70, 368–383. [Google Scholar] [CrossRef]
- Batalini de Macedo, M.; Nobrega Gomes, M., Jr.; Pereira de Oliveira, T.R.; Giacomoni, M.H.; Imani, M.; Zhang, K.; Ambrogi Ferreira do Lago, C.; Mendiondo, E.M. Low impact development practices in the context of united nations sustainable development goals: A new concept, lessons learned and challenges. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2538–2581. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J.; Krebs, P. Low impact development practices mitigate urban flooding and non-point pollution under climate change. J. Clean. Prod. 2022, 347, 131320. [Google Scholar] [CrossRef]
- Putri, F.K.; Hidayah, E.; Ma’ruf, M.F. Enhancing stormwater management with low impact development (LID): A review of the rain barrel, bioretention, and permeable pavement applicability in Indonesia. Water Sci. Technol. 2023, 87, 2345–2361. [Google Scholar] [CrossRef] [PubMed]
- Nowogoński, I. Runoff volume reduction using green infrastructure. Land 2021, 10, 297. [Google Scholar] [CrossRef]
- Si, S.; Li, J.; Jiang, Y.; Wang, Y.; Liu, L. The response of runoff pollution control to initial runoff volume capture in sponge city construction using SWMM. Appl. Sci. 2022, 12, 5617. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Guo, Z.; van Duin, B.; Zhang, W. A new LID spatial allocation optimization system at neighborhood scale: Integrated SWMM with PICEA-g using MATLAB as the platform. Sci. Total Environ. 2022, 831, 154843. [Google Scholar] [CrossRef]
- Hou, X.; Qin, L.; Xue, X.; Xu, S.; Yang, Y.; Liu, X.; Li, M. A city-scale fully controlled system for stormwater management: Consideration of flooding, non-point source pollution and sewer overflow pollution. J. Hydrol. 2021, 603, 127155. [Google Scholar] [CrossRef]
- Kong, Z.; Shao, Z.; Shen, Y.; Zhang, X.; Chen, M.; Yuan, Y.; Li, G.; Wei, Y.; Hu, X.; Huang, Y.; et al. Comprehensive evaluation of stormwater pollutants characteristics, purification process and environmental impact after low impact development practices. J. Clean. Prod. 2021, 278, 123509. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Li, J.; Wang, Y.; Dzakpasu, M.; Wang, X.C. First flush stormwater pollution in urban catchments: A review of its characterization and quantification towards optimization of control measures. J. Environ. Manag. 2023, 340, 117976. [Google Scholar] [CrossRef]
- Li, L.; Davis, A.P. Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environ. Sci. Technol. 2014, 48, 3403–3410. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Fang, X.; Gong, Y.; Wang, W. Case studies of the sponge city program in China. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016; pp. 295–308. [Google Scholar]
- Liang, C.; Zhang, X.; Xu, J.; Pan, G.; Wang, Y. An integrated framework to select resilient and sustainable sponge city design schemes for robust decision making. Ecol. Indic. 2020, 119, 106810. [Google Scholar] [CrossRef]
- Xu, Z.; Li, P.; Cheng, T. LID optimization layout facilities in sponge city: A case study of Huangtaiqiao catchment in Jinan City. South–North Water Transf. Water Sci. Technol. 2022, 20, 552–562. [Google Scholar]
- Tang, S.; Jiang, J.; Shamseldin, A.Y.; Shi, H.; Wang, X.; Shang, F.; Wang, S.; Zheng, Y. Comprehensive optimization framework for low impact development facility layout design with cost–benefit analysis: A case study in Shenzhen city, China. Acs EsT Water 2021, 2, 63–74. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, P.; Liu, Z.; Li, W.; Zhou, J. Optimization of LID strategies for urban CSO reduction and cost efficiency: A beijing case study. Water 2024, 16, 965. [Google Scholar] [CrossRef]
- Liberalesso, T.; Cruz, C.O.; Silva, C.M.; Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Houle, J.J.; Roseen, R.M.; Ballestero, T.P.; Puls, T.A.; Sherrard, J., Jr. Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- Liu, S.; Pan, R.; Chen, X.; Xue, Z.; Zhang, Y.; Cao, Z. A comprehensive evaluation method of cost-effectiveness of LID facilities in sponge city based on the life cycle. Water Conserv. Sci. Eng. 2024, 9, 84. [Google Scholar] [CrossRef]
- Eisenberg, B. Design, engineering, installation, and O&M considerations for incorporating stormwater low impact development (LID) practices in urban, suburban, rural, and brownfield sites. In Low Impact Development for Urban Ecosystem and Habitat Protection; ASCE: Reston, VA, USA, 2009; pp. 1–10. [Google Scholar]
- Xie, Y.; Wang, H.; Wang, K.; Ge, X.; Ying, X. The application and potential of multi-objective optimization algorithms in decision-making for LID facilities layout. Water Resour. Manag. 2024, 38, 5403–5417. [Google Scholar] [CrossRef]
- Liao, K.-H. The socio-ecological practice of building blue-green infrastructure in high-density cities: What does the ABC Waters Program in Singapore tell us? Socio-Ecol. Pract. Res. 2019, 1, 67–81. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Ma, M.; Li, Y.; Xia, J.; Gao, X. A multi-index evaluation system for identifying the optimal configuration of LID facilities in the newly built and built-up urban areas. Water Resour. Manag. 2021, 35, 2129–2147. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. J. Flood Risk Manag. 2020, 13, e12625. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, W.; Tian, Z.; Tang, Y.; Tillotson, M.; Liu, J. Stormwater management modeling in “Sponge City” construction: Current state and future directions. Front. Environ. Sci. 2022, 9, 816093. [Google Scholar] [CrossRef]
- Behrouz, M.S.; Zhu, Z.; Matott, L.S.; Rabideau, A.J. A new tool for automatic calibration of the Storm Water Management Model (SWMM). J. Hydrol. 2020, 581, 124436. [Google Scholar] [CrossRef]
- Gironás, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A new applications manual for the storm water management model (SWMM). Environ. Model. Softw. 2010, 25, 813–814. [Google Scholar] [CrossRef]
- Maglia, N.; Raimondi, A. A new approach on design and verification of integrated sustainable urban drainage systems for stormwater management in urban areas. J. Environ. Manag. 2025, 373, 123882. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Cao, S.; Li, C.; Zhang, S.; Guo, Y. A framework for quantifying stormwater control measures’ hydrologic performance with analytical stochastic models. Water Resour. Manag. 2024, 38, 5385–5402. [Google Scholar] [CrossRef]
- Cao, S.; Jia, J.; Wang, J.; Diao, Y.; Liu, Y.; Guo, Y. Development of an analytical permeable pavement model for vehicular access areas. Sci. Total Environ. 2023, 883, 163686. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Huang, G.; Mai, Y.; Chen, W. Optimizing the cost-effectiveness of low impact development (LID) practices using an analytical probabilistic approach. Urban Water J. 2020, 17, 136–143. [Google Scholar] [CrossRef]
- Lord, S.A.; Ghasabsaraei, M.H.; Movahedinia, M.; Shahdany, S.M.H.; Roozbahani, A. Redesign of stormwater collection canal based on flood exceedance probability using the ant colony optimization: Study area of eastern Tehran metropolis. Water Sci. Technol. 2021, 84, 820–839. [Google Scholar] [CrossRef]
- Taghizadeh, S.; Khani, S.; Rajaee, T. Hybrid SWMM and particle swarm optimization model for urban runoff water quality control by using green infrastructures (LID-BMPs). Urban For. Urban Green. 2021, 60, 127032. [Google Scholar] [CrossRef]
- Huang, J.J.; Xiao, M.; Li, Y.; Yan, R.; Zhang, Q.; Sun, Y.; Zhao, T. The optimization of Low Impact Development placement considering life cycle cost using Genetic Algorithm. J. Environ. Manag. 2022, 309, 114700. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H. Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives. Resour. Conserv. Recycl. 2023, 190, 106861. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.; Zhang, D.; Zhang, Y.; Liu, M.; Rao, Q.; Li, J.; Tan, S.K. Optimization of integrating life cycle cost and systematic resilience for grey-green stormwater infrastructure. Sustain. Cities Soc. 2023, 90, 104379. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, H.; Wang, X.; Gu, Z.; Fu, L.; Cheng, Y. Optimized design of sponge-type comprehensive pipe corridor rainwater chamber based on NSGA-III algorithm. Water 2023, 15, 3319. [Google Scholar] [CrossRef]
- Ooi, J.; Promentilla, M.A.B.; Tan, R.R.; Ng, D.K.; Chemmangattuvalappil, N.G. A systematic methodology for multi-objective molecular design via analytic hierarchy process. Process Saf. Environ. Prot. 2017, 111, 663–677. [Google Scholar] [CrossRef]
- Gulshad, K.; Szydłowski, M.; Yaseen, A.; Aslam, R.W. A comparative analysis of methods and tools for low impact development (LID) site selection. J. Environ. Manag. 2024, 354, 120212. [Google Scholar] [CrossRef]
- Gu, Y.; Zhao, J.; Herzog, T.; Mao, Q.; Latz, P. Exploring the space use mechanism of high-density campus in urban Beijing. Habitat Int. 2019, 91, 102024. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, T.; Li, J.; Feng, P.; Miao, Y. Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, north China. J. Environ. Manag. 2023, 334, 117442. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Zhen, X.; Clar, M.; Yu, S.L. China’s sponge city construction: A discussion on technical approaches. Front. Environ. Sci. Eng. 2017, 11, 18. [Google Scholar] [CrossRef]
- China Ministry of Housing and Urban-Rural Construction (MHURC). Technical Guidelines on Sponge City Construction—Low Impact Development STORMWATER Management System (Trial); China Ministry of Housing and Urban-Rural Construction: Beijing, China, 2014.
- Cui, T.; Long, Y.; Wang, Y. Choosing the LID for urban storm management in the south of taiyuan basin by comparing the storm water reduction efficiency. Water 2019, 11, 2583. [Google Scholar] [CrossRef]
- Taiyuan Municipal People’s Congress Standing Committee. Taiyuan Sponge City Construction Management Regulations. promulgated on 4 December 2019, effective from 1 January 2020. Available online: https://flk.npc.gov.cn/detail2.html?ZmY4MDgwODE2ZmJjNTdjMTAxNzEyOTZmZDI1ODNiNmI (accessed on 2 July 2025). (In Chinese)
- Rossman, L.A.; Simon, M. Storm Water Management Model (SWMM) User’s Manual; Version 5.2.; U.S. Environmental Protection Agency; Office of Research and Development; Center for Environmental Solutions and Emergency Response: Cincinnati, OH, USA, 2022.
- Mu, D.; Luo, P.; Lyu, J.; Zhou, M.; Huo, A.; Duan, W.; Nover, D.; He, B.; Zhao, X. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. J. Flood Risk Manag. 2021, 14, e12668. [Google Scholar] [CrossRef]
- Cao, K. Optimization Design of a Sponge Campus Based on the SWMM Model: A Case Study of Shanxi Agricultural University. Master’s Thesis, Shanxi Agricultural University, Jinzhong, China, 2022. [Google Scholar]
- Mu, D. Runoff Response Characteristics of Urban LID Construction in the Gullied Region of the Loess Plateau. Master’s Thesis, Chang’an University, Xi’an, China, 2019. [Google Scholar]
- Shanxi Urban and Rural Planning and Design Institute Co., Ltd.; Beijing University of Civil Engineering and Architecture. Standard for Technology of Sponge City; Shanxi Provincial Department of Housing and Urban-Rural Development: Taiyuan, China, 2025.
- Shi, L.-M.; Zhou, Y.; Sun, T.-R.; Zhao, C.; Lu, Z.-S.; Zhou, H.; Liu, J. The spatial allocative optimization of LID facilities based on genetic algorithm. China Rural Water Hydropower 2024, 5, 105–112+121. [Google Scholar]
- Wang, Q.; Wang, L.; Huang, W.; Wang, Z.; Liu, S.; Savić, D.A. Parameterization of NSGA-II for the optimal design of water distribution systems. Water 2019, 11, 971. [Google Scholar] [CrossRef]
- The Ministry of Housing and Construction. Urban Public Facilities Cost Index Case; China Planning Press: Beijing, China, 2019; ISBN 978-7-5182-1013-8. [Google Scholar]
- Xu, J.; Dai, J.; Wu, X.; Wu, S.; Zhang, Y.; Wang, F.; Gao, A.; Tan, Y. Urban rainwater utilization: A review of management modes and harvesting systems. Front. Environ. Sci. 2023, 11, 1025665. [Google Scholar] [CrossRef]
- Kuruppu, U.; Rahman, A.; Rahman, M.A. Permeable pavement as a stormwater best management practice: A review and discussion. Environ. Earth Sci. 2019, 78, 327. [Google Scholar] [CrossRef]
- Tang, S.; Luo, W.; Jia, Z.; Liu, W.; Li, S.; Wu, Y. Evaluating retention capacity of infiltration rain gardens and their potential effect on urban stormwater management in the sub-humid loess region of China. Water Resour. Manag. 2016, 30, 983–1000. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.; Zhang, C.; Zhang, J. The economic benefits of rainwater-runoff reduction by urban green spaces: A case study in Beijing, China. J. Environ. Manag. 2012, 100, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Andenæs, E.; Kvande, T.; Muthanna, T.M.; Lohne, J. Performance of blue-green roofs in cold climates: A scoping review. Buildings 2018, 8, 55. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414, 148–161. [Google Scholar] [CrossRef]
- Rong, G.; Hu, L.; Wang, X.; Jiang, H.; Gan, D.; Li, S. Simulation and evaluation of low-impact development practices in university construction: A case study of Anhui University of Science and Technology. J. Clean. Prod. 2021, 294, 126232. [Google Scholar] [CrossRef]
- Ryan, R.L. Green infrastructure planning on campus: Case studies from university of Massachusetts–Amherst. J. Green Build. 2018, 13, 145–157. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Multiobjective optimization of low impact development stormwater controls. J. Hydrol. 2018, 562, 564–576. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, X.; Zeng, Z.; Shen, P.; Lai, C. A novel spatial optimization approach for the cost-effectiveness improvement of LID practices based on SWMM-FTC. J. Environ. Manag. 2022, 307, 114574. [Google Scholar] [CrossRef]
- Parikh, P.; Taylor, M.A.; Hoagland, T.; Thurston, H.; Shuster, W. Application of market mechanisms and incentives to reduce stormwater runoff: An integrated hydrologic, economic and legal approach. Environ. Sci. Policy 2005, 8, 133–144. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, H.; Huang, F.; Li, H. Cost–effectiveness analysis on LID measures of a highly urbanized area. Desalination Water Treat. 2015, 56, 2817–2823. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Guo, C.; Jia, H.; Shen, Z. Two-scale optimal management of urban runoff by linking LIDs and landscape configuration. J. Hydrol. 2023, 620, 129332. [Google Scholar] [CrossRef]
- Lopes, M.D.; da Silva, G.B.L. An efficient simulation-optimization approach based on genetic algorithms and hydrologic modeling to assist in identifying optimal low impact development designs. Landsc. Urban Plan. 2021, 216, 104251. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Kim, J.; Jun, S.-M.; Hwang, S.; Song, J.-H.; Kang, M.-S. Analysis of the effects of low impact development practices on hydrological components using HSPF. J. Hydro-Environ. Res. 2023, 46, 72–85. [Google Scholar] [CrossRef]
- Pokhrel, S.R.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Sustainable, resilient, and reliable urban water systems: Making the case for a “one water” approach. Environ. Rev. 2022, 30, 10–29. [Google Scholar] [CrossRef]
- Kaykhosravi, S.; Abogadil, K.; Khan, U.T.; Jadidi, M.A. The low-impact development demand index: A new approach to identifying locations for LID. Water 2019, 11, 2341. [Google Scholar] [CrossRef]
- Wiwoho, J.; Suryanto, S.; Murtanti, M.; Nugraha, S. The management of the water as an effort to realize a green campus in universitas sebelas maret surakarta. J. Sustain. Perspect. 2021, 1, 225–231. [Google Scholar] [CrossRef]
- de Oliveira, J.A.P.; Bellezoni, R.A.; Shih, W.; Bayulken, B. Innovations in urban green and blue infrastructure: Tackling local and global challenges in cities. J. Clean. Prod. 2022, 362, 132355. [Google Scholar] [CrossRef]
- Pauleit, S.; Hansen, R.; Rall, E.L.; Zölch, T.; Andersson, E.; Luz, A.C.; Szaraz, L.; Tosics, I.; Vierikko, K. Urban landscapes and green infrastructure. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Turner, V.K. Obstacles to developing sustainable cities: The real estate rigidity trap. Ecol. Soc. 2017, 22, 1–14. [Google Scholar] [CrossRef]
- Li, L.; Collins, A.M.; Cheshmehzangi, A.; Chan, F.K.S. Identifying enablers and barriers to the implementation of the Green Infrastructure for urban flood management: A comparative analysis of the UK and China. Urban For. Urban Green. 2020, 54, 126770. [Google Scholar] [CrossRef]
- Ishaq, S.; Hewage, K.; Farooq, S.; Sadiq, R. State of provincial regulations and guidelines to promote low impact development (LID) alternatives across Canada: Content analysis and comparative assessment. J. Environ. Manag. 2019, 235, 389–402. [Google Scholar] [CrossRef]
- Novaes, C.; Marques, R. Attracting the private sector to urban stormwater: A feasible task or just a pipe dream? Water 2022, 14, 2164. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management-Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Church, S.P. Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landsc. Urban Plan. 2015, 134, 229–240. [Google Scholar] [CrossRef]
- Echols, S.; Pennypacker, E. From stormwater management to artful rainwater design. Landsc. J. 2008, 27, 268–290. [Google Scholar] [CrossRef]
- Saeedi, I.; Goodarzi, M. Rainwater harvesting system: A sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran. Environ. Dev. Sustain. 2020, 22, 1579–1598. [Google Scholar] [CrossRef]
- Wu, J.Y.L. Evolving landscape education: Reform measures for mixed teaching in ecological landscape design. Glob. J. Educ. Learn. 2022, 10, 17–23. [Google Scholar]
Regional Division | Area (hm2) | LID | Maximum Percentage of LID Settings | Land Area (hm2) | |
---|---|---|---|---|---|
Building roofs | 12.23 | green roof | 50% | 6.12 | |
Hardened roads | 14.27 | permeable pavement | 65% | 9.27 | |
public center | Centralized green space | 6.12 | rain garden | 50% | 3.06 |
Road greening and decentralized green space | 8.16 | sunken green space | 50% | 3.08 |
Layer | Parameter | Unit | Green Roof | Permeable Pavement | Rain Garden | Sunken Green Space |
---|---|---|---|---|---|---|
Surface | Berm Height | mm | 50 | 20 | 200 | 150 |
Vegetation Volume Fraction | % | 0.1 | - | 0.3 | 0.2 | |
Surface Roughness | - | 0.15 | 0.01 | 0.4 | 0.3 | |
Surface Slope | % | 2 | 1 | 2 | 1 | |
Pavement | Thickness | mm | - | 100 | - | - |
Permeability | mm/h | - | 500 | - | - | |
Soil | Thickness | mm | 100 | 150 | 300 | 300 |
Porosity | % | 0.45 | 0.35 | 0.4 | 0.35 | |
Hydraulic Conductivity (k) | mm/h | 150 | 300 | 50 | 100 | |
Storage | Thickness | mm | - | - | - | - |
Void Ratio | % | - | - | - | - | |
Seepage rate | mm/h | - | - | - | - |
LID (USDs/m2) | Labor Cost | Material Cost | Machinery Costs | Composite Fee | Total |
---|---|---|---|---|---|
green roof | 4.11 | 20.18 | 3.35 | 8.44 | 36.08 |
sunken green space | 3.09 | 7.13 | 3.39 | 7.02 | 20.63 |
permeable pavement | 5.87 | 8.96 | 6.66 | 7.00 | 28.49 |
rain garden | 5.68 | 24.84 | 6.38 | 19.36 | 56.26 |
Type of LID | Ratio Setting (%) | Cost (USD Million) | Reduction Rate (%) | Cost-Effectiveness Values |
---|---|---|---|---|
green roof | 20 | 88.26 | 6.9 | 0.011 |
35 | 154.5 | 11.9 | ||
50 | 220.65 | 14.7 | ||
permeable pavement | 20 | 81.32 | 8.1 | 0.013 |
35 | 142.30 | 14.5 | ||
50 | 203.30 | 18.3 | ||
65 | 264.28 | 19.4 | ||
rain garden | 20 | 68.86 | 2.8 | 0.005 |
35 | 120.52 | 5.1 | ||
50 | 172.16 | 7.2 | ||
sunken green space | 20 | 33.37 | 7.3 | 0.029 |
35 | 58.93 | 14.7 | ||
50 | 84.18 | 15.6 |
Indicator Layer | Weighting | Factor Level | Weighting | |
---|---|---|---|---|
Combined benefits | environmental benefit | 0.2540 | Total runoff reduction | 0.1838 |
Water quality improvement | 0.1671 | |||
Air quality improvement | 0.1003 | |||
Carbon sequestration | 0.0468 | |||
Biodiversity | 0.2133 | |||
Temperature regulation | 0.1536 | |||
Humidity regulation | 0.1351 | |||
economic benefit | 0.2656 | Water cost savings | 0.2389 | |
Input cost savings | 0.4412 | |||
Operation and maintenance costs | 0.3199 | |||
social benefit | 0.3476 | Contribution to research | 0.2113 | |
Student health impacts | 0.4469 | |||
Effectiveness of public education | 0.3418 | |||
technical benefits | 0.1328 | Technical feasibility | 0.2180 | |
Technical operability | 0.3751 | |||
Technology replicability | 0.4069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Z.; Li, L.; Wei, Y.; Zhang, W.; Luo, J.; Zhao, X. Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale. Land 2025, 14, 1434. https://doi.org/10.3390/land14071434
Lei Z, Li L, Wei Y, Zhang W, Luo J, Zhao X. Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale. Land. 2025; 14(7):1434. https://doi.org/10.3390/land14071434
Chicago/Turabian StyleLei, Zexin, Lijun Li, Yanrou Wei, Wenzheng Zhang, Junjie Luo, and Xuqiang Zhao. 2025. "Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale" Land 14, no. 7: 1434. https://doi.org/10.3390/land14071434
APA StyleLei, Z., Li, L., Wei, Y., Zhang, W., Luo, J., & Zhao, X. (2025). Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale. Land, 14(7), 1434. https://doi.org/10.3390/land14071434