Improving Green Roof Runoff Modeling for Sustainable Cities: The Role of Site-Specific Calibration in SCS-CN Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Green Roof Pilot
2.2. Data Collection
2.3. Soil Conservation Service Curve Number (SCS-CN)
2.4. Initial Abstraction Ratio Calculation Methods
2.5. Statistical Analyses
3. Results and Discussion
3.1. Initial Abstraction Ratio
3.2. Influence of Ratio in Runoff Prediction
3.3. Ratio Runoff Prediction Performance Analyses
3.4. Influence of Ratio in CN
3.5. Probabilistic Patterns of CN
3.6. Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuitert, L.; van Buuren, A. Delivering blue-green infrastructure: Innovation pathways for integrating multiple values. Front. Sustain. Cities 2022, 4, 885951. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414–415, 148–161. [Google Scholar] [CrossRef]
- Leite, F.R.; Antunes, M.L.P. Green roof recent designs to runoff control: A review of building materials and plant species used in studies. Ecol. Eng. 2023, 189, 106924. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J. Green roofs in the humid subtropics: The role of environmental and design factors on stormwater retention and peak reduction. Sci. Total Environ. 2023, 858, 159710. [Google Scholar] [CrossRef]
- Osawa, T.M.; Cristina, M.; Pereira, S.; Chaves, B.; Leite, C.; Rodolfo, J.; Martins, S. Impact of an aged green roof on stormwater quality and first-flush dynamics. Buildings 2025, 15, 1763. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci. Total Environ. 2021, 784, 147058. [Google Scholar] [CrossRef]
- Rostamzadeh, S.; Malekmohammadi, B.; Mashhadimohammadzadehvazifeh, F.; Arsanjani, J.J. The Effects of low-impact development best management practices on reducing stormwater caused by land use changes in urban areas: A case study of Tehran City, Iran. Land 2025, 14, 28. [Google Scholar] [CrossRef]
- Wu, X.; Moustakas, S.; Bezak, N.; Radinja, M.; Alivio, M.B.; Mikoš, M.; Dohnal, M.; Bares, V.; Willems, P. Assessing the performance of blue-green solutions through a fine-scale water balance model for an urban area. Sci. Total Environ. 2024, 948, 174750. [Google Scholar] [CrossRef]
- Cho, Y.; Engel, B.A. Spatially distributed long-term hydrologic simulation using a continuous SCS CN method-based hybrid hydrologic model. Hydrol. Process. 2018, 32, 904–922. [Google Scholar] [CrossRef]
- Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Lee, K.K.F.; Ling, L.; Yusop, Z. The revised curve number rainfall–runoff methodology for an improved runoff prediction. Water 2023, 15, 491. [Google Scholar] [CrossRef]
- Woodward, D.E.; Hawkins, R.H.; Jiang, R.; Hjelmfelt, A.T., Jr.; Van Mullem, J.A.; Quan, Q.D. Runoff curve number method: Examination of the initial abstraction ratio. In Proceedings of the World Water & Environmental Resources Congress, Philadelphia, PA, USA, 23–26 June 2003. [Google Scholar]
- Mishra, S.K.; Sahu, R.K.; Eldho, T.I.; Jain, M.K. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology. Water Resour. Manag. 2006, 20, 643–660. [Google Scholar] [CrossRef]
- Soulis, K.X.; Ntoulas, N.; Nektarios, P.A.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
- Loiola, C.; Mary, W.; da Silva, L.P. Hydrological performance of modular-tray green roof systems for increasing the resilience of mega-cities to climate change. J. Hydrol. 2019, 573, 1057–1066. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Hunt, W.; Berghage, R.; Carpenter, D.; Kurtz, T.; Stovin, V.; Wadzuk, B. Curve number and runoff coefficients for extensive living roofs. J. Hydrol. Eng. 2016, 21, 1318. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Andresen, J.A. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol. Eng. 2007, 31, 225–231. [Google Scholar] [CrossRef]
- Carter, T.L.; Rasmussen, T.C. Hydrologic behavior of vegetated roofs. J. Am. Water Resour. Assoc. 2006, 42, 1261–1274. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W. Assessing the runoff retention of extensive green roofs using runoff coefficients and curve numbers and the impacts of substrate moisture. Hydrol. Res. 2020, 51, 635–647. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Wang, R.; Chen, W. Effects of initial abstraction ratios in SCS-CN method on runoff prediction of green roofs in a semi-arid region. Urban For. Urban Green. 2021, 65, 127331. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Feng, Q.; Engel, B.A.; Li, Z. Substrate moisture variations of extensive green roofs with different structural configurations in a semi-arid region: Observational data and dynamic simulation. J. Hydrol. 2023, 626, 130133. [Google Scholar] [CrossRef]
- Peng, Z.; Garner, B.; Stovin, V. Two green roof detention models applied in two green roof systems. J. Hydrol. Eng. 2022, 27, 2155. [Google Scholar] [CrossRef]
- Leite, B.C.C.; Gobatti, L.; Huttenlocher, I.G. Low-maintenance subtropical green roofs. Spontaneous vegetation and substrate depth. AGATHÓN—Int. J. Archit. Art Des. 2022, 11, 258–265. [Google Scholar]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Rainwater runoff retention on an aged intensive green roof. Sci. Total Environ. 2013, 461–462, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Pelorosso, R.; Petroselli, A.; Cappelli, F.; Noto, S.; Tauro, F.; Apollonio, C.; Grimaldi, S. Blue-green roofs as nature-based solutions for urban areas: Hydrological performance and climatic index analyses. Environ. Sci. Pollut. Res. Int. 2024, 31, 5973–5988. [Google Scholar] [CrossRef]
- Gobatti, L.; Leite, B.C.C. Unmanaged vegetated roofs hydrological performance in subtropical areas: An investigation in São Paulo, Brazil. Sci. Total Environ. 2023, 874, 162417. [Google Scholar] [CrossRef]
- Cascone, S. Green roof design: State of the art on technology and materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef]
- Ferraz, I.L. The Thermal Performance of Green Roof System in Comparison to the Traditional Ceramic Tile Roof System. Master’s Thesis, University of Sao Paulo, Sao Paulo, Brazil, 2012. [Google Scholar]
- Pereira-Flores, M.E.; Justino, F.; Rodrigues, J.M.; Boehringer, D.; Melo, A.A.M.; Cursi, A.G.; da Costa Pereira, V.; Pereira, O.G.; Ruiz-Vera, U.M. Seasonal climate impact on Brazilian pasture (Brachiaria brizantha cv Marandu): Growth rate, CO2 efflux, and irrigation strategies. Theor. Appl. Climatol. 2023, 151, 651–666. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- INMET Climatological Normals of Brazil 1991–2020. Available online: https://portal.inmet.gov.br/normais (accessed on 16 May 2025).
- Palla, A.; Gnecco, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Wang, N.; Chu, X. A Modified SCS curve number method for temporally varying rainfall excess simulation. Water 2023, 15, 2374. [Google Scholar] [CrossRef]
- Liberalesso, T.; Tassi, R.; Ceconi, D.E.; Allasia, D.G.; Arboit, N.K.S. Effect of rice husk addition on the physicochemical and hydrological properties on green roof substrates under subtropical climate conditions. J. Clean. Prod. 2021, 315, 128133. [Google Scholar] [CrossRef]
- Pessoa, J.O.; Piccilli, D.G.A.; Persch, C.G.; Tassi, R.; Georgin, J.; Franco, D.S.P.; Yamil, Y.L. Identifying potential uses for green roof discharge based on its physical–chemical-microbiological quality. Environ. Sci. Pollut. Res. 2024, 31, 27221–27239. [Google Scholar] [CrossRef] [PubMed]
- Harper, G.E.; Limmer, M.A.; Showalter, W.E.; Burken, J.G. Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecol. Eng. 2015, 78, 127–133. [Google Scholar] [CrossRef]
- Zhang, Z.; Szota, C.; Fletcher, T.D.; Williams, N.S.G.; Farrell, C. Green roof storage capacity can be more important than evapotranspiration for retention performance. J. Environ. Manag. 2019, 232, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Miao, L.; Wang, X.; Liu, D.; Zhu, L.; Zhou, B.; Sun, J.; Liu, J. The capacity of greening roof to reduce stormwater runoff and pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
- Silva, M.d.; Najjar, M.K.; Hammad, A.W.A.; Haddad, A.; Vazquez, E. Assessing the retention capacity of an experimental green roof prototype. Water 2020, 12, 90. [Google Scholar] [CrossRef]
- Houle, J.J.; Roseen, R.M.; Ballestero, T.P.; Puls, T.A.; Sherrard, J. Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- Locatelli, L.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Jensen, M.B.; Binning, P.J. Modelling of green roof hydrological performance for urban drainage applications. J. Hydrol. 2014, 519, 3237–3248. [Google Scholar] [CrossRef]
- Osawa, T.M.; Pereira, M.C.S.; Martins, J.R.S. Error processing of water level data measurements by a low-cost ultrasonic sensor. In Proceedings of the 17th IWA Conference on Small Water and Wastewater Systems (SWWS) and 9th IWA Conference on Resource Oriented Sanitation (ROS), Paraná, Brazil, 10–14 November 2024; p. 4. [Google Scholar]
- SCS Hydrology, Soil Conservation Service. National Engineering Handbook; US Soil Conservation Service: Washington, DC, USA, 1956. [Google Scholar]
- Singh, P.K.; Yaduvanshi, B.K.; Patel, S.; Ray, S. SCS-CN Based quantification of potential of rooftop catchments and computation of ASRC for rainwater harvesting. Water Resour. Manag. 2013, 27, 2001–2012. [Google Scholar] [CrossRef]
- Ekwule, O.R.; Agunwamba, J.C. Application of the NRCS-curve number method in humid tropical basins of southeastern Nigeria: A statistical analysis. Environ. Syst. Res. 2024, 13, 52. [Google Scholar] [CrossRef]
- Do Valle Junior, L.C.G.; Rodrigues, D.B.B.; de Oliveira, P.T.S. Initial abstraction ratio and Curve Number estimation using rainfall and runoff data from a tropical watershed. Rev. Bras. Recur. Hidr. 2019, 24, 241920170199. [Google Scholar] [CrossRef]
- Krajewski, A.; Sikorska-Senoner, A.E.; Hejduk, A.; Hejduk, L. Variability of the initial abstraction ratio in an urban and an agroforested catchment. Water 2020, 12, 415. [Google Scholar] [CrossRef]
- Brandão, A.R.A.; Schwamback, D.; Ballarin, A.S.; Ramirez-Avila, J.J.; Vasconcelos Neto, J.G.; Oliveira, P.T.S. Toward a better understanding of curve number and initial abstraction ratio values from a large sample of watersheds perspective. J. Hydrol. 2025, 655, 132941. [Google Scholar] [CrossRef]
- Zhang, Z.; Szota, C.; Fletcher, T.D.; Williams, N.S.G.; Werdin, J.; Farrell, C. Influence of plant composition and water use strategies on green roof stormwater retention. Sci. Total Environ. 2018, 625, 775–781. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, J. Rainfall interception loss as a function of leaf area index and rainfall by soybean. Theor. Appl. Climatol. 2024, 155, 289–297. [Google Scholar] [CrossRef]
- Santikari, V.P.; Murdoch, L.C. Accounting for spatiotemporal variations of curve number using variable initial abstraction and antecedent moisture. Water Resour. Manag. 2019, 33, 641–656. [Google Scholar] [CrossRef]
- You, L.; Tung, Y.K.; Yoo, C. Probabilistic assessment of hydrologic retention performance of green roof considering aleatory and epistemic uncertainties. Hydrol. Res. 2020, 51, 1377–1396. [Google Scholar] [CrossRef]
- Ajmal, M.; Moon, G.w.; Ahn, J.h.; Kim, T.w. Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. J. Hydro-Environ. Res. 2015, 9, 592–603. [Google Scholar] [CrossRef]
- Shan, J.; Yang, Z.; Kuang, X.; Li, L.; Liu, J. Comparison of seven weibull distribution models for predicting relative hydraulic conductivity. Water Resour. Res. 2022, 58, e2021WR030683. [Google Scholar] [CrossRef]
- Castro, A.S.; Goldenfum, J.A.; da Silveira, A.L.; DallAgnol, A.L.B.; Loebens, L.; Demarco, C.F.; Leandro, D.; Nadaleti, W.C.; Quadro, M.S. The analysis of green roof’s runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil. Environ. Sci. Pollut. Res. 2020, 27, 9520–9534. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, K.; Grossi, G.; Turco, M.; Dada, A.; Palermo, S.A.; Pirouz, B.; Piro, P.; Gnecco, I.; Palla, A. Continuous simulations for predicting green roof hydrologic performance for future climate scenarios. Hydrology 2025, 12, 41. [Google Scholar] [CrossRef]
- Liu, W.; Engel, B.A.; Feng, Q.; Li, R. Simulating annual runoff retention performance of extensive green roofs: A comparison of four climatic regions in China. J. Hydrol. 2022, 610, 127871. [Google Scholar] [CrossRef]
Event | Date | Rainfall (mm) | Duration (Hour) | ADWP (Days) | API1 (mm) | API7 (mm) |
---|---|---|---|---|---|---|
1 | 15 June 2023 | 9.6 | 14.6 | 0.3 | 9.4 | 14.8 |
2 | 31 October 2023 | 11.6 | 13.2 | 1.3 | 0.0 | 55.2 |
3 | 24 November 2022 | 17.2 | 4.2 | 1.0 | 2.0 | 88.4 |
4 | 28 November 2023 | 17.6 | 3.3 | 1.0 | 0.6 | 42.0 |
5 | 28 February 2023 | 17.8 | 2.0 | 3.8 | 0.6 | 67.2 |
6 | 8 November 2023 | 19.6 | 10.1 | 2.9 | 0.0 | 43.6 |
7 | 5 March 2024 | 20.0 | 8.7 | 6.1 | 0.0 | 17.4 |
8 | 5 October 2023 | 21.2 | 2.0 | 0.4 | 5.4 | 70.4 |
9 | 12 October 2023 | 21.6 | 14.8 | 3.3 | 0.0 | 77.6 |
10 | 27 November 2023 | 22.2 | 3.0 | 2.1 | 0.0 | 19.6 |
11 | 13 March 2023 | 23.0 | 5.3 | 0.9 | 5.4 | 67.4 |
12 | 10 January 2023 | 23.8 | 5.7 | 3.9 | 0.0 | 56.0 |
13 | 18 April 2023 | 24.0 | 7.4 | 0.6 | 3.0 | 33.2 |
14 | 7 October 2023 | 25.6 | 16.9 | 1.8 | 0.0 | 108.4 |
15 | 23 March 2024 | 26.6 | 19.9 | 1.0 | 1.6 | 21.0 |
16 | 8 October 2023 | 34.6 | 7.9 | 0.5 | 11.6 | 72.0 |
Average | 21.0 | 8.7 | 1.9 | 2.5 | 53.4 | |
Max | 34.6 | 19.9 | 6.1 | 11.6 | 108.4 | |
Min | 9.6 | 2.0 | 0.3 | 0.0 | 14.8 | |
Standard error | 5.9 | 5.7 | 1.6 | 3.6 | 27.7 |
Rainfall Depth (mm) | Runoff Depth (mm) | Initial Abstraction (mm) | Maximum Potential Retention (mm) | Ia/S |
---|---|---|---|---|
9.4 | 2.3 | 1.4 | 20.1 | 0.07 |
11.4 | 1.5 | 1.2 | 58.4 | 0.02 |
17 | 3.9 | 5 | 24.9 | 0.2 |
17.6 | 3.4 | 8.2 | 16.4 | 0.5 |
17.8 | 3 | 4 | 50.1 | 0.08 |
19.4 | 5.4 | 1.2 | 43.2 | 0.03 |
20 | 3.5 | 7.8 | 30.3 | 0.26 |
21 | 4.1 | 5.2 | 45 | 0.12 |
21.4 | 9.2 | 6.2 | 10 | 0.62 |
22.2 | 4.6 | 10.4 | 18.4 | 0.56 |
23 | 8.4 | 4 | 23.8 | 0.17 |
23.4 | 8.7 | 3.4 | 26 | 0.13 |
24 | 7.1 | 7.4 | 22.2 | 0.33 |
25.4 | 6.2 | 7.4 | 33.9 | 0.22 |
26.4 | 6.6 | 4 | 54 | 0.07 |
34.4 | 13.3 | 7.2 | 28.5 | 0.25 |
Ratio | Slope | Intercept | R2 | p-Value | |
---|---|---|---|---|---|
t-Test | F-Test | ||||
0.05 | 0.7791 | 0.1563 | 0.8609 | <0.001 | <0.001 |
0.17 | 0.8605 | 0.6929 | 0.8250 | <0.001 | <0.001 |
0.2 | 0.8769 | 0.8643 | 0.8184 | <0.001 | <0.001 |
0.22 | 0.897 | 1.0761 | 0.8107 | <0.001 | <0.001 |
0.5 | 0.992 | 2.1454 | 0.7784 | <0.001 | <0.001 |
Ratio | Average | Median | Standard Error | Confidence Interval | Skewness Coefficient | |
---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||
0.05 | 84.3 | 85.0 | 3.54 | 82.4 | 86.3 | 0.42 |
0.17 | 89.1 | 89.0 | 1.98 | 88.0 | 90.2 | 0.41 |
0.20 | 89.9 | 90.0 | 2.02 | 88.8 | 91.1 | 0.36 |
0.24 | 90.7 | 91.0 | 1.68 | 89.7 | 91.6 | 0.17 |
0.50 | 93.9 | 94.0 | 1.25 | 93.2 | 94.6 | 0.02 |
Distribution | p-Value | ||||
---|---|---|---|---|---|
Ratio = 0.05 | Ratio = 0.17 | Ratio = 0.20 | Ratio = 0.24 | Ratio = 0.50 | |
Normal | 0.437 | 0.572 | 0.810 | 0.406 | 0.304 |
Log-Normal | 0.384 | 0.515 | 0.757 | 0.359 | 0.269 |
Exponential | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Gamma | 0.437 | 0.570 | 0.810 | 0.402 | 0.303 |
Weibull | 0.553 | 0.743 | 0.864 | 0.624 | 0.368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osawa, T.M.; Nogueira, F.F.; Leite, B.C.C.; Martins, J.R.S. Improving Green Roof Runoff Modeling for Sustainable Cities: The Role of Site-Specific Calibration in SCS-CN Parameters. Sustainability 2025, 17, 5976. https://doi.org/10.3390/su17135976
Osawa TM, Nogueira FF, Leite BCC, Martins JRS. Improving Green Roof Runoff Modeling for Sustainable Cities: The Role of Site-Specific Calibration in SCS-CN Parameters. Sustainability. 2025; 17(13):5976. https://doi.org/10.3390/su17135976
Chicago/Turabian StyleOsawa, Thiago Masaharu, Fabio Ferreira Nogueira, Brenda Chaves Coelho Leite, and José Rodolfo Scarati Martins. 2025. "Improving Green Roof Runoff Modeling for Sustainable Cities: The Role of Site-Specific Calibration in SCS-CN Parameters" Sustainability 17, no. 13: 5976. https://doi.org/10.3390/su17135976
APA StyleOsawa, T. M., Nogueira, F. F., Leite, B. C. C., & Martins, J. R. S. (2025). Improving Green Roof Runoff Modeling for Sustainable Cities: The Role of Site-Specific Calibration in SCS-CN Parameters. Sustainability, 17(13), 5976. https://doi.org/10.3390/su17135976