Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5)
Abstract
1. Introduction
2. Materials and Methods
2.1. Storm Water Management Model (SWMM)
2.2. Study Site Description and Delineation
2.3. Design Scenarios
2.4. Input Parameters
2.5. Preprocessing of Climate Data
2.5.1. Historic Timeseries
2.5.2. Climate Projections Used in the Model
2.6. Simulations Run and Assessment
- Historic reference period (1 January 1960–31 December 1990) vs. Far future (1 January 2071–31 December 2100)
- Historic single event (4 August 2001) vs. historic reference period (1 January 1961–31 December 1990).
3. Introducing LID Methods
4. Results and Discussion
4.1. Hydrological Changes Assessment
- Design Scenario 1 (75% impervious area): Base Case vs. 50% LID implementation.
- Design Scenario 2 (40% impervious area): Base Case vs. 70% LID implementation.
- Design Scenario 3 (50% impervious area): Base Case vs. 85% LID implementation.
4.2. Results of Historic Timeseries
4.2.1. Single Event
4.2.2. Multiyear Timeseries
- Runoff reduction
- Evapotranspiration increase
- Infiltration increase
- Final storage increase/initial LID storage increase.
4.3. Results of Projected (Future) Timeseries
- Evapotranspiration increase
- Runoff reduction
- Infiltration increase
- Final storage increase/initial LID storage increase.
- At least 50% of available impervious area should be used for the implementation of LID elements to achieve a minimum of:
- 28% in runoff reduction
- 32% infiltration increase
- 22% evapotranspiration increase
- 0.02─7000% final storage increase.
- Combination of different LIDs is more efficient than implementation of single LID element.
- Heavy-rain prone and high-density residential regions benefit from an implementation strategy (highest to lowest %):
- Permeable pavement (on food paths and cycle tracks)
- Green roof (retrofitting on existing buildings, installation on new buildings)
- Bioretention cell (where space allowances facilitate this).
- Drought prone low-density residential regions benefit from an implementation strategy (highest to lowest %):
- Green roof (retrofitting on existing buildings, installation on new buildings)
- Bioretention cell
- Permeable pavement (on food paths and cycle tracks).
- Initial- and final storage through LIDs can mostly be achieved from single precipitation events and represents an interim storage. Long-lasting effects (multiyear timeseries) from LID implementation appear mostly as increases in infiltration and evapotranspiration and are thus rather important to counteract the Urban Heat Island (UHI) which intensifies through increases in building density. Both trends are vital components of the transformation of a local district towards a “sponge-city-district”.
4.4. Further Discussion
4.4.1. Plausibility/Likelihood of Predicted Precipitation Events
- RACMO shows a slight underestimation of all precipitation percentiles regardless of the GCM used. The type of distribution is very similar to that of the HYRAS data set (reference period).
- REMO shows a good conformity with HYRAS mean values, however aberrations are way too high.
- RACMO shows deviances in annual dynamics compared to the reference period.
- REMO showed significant “precipitation drifting” (divergence between reference and projection data) on a regional and local scale. For a larger scale like median values for Bavaria, however, the REMO-projections could still be used.
4.4.2. Holistic Water Balance Assessment for Analysis of Efficiency of LID Controls
5. Conclusions and Outlook
5.1. Conclusions
5.2. Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BGI | Blue-Green-Infrastructure |
BC | Base Case |
BRC | Bioretention Cell |
GR | Green Roof |
LID | Low Impact Development |
PP | Permeable Pavement |
RCP | Representative Concentration Pathway |
SCP | Sponge City Practice |
SWMM | Stormwater Management Model |
References
- Zentrum für Stadtnatur und Klimaanpassung (ZSK). Nachverdichtung im Kontext des Klimawandels–Schlussbericht. 2022. Available online: https://www.zsk.tum.de/fileadmin/w00bqp/www/PDFs/2022.12.20-_NV_Schlussbericht_barr.pdf (accessed on 28 July 2025).
- Kabisch, N.; Horn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaption in Urban Areas; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Pauleit, S.; Ennas, R.; Golding, Y. Modeling the environmental impacts of urban land use and land cover change—A study in Merseyside, UK. Landsc. Urban Plan. 2005, 71, 295–310. [Google Scholar] [CrossRef]
- City of Frankfurt, Main. Department of Planning and Living (Dezernat IV—Planen und Wohnen). 2021. Available online: https://www.stadtplanungsamt-frankfurt.de/show.php?ID=20549&psid=qrog9v59mao3s9fgf9vdnbr2b1 (accessed on 9 November 2024).
- Emilsson, T.; Ode Sang, Å. Impacts of Climate Change on Urban Areas and Nature-based Solutions for Adaption. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Paul, S.; Ghosh, S.; Mathew, M.; Devanand, A.; Karmakar, S.; Niyogi, D. Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization. Sci. Rep. 2018, 8, 3918. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Loibl, W.; Vuckovic, M.; Etminan, G.; Ratheiser, M.; Tschanett, S.; Österreicher, D. Effects of Densification on Urban Microclimate—A Case Study for the City of Vienna. Atmosphere 2021, 12, 511. [Google Scholar] [CrossRef]
- Liu, J.; Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 2019, 9, 7301. [Google Scholar] [CrossRef]
- Mhyre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V.; Scholz, P.; Dima, M. Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Meridional Overturning Circulation. J. Hydrol. Reg. Stud. 2022, 42, 101176. [Google Scholar] [CrossRef]
- Büntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- City of Frankfurt, Main. Adaption Strategy of Frankfurt, Main 2.0 Department for Climate, Environment and Women. 2022. Available online: https://energiemanagement.stadt-frankfurt.de/Service/Dokumente/Anpassungsstrategie-Klimawandel.pdf (accessed on 9 November 2024).
- General Association of the Insurers (Gesamtverband der Versicherer, GDV). Study on Sealing Degrees: Ludwigshafen Is the City in Germany with the Highest Degree of Sealed Surfaces. Updated 2023. 2021. Available online: https://www.gdv.de/gdv/medien/medieninformationen/versiegelungsstudie-ludwigshafen-ist-die-am-staerksten-versiegelte-stadt-in-deutschland--133126 (accessed on 9 November 2024).
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Usino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, R. An approach for evaluating the hydrological effects of urbanization and its application. Hydrol. Process. 2002, 16, 1403–1418. [Google Scholar] [CrossRef]
- Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C. Effects of suburban development on runoff generation in the Croton River basin, New York, USA. J. Hydrol. 2005, 311, 266–281. [Google Scholar] [CrossRef]
- Jang, S.; Cho, M.; Yoon, J.; Yoon, Y.; Kim, S.; Kim, G.; Kim, L.; Aksoy, H. Using SWMM as a tool for hydrologic impact assessment. Desalination 2007, 212, 344–356. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Modelling and assessment of hydrological changes in a developing urban catchment. Hydrol. Process. 2015, 29, 2880–2894. [Google Scholar] [CrossRef]
- Pour, H.S.; Wahab, A.K.A.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Pyke, C.; Warren, M.P.; Johnson, T.; LaGro, J.; Schargenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan. 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Wang, M.; Feng, S.; Ikram, R.M.A.; Chen, T.; Sun, C.; Chen, B.; Rao, Q.; Jin, H.; Li, J. Assessing the Performance and Challenges of Low-Impact-Development under Climate-Change: A Bibliometric Review. Sustainability 2023, 15, 13616. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Huang, M. Impacts of future climate change on urban flood volumes in Hohhot in northern China: Benefits of climate change mitigation and adaptions. Hydrol. Earth Syst. Sci. 2018, 22, 305–316. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 1794. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.; Li, M.; Brown, R. The influence of climate on the effectiveness of low impact development: A systematic review. J. Environ. Manag. 2019, 236, 365–379. [Google Scholar] [CrossRef]
- Almaaitah, T.; Appleby, M.; Rosenblat, H.; Drake, J.; Joksimovic, D. The potential of Blue-Green Infrastructure as a climate change adaption strategy: A systematic literature review. Blue-Green Syst. 2021, 3, 223–248. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef]
- Luo, P.; Zha, X.; Zhu, W.; Wang, S.; Lyu, J.; Zhou, M.; Huo, A.; Wang, Z. A bibliometric analysis of the research on Sponge City: Current situation and future development direction. Ecohydrology 2021, 14, 7. [Google Scholar] [CrossRef]
- Qin, Y. Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies. Water 2020, 12, 3579. [Google Scholar] [CrossRef]
- Rosenberger, L.; Leandro, J.; Pauleit, S.; Erlwein, S. Sustainable stormwater management under the impact of climate change and urban densification. J. Hydrol. 2021, 596, 126137. [Google Scholar] [CrossRef]
- Dietz, M.E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Erlwein, S.; Zölch, T.; Pauleit, S. Regulating the microclimate with urban green in densifying cities: Joint assessment on two scales. Build. Environ. 2021, 205, 108233. [Google Scholar] [CrossRef]
- Wu, J.; Yang, R.; Song, J. Effectiveness of low-impact development for urban inundation risk mitigation under different scenarios: A case study in Shenzhen. China Nat. Hazards Earth Syst. Sci. 2018, 18, 2525–2536. [Google Scholar] [CrossRef]
- Zhai, J.; Ren, J.; Xi, M.; Tang, X.; Zhang, Y. Multiscale watershed landscape infrastructure: Integrated system design for sponge city development. Urban For. Urban Green. 2021, 60, 127060. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, C.; Yin, D.; Xu, J.; Wu, Y.; Jia, H. Environmental and economic cost-benefit comparison of sponge city construction in different urban functional regions. J. Environ. Manag. 2022, 304, 114230. [Google Scholar] [CrossRef]
- Versini, P.-A.; Ramier, D.; Berthier, E.; de Gouvello, B. Assessment of the hydrological impacts of green roof: From building scale to basin scale. J. Hydrol. 2015, 524, 562–575. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobiano, V.; Oen, A.M.P.; McClain, M.E.; Lopez-Gunn, E. Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef]
- Qin, H.; Li, Z.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef]
- Suresh, A.; Pekkat, S.; Subbiah, S. Quantifying the efficacy of Low Impact Developments (LIDs) for flood reduction in micro-urban watersheds incorporating climate change. Sustain. Cities Soc. 2023, 95, 104601. [Google Scholar] [CrossRef]
- Jehling, M.; Schorcht, M.; Hartmann, T. Densification in suburban Germany: Approaching policy and space through concepts of justice. Town Plan. Rev. 2020, 91, 217–237. [Google Scholar] [CrossRef]
- Chan, F.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Hou, X.; Guo, H.; Wang, F.; Li, M.; Xue, X.; Liu, X.; Zeng, S. Is the sponge city construction sufficiently adaptable for the future stormwater management under climate change? J. Hydrol. 2020, 588, 125055. [Google Scholar] [CrossRef]
- Jiang, A.Z.; McBean, E.A. Sponge City: Using the “One Water” Concept to Improve Understanding of Flood Management Effectiveness. Water 2021, 13, 583. [Google Scholar] [CrossRef]
- Suja, R.; Sedhan, A.; Rajalakshmi, C.R. Effectiveness of Permeable Pavements and Vegetative Swales for developing Sponge Cities. Water Resour. Manag. 2021. under revision. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Tan, Y.; Cheng, Q.; Lyu, F.; Liu, L.; Su, Y.; Yuan, S.; Xiao, W.; Liu, Z. Hydrological reduction and control effect evaluation of sponge city construction based on one-way coupling model of SWMM-FVCOM: A case in university campus. J. Environ. Manag. 2024, 349, 119599. [Google Scholar] [CrossRef]
- Akter, T.; Quevauviller, P.; Eisenreich, S.J.; Vaes, G. Impacts of climate change and land use changes on flood risk management for the Schijn River, Belgium. Environ. Sci. Policy 2018, 89, 163–175. [Google Scholar] [CrossRef]
- Kemp-Benedict, E.; Heaps, C.; Raskin, P. Global Scenario Group Futures. Technical Notes; Polestar Series Report No. 9; Stockholm Environment Institute: Stockholm, Sweden, 2002; Available online: https://www.gsg.org/documents/GSGFutures_TechDoc.pdf (accessed on 9 November 2024).
- United Nations, World Urbanization Prospects, the 2011 Revision. United Nations Department of Economic and Social Affairs, Population Division. 2012. Available online: https://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf (accessed on 9 November 2024).
- Jones Lang LaSalle (JLL), Research. Climate Risks in German cities—Challenges Through Climate Changes in Urban Areas: Risk, Resilience and Adaption 2024. Available online: https://www.jll.de/de/trends-and-insights/research/klimarisiken-in-deutschen-staedten (accessed on 9 November 2024).
- Ekmdaekciouglu, Ö.; Yilmaz, M.; Özger, M.; Tosunoglu, F. Investigation of the low impact development strategies for highly urbanized area via auto-calibrated Storm Water Management Model (SWMM). Water Sci. Technol. 2021, 84, 2194. [Google Scholar] [CrossRef]
- Sadeghi, F.; Rubinato, M.; Goerke, M.; Hart, J. Assessing the Performance of LISFLOOD-FP and SWMM for a Small Watershed with Scarce Data Availability. Water 2022, 14, 748. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- HVBG (Hessische Verwaltung für Bodenmanagement und Geoinformation), Geodaten Online. Available online: https://gds.hessen.de/INTERSHOP/web/WFS/HLBG-Geodaten-Site/de_DE/-/EUR/Default-Start (accessed on 17 July 2024).
- Jeffers, S.; Garner, B.; Hidalgo, D.; Daoularis, D.; Warmerdam, O. Insights into green roof modeling using SWMM LID controls for detention-based designs. J. Water Manag. Model. 2022, 1, C484. [Google Scholar] [CrossRef]
- McCoutcheon, M.; Wride, D. Shades of Green: Using SWMM LID Controls to Simulate Green Infrastructure. J. Water Manag. Model. 2013, 15, R246-15. [Google Scholar] [CrossRef]
- Rossman, L.; Huber, W. Storm Water Management Model Reference Manual Volume I; EPA/600/R-15/162A; Hydrology U.S. EPA Office of Research and Development: Washington, DC, USA, 2015. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=309346 (accessed on 17 July 2024).
- Hewa, G.A.; Hossain, S.; Wella-Hewage, S. A Comparison of Continuous and Event-Based Rainfall–Runoff (RR) Modelling Using EPA-SWMM. Water 2019, 11, 611. [Google Scholar] [CrossRef]
- Linke, C.; Zimmer, M. Leitlinien zur Interpretation regionaler Klimamodelldaten des Bund-Länder-Fachgespräches “Interpretation Regionaler Klimamodelldaten”, Potsdam. 2023. Available online: https://lfu.brandenburg.de/sixcms/media.php/9/Leitlinien-Klimamodelldaten.pdf (accessed on 17 July 2024).
- Deutscher Wetterdienst (DWD). Messnetzkarten (Meteorological Network Maps), Germany’s National Meteorological Service. 2024. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/messnetzkarten.html?lsbId=343278 (accessed on 17 July 2024).
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (DWD). Decadal Climate Predictions, Germany’s National Meteorological Service. 2024. Available online: https://www.dwd.de/EN/climate_environment/climateresearch/climateprediction/decadalprediction/decadalprediction_node.html;jsessionid=DAFBCF243664D221D6A1E1A7C3A41136.live11044 (accessed on 17 July 2024).
- Tennis, P.D.; Leming, M.L.; Akers, D.J. Pervious Concrete Pavements Technical Report; Portland Cement Association, Skokie, Illinois, and National Ready Mixed Concrete Association: Silver Spring, MD, USA, 2004; 36p, Available online: https://www.researchgate.net/publication/242722509_Pervious_Concrete_Pavements (accessed on 17 July 2024).
- Bhaduri, B.; Minner, M.; Tatolvich, S.; Harbor, J. Long-Term Hydrologic Impact of Urbanization: A Tale of Two Models. J. Water Ressour. Plan. Manag. 2021, 127, 1. [Google Scholar] [CrossRef]
- Trewin, B.C. The Role of Climatological Normals in a Changing Climate. World Meteorological Organization WMO/TD No. 1377. 2007. Available online: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FKrastina-Malcheva%2Fpost%2FCalculating_monthly_rainfall_anomaly_when_only_some_months_are_normally_distributed%2Fattachment%2F5cde28b7cfe4a7968da090bc%2FAS%253A759386620305410%25401558063287555%2Fdownload%2FWCDMPNo61_1.pdf&psig=AOvVaw3jl31yInI7LF3AwFIA5YgM&ust=1707645533741000&source=images&cd=vfe&opi=89978449&ved=0CAgQrpoMahcKEwiQ4OrXwaCEAxUAAAAAHQAAAAAQBA (accessed on 17 July 2024).
- Deutscher Wetterdienst (DWD). Kernensemble (Core Ensemble) Germany’s National Meteorological Service. 2024. Available online: https://www.dwd.de/ref-ensemble (accessed on 17 July 2024).
- Brienen, S.; Walter, A.; Brendel, C.; Fleischer, C.; Ganske, A.; Haller, M.; Helms, M.; Höpp, S.; Jensen, C.; Jochumsen, K.; et al. Klimawandelbedingte Änderungen in Atmosphäre und Hydrosphäre: Schlussbericht des Schwerpunktthemas Szenarienbildung (SP-101) im Themenfeld 1 des BMVI-Expertennetzwerks; appeared in print within subject area 1 of the “BMVI Experts Network”; BMVI: Berlin, Germany, 2020; Available online: https://doi.bafg.de/BfG/2020/ExpNBS2020.2020.02.pdf (accessed on 28 July 2025).
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p, Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 17 July 2024).
- Deutscher Wetterdienst (DWD) Hinweise zur Nutzung von Klimaprojektionen für Deutschland, Germany’s National Meteorological Service. 2024. Available online: https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimaprojektionen/fuer_deutschland/fuer_dtld_nutzungshinweis_node.html (accessed on 17 July 2024).
- Nilson, E.; Krahe, P. Deutschlands Wasserbilanz. UmweltMagazin 2021, 51, 32–35. [Google Scholar] [CrossRef]
- Bremicke, M. Das Wasserhaushaltsmodell LARSIM-Modellgrundlagen und Anwendungsbeispiele. Freibg. Schriften Zur Hydrol. 2000, 11, 57–59. Available online: https://www.hydrology.uni-freiburg.de/publika/FSH-Bd11-Bremicker.pdf (accessed on 17 July 2024).
- Vidya, K.N. Runoff assessment by Storm water management model (SWMM)—A new approach. J. Appl. Nat. Sci. 2021, 13, 142–148. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Optigrün International. Das Optigrün-Schrägdach (Optigrün Slanted Roof). Available online: https://www.optigruen.de/systemloesungen/schraegdach/uebersicht-schraegdach (accessed on 9 November 2024).
- Huber, W.; Cannon, L. Modeling non-directly connected impervious areas in dense neighborhoods. In Proceedings of the 9th International Conference on Urban Drainage, Portland, OR, USA, 8–13 September 2002; Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryID=62453 (accessed on 26 September 2024).
- Borris, M.; Leonhardt, G.; Marsalek, J.; Österlund, H.; Viklander, M. Source-Based Modeling of Urban Stormwater Quality Respose to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors. Environ. Manag. 2016, 58, 223–237. [Google Scholar] [CrossRef]
- Palermo, S.A.; Talarico, V.C.; Turco, M. On the LID systems effectiveness for urban stormwater management: Case study in Southern Italy. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012012. [Google Scholar] [CrossRef]
- Uchiyama, S.; Bhattacharya, Y.; Nakamura, H. Efficacy Analysis of Urban Planning Scenarios for Flood Mitigation with Low Impact Development Technologies Using SWMM: A Case Study in Saitama City, Japan. IOP Conf. Ser. Earth Environ. Sci. 2022, 973, 012012. [Google Scholar] [CrossRef]
- Stovin, V.; Poe, S.; Berretta, C. A modelling study of long term green roof retention performance. J. Environ. Manag. 2013, 131, 206–215. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Van Mechelen, C.; Van Meerbeek, K.; Willems, P.; Hermy, M.; Raes, D. Runoff and vegetation stress of green roofs under different climate change scenarios. Landsc. Urban Plan. 2014, 122, 68–77. [Google Scholar] [CrossRef]
- Tameh, S.N.; Gnecco, I.; Palla, A. Analytic hierarchy process in selecting Bioretention Cells in urban residential settlement: Analysing hydrologic and hydraulic metrics for sustainable stormwater management. J. Environ. Manag. 2024, 371, 123142. [Google Scholar] [CrossRef] [PubMed]
- Bibi, T.S. Modeling urban stormwater management in the town of Dodola based on landuse and climate change using SWMM 5.1. J. Hydrol. Reg. Stud. 2022, 44, 101267. [Google Scholar] [CrossRef]
- Ghodsi, S.H.; Zamatkesh, H.; Goharian, E.; Kerachian, R.; Zhu, Z. Optimal design of low impact development practices in response to climate change. J. Hydrol. 2020, 580, 124266. [Google Scholar] [CrossRef]
- Patil, P.J.; Chaudhari, P.S. Using Hydrologic and Hydraulic Modeling Water FlowSimulation in Metamorphic Urban Watershed. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 2014, 1, 2. Available online: https://www.researchgate.net/publication/280597097_Using_Hydrologic_and_Hydraulic_Modeling_Water_Flow_Simulation_in_Metamorphic_Urban_Watershed (accessed on 17 July 2024).
- Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M.; Vivoni, E.R.; Papadopoulos, A. Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability. J. Hydrol. 2011, 402, 165–178. [Google Scholar] [CrossRef]
- Kwon, H.; Han, D.; Kim, K.B. Exploration of warm-up period in conceptual hydrological modelling. J. Hydrol. 2018, 556, 194–210. [Google Scholar] [CrossRef]
- James, R. Considerations for Selecting SWMM5 Time Steps. Online Article, CHI Blog. 2009. Available online: https://www-chiwater-com.translate.goog/Home/blog/65783/considerations-for-selecting-swmm5-time-steps?_x_tr_sl=en&_x_tr_tl=de&_x_tr_hl=de&_x_tr_pto=sc (accessed on 26 April 2024).
- Deutschländer, T.; Dalelane, C. Auswertung Regionaler Klimaprojektionen für Deutschland Hinsichtlich der Änderung des Extremverhaltens von Temperatur, Niederschlag und Windgeschwindigkeit Bundesamt für Bevölkerungsschutz und Katastrophenhilfe, Bundesanstalt Technisches Hilfswerk, Deutscher Wetterdienst, Umweltbundesamt. 2012. Available online: https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimaprojektionen/extremereignisse/abschlussbericht-2012.pdf;jsessionid=E8D1AC4BE04D1AAADAB2689E15380439.live11042?__blob=publicationFile&v=1 (accessed on 17 July 2024).
- Bayerisches Landesamt für Umwelt (LfU). Das Bayerische Klimaprojektionsensemble-Audit und Ensemblebildung. 2020. Available online: https://www.lfu.bayern.de/publikationen/get_pdf.htm?art_nr=lfu_klima_00169 (accessed on 17 July 2024).
- Parkinson, J.N.; Goldenfum, J.A.; Tucci, C.E.M. Integrated Urban Water Management: Humid Tropics; CRC Press: Boca Raton, FL, USA; Unesco Publishing: Boca Raton, FL, USA, 2010; ISBN 978-0-203-88117-0. [Google Scholar]
- Xia, J.; Zhang, Y.Y.; Xiong, L.H.; He, S.; Wang, L.F.; Yu, Z.B. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Allende-Prieto, C.; Méndez-Fernández, B.I.; Sañudo-Fontaneda, L.A.; Charlesworth, S.M. Development of a Geospatial Data-Based Methodology for Stormwater Management in Urban Areas Using Freely-Available Software. Int. J. Environ. Res. Public Health 2018, 15, 1703. [Google Scholar] [CrossRef] [PubMed]
- Kuller, M.; Bach, P.M.; Ramirez-Lovering, D.; Deltic, A. Framing water sensitive urban design as part of the urban form: A critical review of tools for best planning practice. Environ. Model. Softw. 2017, 96, 265–282. [Google Scholar] [CrossRef]
- Walsh, T.C.; Pomeroy, C.A.; Burian, S.J. Hydrologic modeling analysis of a passive, residential rainwater harvesting program in an urbanized, semi-arid watershed. J. Hydrol. 2014, 508, 240–253. [Google Scholar] [CrossRef]
- Helmholtz-Zentrum, Klimanavigator. Heavy Rain in Past, Present and Future. Available online: https://www.klimanavigator.eu/themenportal/100190/index.php (accessed on 9 May 2025).
- Hessenschau, zu Wenig Regen. Wasserentnahme im Vogelsbergkreis Seit Montag Verboten 2022. Hessenschau.de. Available online: https://www.stern.de/politik/deutschland/wegen-trockenheit--im-vogelsbergkreis-darf-niemand-mehr-wasser-aus-gewaessern-nehmen-31973366.html (accessed on 12 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmelzing, H.; Schmalz, B. Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5). Hydrology 2025, 12, 200. https://doi.org/10.3390/hydrology12080200
Schmelzing H, Schmalz B. Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5). Hydrology. 2025; 12(8):200. https://doi.org/10.3390/hydrology12080200
Chicago/Turabian StyleSchmelzing, Helene, and Britta Schmalz. 2025. "Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5)" Hydrology 12, no. 8: 200. https://doi.org/10.3390/hydrology12080200
APA StyleSchmelzing, H., & Schmalz, B. (2025). Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5). Hydrology, 12(8), 200. https://doi.org/10.3390/hydrology12080200