Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,745)

Search Parameters:
Keywords = Gallium-68

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2474 KiB  
Article
Unraveling the Role of Aluminum in Boosting Lithium-Ionic Conductivity of LLZO
by Md Mozammal Raju, Yi Ding and Qifeng Zhang
Electrochem 2025, 6(3), 29; https://doi.org/10.3390/electrochem6030029 - 4 Aug 2025
Abstract
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of [...] Read more.
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of cation dopants, including aluminum (Al3+), tantalum (Ta5+), gallium (Ga3+), and rubidium (Rb+), on the structural, electronic, and ionic transport properties of LLZO using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. It appeared that, among all simulated results, Al-LLZO exhibits the highest ionic conductivity of 1.439 × 10−2 S/cm with reduced activation energy of 0.138 eV, driven by enhanced lithium vacancy concentrations and preserved cubic-phase stability. Ta-LLZO follows, with a conductivity of 7.12 × 10−3 S/cm, while Ga-LLZO and Rb-LLZO provide moderate conductivity of 3.73 × 10−3 S/cm and 3.32 × 10−3 S/cm, respectively. Charge density analysis reveals that Al and Ta dopants facilitate smoother lithium-ion migration by minimizing electrostatic barriers. Furthermore, Al-LLZO demonstrates low electronic conductivity (1.72 × 10−8 S/cm) and favorable binding energy, mitigating dendrite formation risks. Comparative evaluations of radial distribution functions (RDFs) and XRD patterns confirm the structural integrity of doped systems. Overall, Al emerges as the most effective and economically viable dopant, optimizing LLZO for scalable, durable, and high-conductivity solid-state batteries. Full article
Show Figures

Graphical abstract

29 pages, 30467 KiB  
Article
Clay-Hosted Lithium Exploration in the Wenshan Region of Southeastern Yunnan Province, China, Using Multi-Source Remote Sensing and Structural Interpretation
by Lunxin Feng, Zhifang Zhao, Haiying Yang, Qi Chen, Changbi Yang, Xiao Zhao, Geng Zhang, Xinle Zhang and Xin Dong
Minerals 2025, 15(8), 826; https://doi.org/10.3390/min15080826 (registering DOI) - 2 Aug 2025
Viewed by 241
Abstract
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on [...] Read more.
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on local exploration, and large-scale predictive metallogenic studies remain limited. To address this, this study utilized multi-source remote sensing data from ZY1-02D and ASTER, combined with ALOS 12.5 m DEM and Sentinel-2 imagery, to carry out remote sensing mineral identification, structural interpretation, and prospectivity mapping for clay-type lithium in the Wenshan area. This study indicates that clay-type lithium in the Wenshan area is controlled by NW, EW, and NE linear structures and are mainly distributed in the region from north of the Wenshan–Malipo fault to south of the Guangnan–Funing fault. High-value areas of iron-rich silicates and iron–magnesium minerals revealed by ASTER data indicate lithium enrichment, while montmorillonite and cookeite identification by ZY1-02D have strong indicative significance for lithium. Field verification samples show the highest Li2O content reaching 11,150 μg/g, with six samples meeting the comprehensive utilization criteria for lithium in bauxite (Li2O ≥ 500 μg/g) and also showing an enrichment of rare earth elements (REEs) and gallium (Ga). By integrating stratigraphic, structural, mineral identification, geochemical characteristics, and field verification data, ten mineral exploration target areas were delineated. This study validates the effectiveness of remote sensing technology in the exploration of clay-type lithium and provides an applicable workflow for similar environments worldwide. Full article
Show Figures

Figure 1

15 pages, 3152 KiB  
Article
Advanced Modeling of GaN-on-Silicon Spiral Inductors
by Simone Spataro, Giuseppina Sapone, Marcello Giuffrida and Egidio Ragonese
Electronics 2025, 14(15), 3079; https://doi.org/10.3390/electronics14153079 - 31 Jul 2025
Viewed by 88
Abstract
In this paper, the accuracy of basic and advanced spiral inductor models for gallium nitride (GaN) integrated inductors is evaluated. Specifically, the experimental measurements of geometrically scaled circular spiral inductors, fabricated in a radio frequency (RF) GaN-on silicon technology, are exploited to estimate [...] Read more.
In this paper, the accuracy of basic and advanced spiral inductor models for gallium nitride (GaN) integrated inductors is evaluated. Specifically, the experimental measurements of geometrically scaled circular spiral inductors, fabricated in a radio frequency (RF) GaN-on silicon technology, are exploited to estimate the errors of two lumped geometrically scalable models, i.e., a simple π-model with seven components and an advanced model with thirteen components. The comparison is performed by using either the standard performance parameters, such as inductance (L), quality factor (Q-factor), and self-resonance frequency (SRF), or the two-port scattering parameters (S-parameters). The comparison reveals that despite a higher complexity, the developed advanced model achieves a significant reduction in SRF percentage errors in a wide range of geometrical parameters, while enabling an accurate estimation of two-port S-parameters. Indeed, the correct evaluation of both SRF and two-port S-parameters is crucial to exploit the model in an actual circuit design environment by properly setting the inductor geometrical parameters to optimize RF performance. Full article
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Layered Structures Based on Ga2O3/GaS0.98Se0.02 for Gas Sensor Applications
by Veaceslav Sprincean, Mihail Caraman, Tudor Braniste and Ion Tiginyanu
Surfaces 2025, 8(3), 53; https://doi.org/10.3390/surfaces8030053 - 28 Jul 2025
Viewed by 268
Abstract
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O [...] Read more.
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O3 nanowires/nanoribbons with inclusions of Ga2S3 and Ga2Se3 microcrystallites were obtained by thermal treatment of GaS0.98Se0.02 slabs in air enriched with water vapors. The microstructure, crystalline quality, and elemental composition of the obtained samples were investigated using electron microscopy, X-ray diffraction, and Raman spectroscopy. The obtained structures show promising results as active elements in gas sensor applications. Vapors of methanol (CH3OH), ethanol (C2H5OH), and acetone (CH3-CO-CH3) were successfully detected using the nanostructured samples. The electrical signal for gas detection was enhanced under UV light irradiation. The saturation time of the sensor depends on the intensity of the UV radiation beam. Full article
Show Figures

Figure 1

15 pages, 2406 KiB  
Article
Adsorption Performance and Mechanism of Gallium from Sulfuric Acid Leach Liquor of High-Alumina Fly Ash
by Wenfen Wu, Chaolu Wen, Shaopeng Li, Zhenhua Sun, Xinjuan Hou, Huiquan Li and Zhibin Ma
Separations 2025, 12(8), 190; https://doi.org/10.3390/separations12080190 - 23 Jul 2025
Viewed by 217
Abstract
High-alumina fly ash may potentially be a valuable source of Ga with a concentration of Ga at 80 mg/kg. Direct adsorption and enrichment of Ga from sulfuric acid leach liquor of high-alumina fly ash is developed in this study. The H-type chelating resin [...] Read more.
High-alumina fly ash may potentially be a valuable source of Ga with a concentration of Ga at 80 mg/kg. Direct adsorption and enrichment of Ga from sulfuric acid leach liquor of high-alumina fly ash is developed in this study. The H-type chelating resin with two carboxy groups exhibited the best adsorption capacity for Ga. The maximum adsorption capacity for Ga was 55 mg/g resin with an adsorption time of 24 h, an initial Ga concentration of 500 mg/L, an adsorption temperature of 55 °C, and an initial acid concentration of 0.1 mol/L. The adsorption process of Ga was in good fit with the Langmuir isotherm and pseudo-second-order reaction kinetics model. The chemical adsorption rate was controlled by an internal diffusion mechanism. The resin had a high selectivity for Ga3+ with a Kd over 3600 compared with Fe2+, Al3+, K+, Ca2+, and Mg2+. The adsorption mechanism was found to be the ion exchange reaction between Ga and H of carboxy and hydroxyl groups. The concentration of Ga in sulfuric acid leach liquor from high-alumina fly ash achieved enrichment from 200 mg/L to 2 g/L. It is an attractive medium for large-scale Ga extraction from high-alumina fly ash. Full article
Show Figures

Figure 1

18 pages, 5521 KiB  
Article
Design and TCAD Simulation of GaN P-i-N Diode with Multi-Drift-Layer and Field-Plate Termination Structures
by Zhibo Yang, Guanyu Wang, Yifei Wang, Pandi Mao and Bo Ye
Micromachines 2025, 16(8), 839; https://doi.org/10.3390/mi16080839 - 22 Jul 2025
Viewed by 309
Abstract
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work [...] Read more.
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work systematically evaluates multiple edge termination techniques, including deep-etched mesa, beveled mesa, and field-plate configurations with both vertical and inclined mesa structures. We present an optimized multi-drift-layer GaN P-i-N diode incorporating field-plate termination and analyze its electrical performance in detail. This study covers forward conduction characteristics including on-state voltage, on-resistance, and their temperature dependence, reverse breakdown behavior examining voltage capability and electric field distribution under different temperatures, and switching performance addressing both forward recovery phenomena, i.e., voltage overshoot and carrier injection dynamics, and reverse recovery characteristics including peak current and recovery time. The comprehensive analysis offers practical design guidelines for developing high-performance GaN power devices. Full article
Show Figures

Figure 1

24 pages, 6475 KiB  
Review
Short-Circuit Detection and Protection Strategies for GaN E-HEMTs in High-Power Applications: A Review
by Haitz Gezala Rodero, David Garrido Díez, Iosu Aizpuru Larrañaga and Igor Baraia-Etxaburu
Electronics 2025, 14(14), 2875; https://doi.org/10.3390/electronics14142875 - 18 Jul 2025
Viewed by 394
Abstract
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into [...] Read more.
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into high-power applications is limited by critical reliability concerns, particularly regarding their short-circuit (SC) withstand capability and overvoltage (OV) resilience. GaN devices typically exhibit SC withstand times of only a few hundred nanoseconds, needing ultrafast protection circuits, which conventional desaturation (DESAT) methods cannot adequately provide. Furthermore, their high switching transients increase the risk of false activation events. The lack of avalanche capability and the dynamic nature of GaN breakdown voltage exacerbate issues related to OV stress during fault conditions. Although SC-related behaviour in GaN devices has been previously studied, a focused and comprehensive review of protection strategies tailored to GaN technology remains lacking. This paper fills that gap by providing an in-depth analysis of SC and OV failure phenomena, coupled with a critical evaluation of current and next-generation protection schemes suitable for GaN-based high-power converters. Full article
(This article belongs to the Special Issue Advances in Semiconductor GaN and Applications)
Show Figures

Figure 1

15 pages, 2473 KiB  
Article
Self-Calibrating TSEP for Junction Temperature and RUL Prediction in GaN HEMTs
by Yifan Cui, Yutian Gan, Kangyao Wen, Yang Jiang, Chunzhang Chen, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(14), 1102; https://doi.org/10.3390/nano15141102 - 16 Jul 2025
Viewed by 350
Abstract
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter [...] Read more.
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter (TSEP) model that uses gate leakage current (IG) to estimate junction temperature with high accuracy, uniquely addressing aging effects overlooked in prior studies. By integrating IG, aging-induced degradation, and failure-in-time (FIT) models, the approach achieves a junction temperature estimation error of less than 1%. Long-term hard-switching tests confirm its effectiveness, with calibrated RDS_ON measurements enabling precise remaining useful life (RUL) predictions. This methodology significantly improves GaN HEMT reliability assessment, enhancing their performance in resilient power electronics systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 2117 KiB  
Article
On-Orbit Life Prediction and Analysis of Triple-Junction Gallium Arsenide Solar Arrays for MEO Satellites
by Huan Liu, Chenjie Kong, Yuan Shen, Baojun Lin, Xueliang Wang and Qiang Zhang
Aerospace 2025, 12(7), 633; https://doi.org/10.3390/aerospace12070633 - 16 Jul 2025
Viewed by 266
Abstract
This paper focuses on the triple-junction gallium arsenide solar array of a MEO (Medium Earth Orbit) satellite that has been in orbit for 7 years. Through a combination of theoretical and data-driven methods, it conducts research on anti-radiation design verification and life prediction. [...] Read more.
This paper focuses on the triple-junction gallium arsenide solar array of a MEO (Medium Earth Orbit) satellite that has been in orbit for 7 years. Through a combination of theoretical and data-driven methods, it conducts research on anti-radiation design verification and life prediction. This study integrates the Long Short-Term Memory (LSTM) algorithm into the full life cycle management of MEO satellite solar arrays, providing a solution that combines theory and engineering for the design of high-reliability energy systems. Based on semiconductor physics theory, this paper establishes an output current calculation model. By combining radiation attenuation factors obtained from ground experiments, it derives the theoretical current values for the initial orbit insertion and the end of life. Aiming at the limitations of traditional physical models in addressing solar performance degradation under complex radiation environments, this paper introduces an LSTM algorithm to deeply mine the high-density current telemetry data (approximately 30 min per point) accumulated over 7 years in orbit. By comparing the prediction accuracy of LSTM with traditional models such as Recurrent Neural Network (RNN) and Feedforward Neural Network (FNN), the significant advantage of LSTM in capturing the long-term attenuation trend of solar arrays is verified. This study integrates deep learning technology into the full life cycle management of solar arrays, constructs a closed-loop verification system of “theoretical modeling–data-driven intelligent prediction”, and provides a solution for the long-life and high-reliability operation of the energy system of MEO orbit satellites. Full article
Show Figures

Figure 1

34 pages, 1638 KiB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Viewed by 678
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

14 pages, 2124 KiB  
Article
Simultaneous Submicron Temperature Mapping of Substrate and Channel in P-GaN/AlGaN/GaN HEMTs Using Raman Thermometry
by Jaesun Kim, Seungyoung Lim, Gyeong Eun Choi, Jung-ki Park, Ho-Young Cha, Cheol-Ho Kwak, Jinhong Lim, Youngboo Moon and Jung-Hoon Song
Appl. Sci. 2025, 15(14), 7860; https://doi.org/10.3390/app15147860 - 14 Jul 2025
Viewed by 306
Abstract
In this study, we introduce a high-resolution, high-speed thermal imaging technique using Raman spectroscopy to simultaneously measure the temperature of a substrate and a channel. By modifying the Raman spectrometer, we achieved a measurement speed faster than commercial spectrometers. This system demonstrated a [...] Read more.
In this study, we introduce a high-resolution, high-speed thermal imaging technique using Raman spectroscopy to simultaneously measure the temperature of a substrate and a channel. By modifying the Raman spectrometer, we achieved a measurement speed faster than commercial spectrometers. This system demonstrated a sub-micron spatial resolution and the ability to measure the temperatures of the Si substrate and GaN channel simultaneously. During high-current operation, we observed significant self-heating in the GaN channel, with hotspots 100 °C higher than the surroundings, while the Si substrate showed an even temperature distribution. The ability to detect hotspots can help secure the reliability of devices through early failure analysis and can also be used for improvement research to reduce hotspots. These findings highlight the potential of this technique for early defect inspection and device improvement research. This study provides a novel and effective method for measuring the sub-micron resolution temperature distribution in devices, which can be applied to various semiconductor devices, including SiC-based power devices. Full article
(This article belongs to the Special Issue Electric Power Applications II)
Show Figures

Figure 1

29 pages, 1341 KiB  
Article
GaN Power Amplifier with DPD for Enhanced Spectral Integrity in 2.3–2.5 GHz Wireless Systems
by Mfonobong Uko
Technologies 2025, 13(7), 299; https://doi.org/10.3390/technologies13070299 - 11 Jul 2025
Viewed by 554
Abstract
The increasing need for high-data-rate wireless applications in 5G and IoT networks requires sophisticated power amplifier (PA) designs in the sub-6 GHz spectrum. This work introduces a high-efficiency Gallium Nitride (GaN)-based power amplifier optimized for the 2.3–2.5 GHz frequency band, using digital pre-distortion [...] Read more.
The increasing need for high-data-rate wireless applications in 5G and IoT networks requires sophisticated power amplifier (PA) designs in the sub-6 GHz spectrum. This work introduces a high-efficiency Gallium Nitride (GaN)-based power amplifier optimized for the 2.3–2.5 GHz frequency band, using digital pre-distortion (DPD) to improve spectral fidelity and reduce distortion. The design employs load modulation and dynamic biasing to optimize power-added efficiency (PAE) and linearity. Simulation findings indicate a gain of 13 dB, a 3 dB compression point at 29.7 dBm input power, and 40 dBm output power, with a power-added efficiency of 60% and a drain efficiency of 65%. The power amplifier achieves a return loss of more than 15 dB throughout the frequency spectrum, ensuring robust impedance matching and consistent performance. Electromagnetic co-simulations confirm its stability under high-frequency settings, rendering it appropriate for next-generation high-efficiency wireless communication systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

17 pages, 7850 KiB  
Article
Gallium-Containing Bioactive Glasses: Their Influence on Ion Release and the Bioactivity of Resulting Glass Polyalkenoate Cements
by Lana Margaret Placek, Danielle Lee Perry, Mark Robert Towler and Anthony William Wren
Appl. Sci. 2025, 15(14), 7756; https://doi.org/10.3390/app15147756 - 10 Jul 2025
Viewed by 434
Abstract
A series of glasses (0.48SiO2 − [0.40-x]ZnO − 0.12CaO-xGa2O3, x = 0, 0.8, 0.16) was developed to formulate a series of Ga-containing glass polyalkenoate cements (GPCs). The solubility of GPCs was tested using DI water, and it was [...] Read more.
A series of glasses (0.48SiO2 − [0.40-x]ZnO − 0.12CaO-xGa2O3, x = 0, 0.8, 0.16) was developed to formulate a series of Ga-containing glass polyalkenoate cements (GPCs). The solubility of GPCs was tested using DI water, and it was found that the sample containing the highest mol% of Ga, LGa-2, had the most Ga ion release. The GPCs were incubated in SBF, and SEM/EDS analysis revealed that the at% of P increased, while the at% of Si decreased, highlighting the CaP precipitation on the GPC surface. The at% of Ga also decreased, reinforcing the Ga release from the GPC. Cellular testing against fibroblasts and osteoblasts showed that a concentration of 25 mg/mL of the liquid extracts from the LGa-2 GPC had increased cell viability compared to other concentrations and GPCs tested. Antibacterial studies against E. coli and S. epidermidis demonstrated inhibition zones around the GPCs, highlighting their effectiveness in the elimination of bacteria on contact. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

14 pages, 670 KiB  
Review
Evaluating the Efficacy of Various Laser Types in Periodontal Treatment: A Narrative Review
by Stefanos Zisis, Vasileios Zisis and Andreas Braun
Oral 2025, 5(3), 49; https://doi.org/10.3390/oral5030049 - 8 Jul 2025
Viewed by 391
Abstract
Objectives: This review examines the efficacy of each laser type in the field of periodontal surgery and analyzes published articles that focus on the use of lasers in periodontal surgery. Methods: Automatic and manual searches were made in 3 separate databases (PubMed, Embase, [...] Read more.
Objectives: This review examines the efficacy of each laser type in the field of periodontal surgery and analyzes published articles that focus on the use of lasers in periodontal surgery. Methods: Automatic and manual searches were made in 3 separate databases (PubMed, Embase, and Cochrane) with the aim of finding all published articles of the last 15 years up until December 2023 that describe the clinical manipulation of diode, erbium:yttrium-aluminum-garnet (Er:YAG), erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG), neodymium yttrium-aluminum-garnet (Nd:YAG), and carbon dioxide (CO2) lasers for periodontal surgical procedures in humans. Results: A total of 18 studies were selected for inclusion, all of which compared the usage of a laser type to conventional periodontal surgical techniques with their main follow-ups being in 3, 6, or 9 months. Conclusions: There are a variety of laser types, each with different settings and wavelengths, that can be applied to the established aspects of resective and regenerative periodontal surgeries. A significant majority of the publications, 10 of the 12 studies, that include diode lasers as an adjunctive show an improvement in clinical results compared to traditional surgical techniques alone, while 2 articles studied the Er:YAG laser and 1 article studied the Er,Cr:YSGG laser, with all 3 of them failing to completely test their therapeutic capabilities and indicating similar results to conventional surgery. The Nd:YAG laser was featured in 3 studies, with 1 study showing superior results for the laser group, another study showing the negative influence of the laser, and the 3rd study being inconclusive. The CO2 laser was used in 1 study and showed better clinical results for the laser group. Diode lasers have been proven to produce additional therapeutic results, but there is a need for further investigation of erbium family lasers along with the Nd:YAG and CO2 lasers, as the current provided literature contradicts their potential healing capabilities. Full article
(This article belongs to the Special Issue Lasers in Oral Sciences)
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia
by P. Pungboon Pansila, Seckson Sukhasena, Saksit Sukprasong, Worasitti Sriboon, Wipawee Temnuch, Tongsai Jamnongkan and Tanabat Promjun
Appl. Sci. 2025, 15(13), 7487; https://doi.org/10.3390/app15137487 - 3 Jul 2025
Viewed by 514
Abstract
The initial surface reaction of gallium nitride (GaN) grown by atomic layer deposition (GaN-ALD) was investigated using density functional theory (DFT) calculations. Trimethylgallium (TMG) and ammonia (NH3) were used as gallium (Ga) and nitrogen (N) precursors, respectively. DFT calculations at the [...] Read more.
The initial surface reaction of gallium nitride (GaN) grown by atomic layer deposition (GaN-ALD) was investigated using density functional theory (DFT) calculations. Trimethylgallium (TMG) and ammonia (NH3) were used as gallium (Ga) and nitrogen (N) precursors, respectively. DFT calculations at the B3LYP/6-311+G(2d,p) and 6-31G(d) levels were performed to compute relative energies and optimize chemical structures, respectively. TMG adsorption on Si15H18–(NH2)2 and Si15H20=(NH)2 clusters was modeled, where –NH2 and =NH surface species served as adsorption sites. The reaction mechanisms in the adsorption and nitridation steps were investigated. The results showed that TMG can adsorb on both surface adsorption sites. In the initial adsorption stage, TMG adsorbs onto =NH- and –NH2-terminated Si(100) surfaces with activation energies of 1.11 and 2.00 eV, respectively, indicating that the =NH site is more reactive. During subsequent NH3 adsorption, NH3 adsorbs onto the residual TMG on the =NH- and –NH2-terminated surfaces with activation energies of approximately 2.00 ± 0.02 eV. The reaction pathways indicate that NH3 adsorbs via similar mechanisms on both surfaces, resulting in comparable nitridation kinetics. Furthermore, this study suggests that highly reactive NH2 species generated in the gas phase from ionized NH3 may help reduce the process temperature in the GaN-ALD process. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

Back to TopTop