On-Orbit Life Prediction and Analysis of Triple-Junction Gallium Arsenide Solar Arrays for MEO Satellites
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Triple-Junction Gallium Arsenide Solar Arrays
2.2. On-Orbit Telemetry Data Processing
- Sliding Window Statistic Calculation:
- Local Mean:
- B.
- Local Standard Deviation:
- 2.
- Rel-time Update:
3. Results and Discussion
3.1. Assessment of Satellite Initial Orbit Insertion Current
3.2. On-Orbit Data Prediction
- Subtract the telemetry downlink time by the time of the first data point, and convert it into seconds.
- Normalize the time and current.
- Divide the training set and test set.
- Use LSTM, RNN, and FNN for training and prediction.
3.3. Comparison with the Training Results of Low-Density Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MEO | Medium Earth Orbit |
LSTM | Long Short-Term Memory |
RNN | Recurrent Neural Network |
FNN | Fully Connected Neural Network |
S3R | Sequential Switching Shunt Regulator |
References
- Raya-Armenta, J.M.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. A short review of radiation-induced degradation of III–V photovoltaic cells for space applications. Sol. Energy Mater. Sol. Cells 2021, 233, 111379. [Google Scholar] [CrossRef]
- Adıgüzel, E. 10 year performance and degradation analysis of different photovoltaic panels in the Istanbul Türkiye environment. Renew. Energy 2025, 251, 123327. [Google Scholar] [CrossRef]
- Hasan, A.A.; Zuhdi, A.M.; Al-Ghaili, A.M.; Al-Shetwi, A.Q.; Islam, M.A.; Sankar, K.P.; Gunasekaran, S.S. A review on silicon photovoltaic module degradations and recent identification techniques. Sol. Energy 2025, 288, 113288. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Yu, C.; Xu, F.; Dou, X. Spaceborne atomic clock performance review of BDS-3 MEO satellites. Measurement 2021, 175, 109075. [Google Scholar] [CrossRef]
- Zheng, Y.; Jun, I.; Tu, W.; Shprits, Y.Y.; Kim, W.; Matthiä, D.; Meier, M.M.; Tobiska, W.K.; Miyoshi, Y.; Jordanova, V.K.; et al. Overview, Progress and Next Steps for Our Understanding of the Near-Earth Space Radiation and Plasma Environment: Science and Applications. Adv. Space Res. 2024, in press. [Google Scholar] [CrossRef]
- Khattak, M.Y.; Masood, W.; Jahangir, R.; Siddiq, M.; Alyousef, H.A.; El-Tantawy, S. Interaction of ion-acoustic solitons for multi-dimensional Zakharov Kuznetsov equation in Van Allen radiation belts. Chaos Solitons Fractals 2022, 161, 112265. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Huo, Z.-X.; Wang, F.-F. TID evaluation based on variabilities of space radiation and device failure dose in typical navigation satellite orbits. Microelectron. Reliab. 2022, 137, 114747. [Google Scholar] [CrossRef]
- Isabella, H. Viability of on-orbit servicing spacecraft to prolong the operational life of satellites. J. Space Saf. Eng. 2022, 9, 263–268. [Google Scholar] [CrossRef]
- Kim, Y.J.; Moon, Y.; Moon, J.H.; Kim, H.W.; Bahng, W.; Park, H.; Yoon, Y.J.; Seo, J.H. Displacement damage effect of proton irradiation on vertical β-Ga2O3 and SiC Schottky barrier diodes (SBDs). J. Sci. Adv. Mater. Devices 2024, 9, 100765. [Google Scholar] [CrossRef]
- Zedric, R.M.; Chirayath, S.S.; Marianno, C.M.; Diawara, Y.; Skukan, N. Bias-dependent displacement damage effects in a silicon avalanche photodiode. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2021, 507, 42–45. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Z.; Ning, H.; Xu, R.; Jiao, Q.; Li, J.; Jia, T. Analysis of CSNS neutron-induced displacement damage effects on top illumination planar InGaAs pin photodetectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 978, 164405. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.; Xie, M.; Zhao, D. A Study of Solar Radiation Pressure Model in BDS-3 Precise Orbit Determination. Chin. Astron. Astrophys. 2023, 47, 894–911. [Google Scholar] [CrossRef]
- Waheed, W.; Xu, Q.; Aurangzeb, M.; Iqbal, S.; Dar, S.H.; Elbarbary, Z. Empowering data-driven load forecasting by leveraging long short-term memory recurrent neural networks. Heliyon 2024, 10, e40934. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, S.R.; Bisoi, R.; Dash, P. Solar Irradiance Forecasting using Hybrid Long-Short-Term-Memory based Recurrent Ensemble Deep Random Vector Functional Link Network. Comput. Electr. Eng. 2025, 123, 110174. [Google Scholar] [CrossRef]
- Ghadiri, H.; Hajizadeh, E. Designing a cryptocurrency trading system with deep reinforcement learning utilizing LSTM neural networks and XGBoost feature selection. Appl. Soft Comput. 2025, 175, 113029. [Google Scholar] [CrossRef]
- Li, D.; Jiang, S.; Zhang, X.; Li, Y.; Li, F. Power Characteristics Analysis of Multi-junction Semi-rigid Solar Array. In Proceedings of the 2024 9th Asia Conference on Power and Electrical Engineering (ACPEE), Shanghai, China, 11–13 April 2024; pp. 2696–2700. [Google Scholar] [CrossRef]
- Sun, K.; Liu, S.; Gao, Y.; Du, H.; Cheng, D.; Wang, Z. Output power prediction of stratospheric airship solar array based on surrogate model under global wind field. Chin. J. Aeronaut. 2025, 38, 103244. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, T.; Zhao, Y.; Jia, Z.; Li, Y.; Xu, G. Solar array power prediction of long endurance stratospheric aerostat using a hybrid model based on Blur Informer. Sol. Energy 2025, 287, 113121. [Google Scholar] [CrossRef]
- Gaiatto, C.S.; Antonello, F.; Segneri, D.; Sousa, B.; Palacios, B.A.; Schiavo, A.; Bartesaghi, M.; Maass, J.; Inojosa, A. A novel physics-based computational framework to model spacecraft solar array power under degradation: Application to European Space Agency (ESA) Cluster mission. Acta Astronaut. 2025, 226, 341–348. [Google Scholar] [CrossRef]
- Mokhtar, A.; Ibrahim, M.; Hanafy, M.E.; ElTohamy, F.H.A.; Elhalwagy, Y.Z. Developing a modelling environment of spacecraft solar array in low Earth orbit using real-time telemetry data. Frankl. Open 2025, 11, 100268. [Google Scholar] [CrossRef]
- Zhang, X.; Zuo, Z. Analysis of On-orbit Degradation Characteristics of Solar Cells for MEO Satellites. Spacecr. Eng. 2014, 23, 75–80. [Google Scholar]
- Yin, X.; Lin, J.; Wang, S. On-orbit Power Analysis of Solar Arrays for MEO Satellites. Chin. J. Power Sources 2013, 37, 1007–1009. [Google Scholar]
- Espinet-Gonzalez, P.; Barrigon, E.; Chen, Y.; Otnes, G.; Vescovi, G.; Mann, C.; Lloyd, J.V.; Walker, D.; Kelzenberg, M.D.; Aberg, I.; et al. Nanowire solar cells: A new radiation hard PV technology for space applications. IEEE J. Photovolt. 2020, 10, 502–507. [Google Scholar] [CrossRef]
- Yang, S.-S.; Gao, X.; Feng, Z.-Z.; Zhang, L.; Cui, X.-Y. Displacement damage analysis of single-junction and triple-junction GaAs solar cells induced by electron irradiation. In Proceedings of the 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Oxford, UK, 23–27 September 2013. [Google Scholar]
- Ma, R.; Letu, H.; Yang, K.; Wang, T.; Shi, C.; Xu, J.; Shi, J.; Shi, C.; Chen, L. Estimation of surface shortwave radiation from Himawari-8 satellite data based on a combination of radiative transfer and deep neural network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5304–5316. [Google Scholar] [CrossRef]
- Muchlishah, M.; Monika, D.; Fatahula, F.; Permana, B.S.I. Influence of Environmental Conditions on the Performance of Solar Power Generation Systems: Analysis of Light Intensity, Temperature, and Humidity. In Proceedings of the 2024 International Conference on Informatics Electrical and Electronics (ICIEE), Bali, Indonesia, 5–6 December 2024. [Google Scholar]
- Lin, B.; Lin, X.; Wang, J.; Li, X.; Wang, S.; Li, S.; Wang, Y. Beidou-3 Satellite Control Technology Based on Functional Chain. Aerosp. Control Appl. 2024, 50, 26–36. [Google Scholar]
- Xie, J.; Li, Y. Orbital season and its long-term effects on the thermal and electrical safe operation of low-Earth satellites in Sun-synchronous orbit. J. Space Saf. Eng. 2025, 12, 175–186. [Google Scholar] [CrossRef]
- Jiao, F.; Hu, Y.; Yu, X.; Wang, H.; Chen, Q. Geostationary Autonomous Trajectory Determination Technology based on Enhanced Inter-Satellite Links of the Beidou Medium Earth Orbit Constellation. Aerosp. Sci. Technol. 2025, 163, 110240. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, S.; Gao, Z. Research on the Performance of Triple—Junction Gallium Arsenide Solar Cells in Medium—And High—Orbit. Power Source Technol. 2017, 41, 1565–1568. [Google Scholar]
- Sahlstrom, T.D.; Hausgen, P.E.; Guerrero, J.; Howard, A.D.; Snyder, N.A. Ultraviolet degradation testing of space protective coatings for photovoltaic cells. In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. [Google Scholar]
- Zaitsev, R.; Kirichenko, M.; Khrypunov, G.; Khrypunov, M.; Prokopenko, D.; Radoguz, S. Dependence of the Thin Film Solar Cells Efficiency from Operating Temperature. In Proceedings of the 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019. [Google Scholar]
- Mareș, M.-C.; Ionescu, C.; Svasta, P. Comparative Studies of Temperature Influence on Characteristics of Dye Sensitized and Silicon Based Solar Cells. In Proceedings of the 2023 IEEE 29th International Symposium for Design and Technology in Electronic Packaging (SIITME), Craiova, Romania, 18–22 October 2023. [Google Scholar]
- Liu, S.; Sun, K.; Gao, J.; Liang, H. Receiving energy analysis and optimal design of crystalline silicon solar cell array on solar airship. Energy 2023, 282, 128988. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Lv, M.; Tan, D.; Zhu, W.; Sun, K. Simplified analytical model for investigating the output power of solar array on stratospheric airship. Int. J. Aeronaut. Space Sci. 2016, 17, 432–441. [Google Scholar] [CrossRef]
- Li, J.; Lv, M.; Tan, D.; Zhu, W.; Sun, K.; Zhang, Y. Output performance analyses of solar array on stratospheric airship with thermal effect. Appl. Therm. Eng. 2016, 104, 743–750. [Google Scholar] [CrossRef]
- Overview of Space Environment Alerts. Space Environment Prediction Center. 7 June 2025. Available online: http://www.sepc.ac.cn/alerts_chn.php (accessed on 5 July 2025).
- Sun Hits Solar Maximum, But Peak Activity Continues. 15 October 2024. Available online: https://usasolarcell.com/news/2024/10/15/sun-hits-solar-maximum-but-peak-activity-continues/ (accessed on 5 July 2025).
- The Sun Has Reached Solar Maximum, NASA and NOAA Scientists Say. 16 October 2024. Available online: https://www.astronomy.com/observing/the-sun-has-reached-solar-maximum-nasa-and-noaa-scientists-say/ (accessed on 5 July 2025).
- The Sun Officially Reaches Solar Maximum in Its 11-Year Cycle. EarthSky. 16 October 2024. Available online: https://earthsky.org/sun/sun-official-solar-maximum-cycle-25-2024/ (accessed on 5 July 2025).
- Du, Y.; Cui, N.; Li, H.; Nie, H.; Shi, Y.; Wang, M.; Li, T. The vehicle’s velocity prediction methods based on rnn and lstm neural network. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020. [Google Scholar]
- Liu, J.; Wang, Y.; Luo, X. Research Progress of Deep Memory Networks. J. Comput. Sci. Technol. 2021, 44, 1549–1589. [Google Scholar]
Parameters | Value |
---|---|
Short-circuit Isc | 17.67 mA/cm2 |
Open-circuit voltage Voc | 2.7 V |
Optimum operating point current Imp | 17.13 mA/cm2 |
Optimum operating point voltage Vmp | 2.396 V |
Fill factor FF | 0.86 |
Photoelectric conversion efficiency η | 30% |
Absorptivity: αS | ≤0.92 |
Hemispherical emissivity: εH | 0.82 ± 0.03 |
Parameters | Value |
---|---|
Circuit and diode voltage drop | 3 V |
Voltage irradiation degradation factor | 0.92 |
Voltage temperature coefficient | −6.4 mV/°C~−7.2 mV/°C |
Combined loss factor (Voltage/Current) | 0.98 |
Electrical performance test error factor (Voltage/Current) | 0.98 |
Current particle irradiation degradation factor | 0.91 |
Current ultraviolet radiation loss factor | 0.98 |
Current temperature coefficient | 0.006 mA/cm2 °C~0.014 mA/cm2 °C |
Sub-Array | Voc (V) | Vmp (V) | Isc (A) | Imp (A) | I46 (A) | Pmax (W) | |
---|---|---|---|---|---|---|---|
Ground Test Results of +Y Solar Wing | 1 | 69.69 | 62.48 | 5.894 | 5.477 | 5.733 | 342.2 |
3 | 69.81 | 62.24 | 6.806 | 6.342 | 6.628 | 394.7 | |
5 | 69.77 | 62.54 | 6.365 | 5.899 | 6.175 | 368.9 | |
7N | 69.73 | 62.01 | 4.698 | 4.316 | 4.555 | 267.6 | |
7Z | 69.84 | 62.09 | 1.707 | 1.607 | 1.667 | 99.80 | |
9W | 69.82 | 63.16 | 4.276 | 3.955 | 4.163 | 249.8 | |
9Z | 69.76 | 61.79 | 2.139 | 2.020 | 2.078 | 124.8 | |
Total Power of +Y Solar Wing | 1847.8 | ||||||
Ground Test Results of −Y Solar Wing | 2 | 69.65 | 62.9 | 5.920 | 5.484 | 5.754 | 344.9 |
4 | 69.77 | 62.08 | 6.801 | 6.318 | 6.579 | 392.2 | |
6 | 69.73 | 62.40 | 6.386 | 5.907 | 6.182 | 368.6 | |
8N | 69.78 | 62.53 | 4.667 | 4.344 | 4.535 | 271.6 | |
8Z | 69.72 | 61.96 | 1.701 | 1.608 | 1.667 | 99.65 | |
10W | 69.85 | 62.48 | 4.287 | 3.982 | 4.167 | 248.8 | |
10Z | 69.82 | 62.70 | 2.125 | 1.976 | 2.075 | 123.9 | |
Total Power of −Y Solar Wing | 1849.65 | ||||||
Total Power of +Y and −Y Solar Wing | 3697.45 |
Shunt Stage | Output Current/A (25°) | Large Cell Parallel Number | Small Cell Parallel Number | Large Cell Area (cm2) | Small Cell Area (cm2) | ||
---|---|---|---|---|---|---|---|
1 | 2 | 5.54 | 14 | 0 | 17.13 mA/cm2 | 24.0392 =3.98 × 6.04 | 12.3318 =3.6 × 4.03 |
3 | 4 | 6.33 | 16 | 0 | |||
5 | 6 | 5.94 | 14 | 2 | |||
7 | 8 | 5.94 | 14 | 2 | |||
9 | 10 | 5.94 | 14 | 2 | |||
Total | 29.69 | 72 | 6 | / | / | / |
Year | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 |
Annual attenuation percentage | 1.96% | 1.44% | 1.23% | 1.36% | 1.56% | 1.75% | 1.50% |
Model | Number of Layers | Structure of Each Layer | Activation Function | Input Shape |
---|---|---|---|---|
LSTM | Fully Connected Layer (3 Layers) | Input Layer → Dense (64) → Dropout → Dense (32) → Dropout →Output Layer (1) | ReLU (Hidden Layer) Linear (Output Layer) | (Sample number, 1) |
RNN | Recurrent Layer (2 Layers) | Input Layer → SimpleRNN (64, return_sequences=True) → Dropout → SimpleRNN (32) → Dropout →Output Layer (1) | Tanh (Hidden Layer) Linear (Output Layer) | (Sample number, time step, 1) |
FNN | LSTM Layer (2 Layers) | Input Layer → LSTM (64, return_sequences=True) → Dropout → LSTM (32) → Dropout →Output Layer (1) | Tanh (Hidden Layer) Linear (Output Layer) | (Sample number, time step, 1) |
Model | Optimizer | Loss Function | Training Parameters | Regularization |
---|---|---|---|---|
LSTM | Adam | MSE | Epochs = 50, Batch size = 32 | Dropout (0.2) |
RNN | Adam | MSE | Epochs = 50, Batch size = 32 | Dropout (0.2) |
FNN | Adam | MSE | Epochs = 50, Batch size = 32 | Dropout (0.2) |
Model | MSE | MAE | RMSE |
---|---|---|---|
LSTM | 0.0139 | 0.1025 | 0.1180 |
RNN | 0.0614 | 0.2201 | 0.2478 |
FNN | 0.0572 | 0.2126 | 0.2392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Kong, C.; Shen, Y.; Lin, B.; Wang, X.; Zhang, Q. On-Orbit Life Prediction and Analysis of Triple-Junction Gallium Arsenide Solar Arrays for MEO Satellites. Aerospace 2025, 12, 633. https://doi.org/10.3390/aerospace12070633
Liu H, Kong C, Shen Y, Lin B, Wang X, Zhang Q. On-Orbit Life Prediction and Analysis of Triple-Junction Gallium Arsenide Solar Arrays for MEO Satellites. Aerospace. 2025; 12(7):633. https://doi.org/10.3390/aerospace12070633
Chicago/Turabian StyleLiu, Huan, Chenjie Kong, Yuan Shen, Baojun Lin, Xueliang Wang, and Qiang Zhang. 2025. "On-Orbit Life Prediction and Analysis of Triple-Junction Gallium Arsenide Solar Arrays for MEO Satellites" Aerospace 12, no. 7: 633. https://doi.org/10.3390/aerospace12070633
APA StyleLiu, H., Kong, C., Shen, Y., Lin, B., Wang, X., & Zhang, Q. (2025). On-Orbit Life Prediction and Analysis of Triple-Junction Gallium Arsenide Solar Arrays for MEO Satellites. Aerospace, 12(7), 633. https://doi.org/10.3390/aerospace12070633