DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia
Abstract
1. Introduction
2. Materials and Methods
2.1. Effects of Surface Cluster Sizes
2.2. Effects of NH2 Adsorption Site Number
2.3. Effects of Basis Sets
3. Results
3.1. Reaction Mechanisms of TMG Adsorption on NH2 Passivated Si(100) Surface
3.2. Effects of Surface Adsorption Site (NH and NH2 Adsorption Sites)
3.2.1. TMG Adsorption on Si–NH2 Surface
3.2.2. TMG Adsorption on Si2–NH Surface
3.3. NH3 Adsorption on PC 1–2 Structure
3.4. Reaction Mechanisms of NH3 Adsorption on TMG Adsorbed Si(100) Surface
3.5. Prediction of Infrared Frequencies of Ga–N and Ga–CH3 Species of Product Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfredo Mameli Andrew, V. Teplyakov, Selection Criteria for Small-Molecule Inhibitors in Area-Selective Atomic Layer Deposition: Fundamental Surface Chemistry Considerations. Acc. Chem. Res. 2023, 56, 2084–2095. [Google Scholar]
- Oviroha, P.O.; Akbarzadeha, R.; Panb, D.; Coetzeea, R.A.M.; Jen, T.C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977. [Google Scholar] [CrossRef]
- Mayer, T.M.; Elam, J.W.; George, S.M.; Kotula, P.G.; Goeke, R.S. Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices. Appl. Phys. Lett. 2003, 82, 2883. [Google Scholar] [CrossRef]
- Ngo, C.Y.; Yoon, S.F.; Loke, W.K.; Cao, Q.; Lim, D.R.; Wong, V.; Sim, Y.K.; Chua, S.J. Investigation of semiconductor quantum dots for waveguide electroabsorption modulator. Nanoscale Res. Lett. 2008, 3, 486. [Google Scholar] [CrossRef]
- Notten, P.H.L.; Roozeboom, F.; Niessen, R.; Baggetto, L. 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 2007, 19, 4564–4567. [Google Scholar] [CrossRef]
- Lee, F.; Marcus, S.; Shero, E.; Wilk, G.; Swerts, J.; Maes, J.W.; Blomberg, T. Atomic layer deposition: An enabling technology for microelectronic device manufacturing. In Proceedings of the 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Stresa, Italy, 11–12 June 2007; pp. 359–365. [Google Scholar]
- Wang, J.J.; Deng, X.; Varghese, R.; Nikolov, A.; Sciortino, P.; Liu, F.; Liu, X.J. Filling high aspect-ratio nano-structures by atomic layer deposition and its applications in nano-optic devices and integrations. Vac. Sci. Technol. B 2005, 23, 3209–3213. [Google Scholar] [CrossRef]
- Hwang, C.H.; Yoo, C.Y. Introduction. Atomic Layer Deposition for Semiconductors; Springer: New York, NY, USA, 2014; pp. 3–12. [Google Scholar]
- Banerjee, S.; Aarnink, A.A.I.; Gravesteijn, D.J.; Kovalgin, A.Y. Thermal atomic layer deposition of polycrystalline gallium nitride. J. Phys. Chem. C 2019, 123, 23214–23225. [Google Scholar] [CrossRef]
- Maruska, H.P.; Stevenson, D.A.; Pankove, J.I. Violet luminescence of Mg-doped GaN. Appl. Phys. Lett. 1973, 22, 303–305. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Senoh, M.; Mukai Takashi Mukai, T. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes. J. Appl. Phys. 1993, 32, L8. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef]
- Trivedi, M.; Shenai, K. Performance evaluation of high-power wide band-gap semiconductor rectifiers. J. Appl. Phys. 1999, 85, 6889–6897. [Google Scholar] [CrossRef]
- Zhu, T.G.; Lambert, D.J.H.; Shelton, B.S.; Wong, M.M.; Chowdhury, U.; Kwon, H.K.; Dupuis, R.D. High-voltage GaN pin vertical rectifiers with 2 µm thick i-Layer. Electron. Lett. 2000, 36, 1971–1972. [Google Scholar] [CrossRef]
- Rivera, C.; Pau, J.L.; Pereiro, J.; Munoz, E. Properties of Schottky barrier photodiodes based on InGaN/GaN MQW structures. Superlattices Microstruct. 2004, 36, 849–857. [Google Scholar] [CrossRef]
- Bardsley, N.; Bland, S.; Chwastyk, D.; Monasterio, C.; Pattison, L.; Pattison, M.; Welsh, F.; Yamada, M. Manufacturing Roadmap Solid State Lighting Research and Development; U.S. Department of Energy: Washington, DC, USA, 2014. [Google Scholar]
- Li, G.; Wang, W.; Yang, W.; Lin, Y.; Wang, H.; Lin, Z.; Zhou, S. GaN-based light-emitting diodes on various substrates: A critical review. Rep. Prog. Phys. 2016, 79, 056501. [Google Scholar] [CrossRef]
- Zhang, Y.; Piedra, D.; Sun, M.; Hennig, J.; Dadgar, A.; Yu, L.; Palacios, T. High-Performance 500 V Quasi- and Fully-Vertical GaN-on-Si pn Diodes. IEEE Electron. Device Lett. 2017, 38, 248–251. [Google Scholar] [CrossRef]
- Zhu, D.; Wallis, D.J.; Humphreys, C.J. Prospects of III-nitride optoelectronics grown on Si. Rep. Prog. Phys. 2013, 76, 106501. [Google Scholar] [CrossRef]
- Morkoc, H.; Strite, S.; Gap, G.B.; Lin, M.E.; Sverdlov, B.; Burns, M. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 1994, 76, 1363–1398. [Google Scholar] [CrossRef]
- Yoshida, S.; Misawa, S.; Gonda, S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl. Phys. Lett. 1983, 42, 427–429. [Google Scholar] [CrossRef]
- Ross, J.; Rubin, M.; Gustafson, T.K. Single crystal wurtzite GaNon (111) GaAs with AlNbuffer layers grown by reactive magnetron sputter deposition. J. Mater. Res. 1993, 8, 2613–2616. [Google Scholar] [CrossRef]
- Lamb, H.H.; Lai, K.K.; Torres, V.; Davis, R.F. Deposition of Gan Films Using Seeded Supersonic Jets. MRS Online Proc. Libr. 1995, 388, 265–270. [Google Scholar] [CrossRef]
- Ferguson, B.A.; Sellidj, A.; Doris, B.B.; Mullins, C.B. Supersonic-jet-assisted growth of GaN and GaAs films. J. Vac. Sci. Technol. A 1996, 14, 825–830. [Google Scholar] [CrossRef]
- Chtchekine, D.G.; Fu, L.P.; Gilliland, G.D.; Chen, Y.; Ralph, S.E.; Bajaj, K.K.; Bu, Y.; Lin, M.C.; Bacalzo, F.T.; Stock, S.R. Properties of low-pressure chemical vapor epitaxial GaN films grown using hydrazoic acid (HN3). J. Appl. Phys. 1997, 81, 2197–2207. [Google Scholar] [CrossRef]
- Neumayer, D.A.; Ekerdt, J.G.; Growth of group III nitrides. A review of precursors and techniques. Chem. Mater. 1996, 8, 9–25. [Google Scholar] [CrossRef]
- Molnar, R.J.; Moustakas, T.D. Growth of gallium nitride by electron-cyclotron resonance plasma-assisted molecular-beam epitaxy: The role of charged species. J. Appl. Phys. 1994, 76, 4587–4595. [Google Scholar] [CrossRef]
- Sprenger, J.K.; Cavanagh, A.S.; Sun, H.; Wahl, K.J.; Roshko, A.; George, S.M. Electron Enhanced Growth of Crystalline Gallium Nitride Thin Films at Room Temperature and 100 °C Using Sequential Surface Reactions. Chem. Mater. 2016, 28, 5282–5294. [Google Scholar] [CrossRef]
- Chun, J.; Hwang, Y.; Choi, Y.; Kim, J.-J.; Jeong, T.; Baek, J.H.; Ko, H.C.; Park, S. Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer. Scr. Mater. 2014, 77, 13. [Google Scholar] [CrossRef]
- Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3. Appl. Surf. Sci. 2015, 357, 1920–1927. [Google Scholar] [CrossRef]
- Gupta, G.; Banerjee, S.; Dutta, S.; Aarnink, A.A.I.; Schmitz, J.; Kovalgin, A.Y.; Hueting, R.J.E. Charge carrier transport and electroluminescence in atomic layer deposited poly-GaN/c-Si heterojunction diodes. J. Appl. Phys. 2018, 124, 084503. [Google Scholar] [CrossRef]
- Alevli, M.; Haider, A.; Kizir, S.; Leghari, S.A.; Biyikli, N. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition. J. Vac. Sci. Technol. A 2016, 34, 01A137. [Google Scholar] [CrossRef]
- Ozgit-Akgun, C.; Goldenberg, E.; Okyay, A.K.; Biyikli, N. Hollow cathode plasma-assisted atomic layer deposition of crystalline AlN, GaN and AlxGa1−xN thin films at low temperatures. J. Mater. Chem. C 2014, 12, 2123–2136. [Google Scholar] [CrossRef]
- Motamedi, P.; Dalili, N.; Cadien, K. A route to low temperature growth of single crystal GaN on sapphire. J. Mater. Chem. C 2015, 3, 7428–7436. [Google Scholar] [CrossRef]
- Sumakeris, J.; Sitar, A.; Ailey-Trent, K.S.; More, K.L.; Davis, R.F. Layer-by-layer epitaxial growth of GaN at low temperatures. Thin Solid Film. 1993, 225, 244–249. [Google Scholar] [CrossRef]
- Shahmohammadi, M.; Mukherjee, R.; Sukotjo, C.; Diwekar, U.M.; Takoudis, C.G. Recent advances in theoretical development of thermal atomic layer deposition: A review. Nanomater 2022, 12, 831. [Google Scholar] [CrossRef]
- Sibanda, D.; Oyinbo, S.T.; Jen, T.C. A review of atomic layer deposition modelling and simulation methodologies: Density functional theory and molecular dynamics. Nanotechnol. Rev. 2022, 11, 1332–1363. [Google Scholar] [CrossRef]
- Mustard, T.J.L.; Kwak, H.S.; Goldberg, A.; Gavartin, J.; Morisato, T.; Yoshidome, D.; Halls, M.D. Quantum mechanical simulation for the analysis, optimization and accelerated development of precursors and processes for atomic layer deposition (ALD). J. Korean Ceram. Soc. 2016, 53, 317–324. [Google Scholar] [CrossRef]
- Elliott, S.D. Atomic-scale simulation of ALD chemistry. Sci. Technol. 2012, 27, 074008. [Google Scholar] [CrossRef]
- Sengupta, D.; Mazumder, S.; Kuykendall, W.; Lowry, S.A. Combined ab initio quantum chemistry computational fluid dynamics calculations for prediction of gallium nitride growth. J. Cryst. Growth 2005, 279, 369–382. [Google Scholar] [CrossRef]
- Fu, K.; Fu, Y.; Han, P.; Zhang, Y.; Zhang, R. Kinetic Monte Carlo study of metal organic chemical vapor deposition growth dynamics of GaNthin film at microscopic level. J. Appl. Phys. 2008, 103, 103524. [Google Scholar] [CrossRef]
- Cardelino, B.H.; Cardelino, C.A. Dissociative Chemisorption of Trimethylgallium, Trimethylindium, and Ammonia on Gallium and Indium Nitride Substrates. A Computational Study. J. Phys. Chem. C 2011, 115, 9090–9104. [Google Scholar] [CrossRef]
- Bermudez, V.M. Chemisorption of NH3 on GaN (0001)-(1 × 1). Chem. Phys. Lett. 2000, 317, 290–295. [Google Scholar] [CrossRef]
- Timoshkin, A.Y.; Bettinger, H.F.; Schaefer, H.F. DFT Modeling of Chemical Vapor Deposition of GaN from Organogallium Precursors. 1. Thermodynamics of Elimination Reactions. J. Phys. Chem. A 2001, 105, 3240–3248. [Google Scholar] [CrossRef]
- An, Q.; Jaramillo-Botero, A.; Liu, W.-G.; Goddard, W.A. Reaction pathways of GaN (0001) growth from trimethylgallium and ammonia versus triethylgallium and hydrazine using first principle calculations. J. Phys. Chem. C 2015, 119, 4095–4103. [Google Scholar] [CrossRef]
- Rapcewicz, K.; Nardelli, M.B.; Bernholz, J. Theory of surface morphology of wurtzite GaN (0001) surfaces. Phys. Rev. B 1997, 56, 12725–12728. [Google Scholar] [CrossRef]
- Fritsch, J.; Sankey, O.F.; Smith, K.E.; Page, J.B. Ab initio calculation of the stoichiometry and structure of the (0001) surfaces of GaN and AlN. Phys. Rev. B 1998, 57, 15360–15371. [Google Scholar] [CrossRef]
- Northrup, J.E.; Neugabauer, J. Indium-induced changes in GaN (0001) surface morphology. Phys. Rev. B 1999, 60, 8473–8476. [Google Scholar] [CrossRef]
- Wang, F.H.; Kruger, P.; Pollman, J. Electronic structure of GaN (0001) and surfaces. Phys. Rev. B 2001, 64, 035305. [Google Scholar] [CrossRef]
- Timon, V.; Brand, S.; Clark, S.J.; Gibson, M.C.; Abram, R.A. First-principles calculations of 2 × 2 reconstructions of GaN(0001) surfaces involving N, Al, Ga, In, and As atoms. Phys. Rev. B 2005, 72, 035327. [Google Scholar] [CrossRef]
- Rosa, A.L.; Neugebauer, J. First-principles calculations of the structural and electronic properties of clean surfaces. Phys. Rev. B 2006, 73, 205346. [Google Scholar] [CrossRef]
- Elsner, J.; Haugk, M.; Jungnickel, G.; Frauenheim, T.H. Theory of Ga, N and H terminated GaN (0001)/) surfaces. Solid State Commun. 1998, 106, 739–743. [Google Scholar] [CrossRef]
- Van de Walle, C.G.; Neugabauer, J. Structure energetics of nitride surfaces under MOCVD growth conditions. J. Cryst. Growth 2003, 248, 8–13. [Google Scholar] [CrossRef]
- Northrup, J.E.; Van de Walle, C.G. Indium versus hydrogen-terminated GaN(0001) surfaces: Surfactant effect of indium in a chemical vapor deposition environment. Appl. Phys. Lett. 2004, 84, 4322–4324. [Google Scholar] [CrossRef]
- Pansila, P.; Kanomata, K.; Ahmmad, B.; Kubota, S.; Hirose, F. Nitrogen Adsorption of Si(100) Surface by Plasma Excited Ammonia. IEICE Trans. Electron. 2015, E89-C, 395–401. [Google Scholar] [CrossRef]
- Carlos, F.J.; Teplyakov, V. Chemistry of Organometallic Compounds on Silicon: The First Step in Film Growth. Chem. A Eur. J. 2007, 13, 9164–9176. [Google Scholar]
- Carlos, F.J.; Teplyakov, V. Chemistry of diffusion barrier film formation: Adsorption and dissociation of tetrakis (dimethylamino) titanium on Si (100)-2 × 1. J. Phys. Chem. C 2007, 111, 4800–4808. [Google Scholar]
- Carlos, F.J.; Teplyakov, V. Surface Transamination Reaction for Tetrakis(dimethylamido)titanium with NHX-Terminated Si(100) Surfaces. J. Phys. Chem. C 2007, 111, 16498–16505. [Google Scholar]
- Carlos, F.J.; Teplyakov, V. Chemisorption of Tetrakis(dimethylamido)titanium on Si(100)-2 × 1: C–H and C–N Bond Reactivity Leading to Low-Temperature Decomposition Pathways. J. Phys. Chem. C 2008, 112, 9695–9705. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B. 01; Gaussian, Inc.: Wallingford, UK, 2009. [Google Scholar]
- Promjun, T.; Rattana, T.; Pansila, P.P. Kinetic study on initial surface reaction of titanium dioxide growth using tetrakis(dimethylamino)titanium and water in atomic layer deposition process: Density functional theory calculation. Chem. Phys. 2022, 562, 111653. [Google Scholar] [CrossRef]
- Promjun, T.; Phothisonothai, M.; Sriboon, W.; Sukprasong, S.; Pansila, P.P. Comparison of H2O2 and H2O oxidations on TDMAT absorbed on silicon (100) surface during reaction step of ALD–TiO2 process: A DFT study. Mater. Today Commun. 2024, 38, 108125. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. Role Exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Shirakawa, H.; Chokawa, K.; Araidai, M.; Kangawa, Y.; Kakimoto, K.; Shiraishi, K. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 2018, 57, 04FJ03. [Google Scholar] [CrossRef]
- Hong, L.S.; Chen, W.L.; Chen, S.W.; Hsu, Y.J.; Jiang, J.C. Atomic Layer Epitaxy of Gallium Nitride using Trimethylgallium and Ammonia. In Asian Pacific Confederation of Chemical Engineers Congress Program and Abstracts; The Society of Chemical Engineers: Tokyo, Japan, 2004. [Google Scholar]
- Hinshelwood, C.N.; Burk, R.E. The thermal decomposition of ammonia upon various surfaces. J. Chem. Soc. Trans. 1925, 127, 1105–1117. [Google Scholar] [CrossRef]
- Cooper, D.A.; Ljungstroem, E.B. Decomposition of ammonia over quartz sand at 840–960.degree.C. Energy Fuels 1988, 2, 716–719. [Google Scholar] [CrossRef]
- Cooper, D.A.; Ghardashkani, S.; Ljungstroem, E.B. Decomposition of ammonia over calcined and sulfated limestone at 725–950.degree.C. Energy Fuels 1989, 3, 278–283. [Google Scholar] [CrossRef]
Reaction | Activation Energy (eV) | |||
---|---|---|---|---|
TGM Adsorption | First Activation Energy | Second Activation Energy | Average Activation Energy | Reference |
On Si–NH2 surface of Si(100) | 2.00 | 1.44 | 1.72 | This work |
On Si2–NH surface Si(100) | 1.11 | 2.07 | 1.59 | This work |
Gas phase decomposition | - | - | 3.27 | [69] |
On NH2 terminated Ga(0001) | 1.28 | 1.84 | 1.56 | [47] |
On GaN surface of Sapphire | - | - | 1.20 | [70] |
NH3 adsorption | ||||
On PC 1–2 surface Si(100) | 1.88 | 1.92 | 1.90 | This work |
On PC 2–1 surface Si(100) | - | - | 1.96 | This work |
On PC 2–2 surface Si(100) | - | - | 2.00 | This work |
On GaN surface on Sapphire | - | - | 1.14 | [70] |
On Platinum Wire surface | - | - | 6.1 | [71] |
On Tungsten surface | - | - | 1.7 | [71] |
On quartz sand surface | - | - | 1.52 | [72] |
On calcined and sulfated Limestone surface | - | - | 1.02, 1.51 | [73] |
On Ga Surface of Sapphire | - | - | 1.14 | [70] |
On GaN surface of Si(111) | - | - | 1.34 | [11] |
Structure | Vibration Mode (Symmetric Stretching) | Wavenumber (cm−1) | Other Studies [11,32] (cm−1) |
---|---|---|---|
Products (first half) | |||
PC 1–1 + CH4 | Ga–N | 531 | 534 |
Ga–CH3 | 2917 | 2912 | |
PC 2–1 + CH4 | Ga–N | 530 | 534 |
Ga–CH3 | 2917 | 2912 | |
PC 1–2 + CH4 | Ga–N | 537 | 534 |
Ga–CH3 | 2917 | 2912 | |
PC 2–2 + CH4 | Ga–N | 574 | - |
Ga–CH3 | 2939 | - | |
Products (second half) | |||
PC 1–3 + CH4 | Ga–N | 557 | 534 |
PC 1–4 + CH4 | Ga–N | 509 | - |
PC 3–1 + CH4 | Ga–N | 547 | 534 |
PC 3–2 + CH4 | Ga–N | 539 | 534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pansila, P.P.; Sukhasena, S.; Sukprasong, S.; Sriboon, W.; Temnuch, W.; Jamnongkan, T.; Promjun, T. DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia. Appl. Sci. 2025, 15, 7487. https://doi.org/10.3390/app15137487
Pansila PP, Sukhasena S, Sukprasong S, Sriboon W, Temnuch W, Jamnongkan T, Promjun T. DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia. Applied Sciences. 2025; 15(13):7487. https://doi.org/10.3390/app15137487
Chicago/Turabian StylePansila, P. Pungboon, Seckson Sukhasena, Saksit Sukprasong, Worasitti Sriboon, Wipawee Temnuch, Tongsai Jamnongkan, and Tanabat Promjun. 2025. "DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia" Applied Sciences 15, no. 13: 7487. https://doi.org/10.3390/app15137487
APA StylePansila, P. P., Sukhasena, S., Sukprasong, S., Sriboon, W., Temnuch, W., Jamnongkan, T., & Promjun, T. (2025). DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia. Applied Sciences, 15(13), 7487. https://doi.org/10.3390/app15137487