Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = GA-BLS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3033 KB  
Review
Particle-Laden Two-Phase Boundary Layer: A Review
by Aleksey Yu. Varaksin and Sergei V. Ryzhkov
Aerospace 2025, 12(10), 894; https://doi.org/10.3390/aerospace12100894 - 2 Oct 2025
Viewed by 334
Abstract
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review [...] Read more.
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review of computational, theoretical, and experimental work devoted to the study of the characteristics of the boundary layers (BL) of gas with solid particles was performed. The features of particle motion in laminar and turbulent boundary layers, as well as their inverse effect on gas flow, are considered. Available studies on the stability of the laminar boundary layer and the effect of particles on the laminar–turbulent transition are analyzed. At the end of the review, conclusions are drawn, and priorities for future research are discussed. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

32 pages, 11816 KB  
Article
Enhancing Energy Efficiency and Thermal Comfort Through Integration of PCMs in Passive Design: An Energetic, Environmental, and Economic (3E) Analysis
by Mohamed Habib Hadded, Sana Dardouri, Ahmet Yüksel, Jalila Sghaier and Müslüm Arıcı
Buildings 2025, 15(18), 3319; https://doi.org/10.3390/buildings15183319 - 13 Sep 2025
Viewed by 690
Abstract
Integrating phase change materials (PCMs) into building envelopes offers a powerful method for enhancing thermal mass and reducing heating, ventilation, and air conditioning energy demand. This study provides a comprehensive analysis of combining PCMs with various roof designs (flat, gable, and domed) and [...] Read more.
Integrating phase change materials (PCMs) into building envelopes offers a powerful method for enhancing thermal mass and reducing heating, ventilation, and air conditioning energy demand. This study provides a comprehensive analysis of combining PCMs with various roof designs (flat, gable, and domed) and shading strategies in a Mediterranean climate to optimize residential building performance. Through a 3E (energetic, environmental, and economic) assessment and computational fluid dynamics (CFD) modeling, we determined that the use of PCM23 significantly enhances occupant comfort, improving the predicted mean vote by 17% and enhancing overall thermal comfort by 14%. The most effective configuration, a gable roof with integrated PCMs, outperformed a flat roof by reducing annual energy consumption by 20% (1103 kWh). This optimal design also yielded substantial economic and environmental benefits, including a 16.2 TD/m2 reduction in annual energy costs, a short investment payback period, and a 4% decrease in operational CO2 emissions. These results highlight the significant potential of pairing PCMs with passive architectural features to create more energy-efficient, cost-effective, and comfortable living environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 3227 KB  
Article
Dietary Tart Cherry and Fructooligosaccharides Promote Bone Health via the Gut Microbiota and Increased Bone Formation
by Pelumi Adedigba, John A. Ice, Sanmi E. Alake, Bethany Hatter, Proapa Islam, Ashlee N. Ford Versypt, Trina A. Knotts, Jerry Ritchey, Edralin A. Lucas and Brenda J. Smith
Nutrients 2025, 17(17), 2829; https://doi.org/10.3390/nu17172829 - 30 Aug 2025
Cited by 1 | Viewed by 1201
Abstract
Background/Objectives: Fructooligosaccharides (FOS) and dried tart cherry (TC) are examples of simple and complex (i.e., within a food matrix) prebiotics that have demonstrated promising osteoprotective activity. In this study, we examined how dietary supplementation with TC or FOS shapes the gut-bone axis to [...] Read more.
Background/Objectives: Fructooligosaccharides (FOS) and dried tart cherry (TC) are examples of simple and complex (i.e., within a food matrix) prebiotics that have demonstrated promising osteoprotective activity. In this study, we examined how dietary supplementation with TC or FOS shapes the gut-bone axis to promote bone accrual in young adult mice, and the role of the gut microbiota in mediating these responses. Methods: Studies were performed using 10-wk-old female C57BL/6 mice (n = 10–12/group) fed a control diet or control diet supplemented with 10% TC or FOS for 10 wks alone or in combination with an antibiotic/anti-fungal cocktail to suppress the gut microbiota. The bone phenotype was characterized by dual-energy X-ray absorptiometry, micro-computed tomography and static and dynamic bone histomorphometry. The gut-microbiota was profiled and short chain fatty acids (SCFA) were assessed based on 16S rRNA profiling and gas chromatographic techniques, respectively. Results: FOS and TC enhanced bone structure, with FOS yielding more pronounced benefits across cortical and trabecular compartments. These skeletal improvements with FOS occurred in the absence of systemic changes in bone turnover markers but were accompanied by increases in local bone formation, osteoblast and osteocyte numbers, and bone mineralization in the femur. Both diets altered gut microbiota composition and increased fecal concentrations of the most abundant SCFAs (i.e., acetate, propionate and butyrate), but the response was greater with FOS. Suppression of the gut microbiota and fecal SCFAs with the antibiotic/anti-fungal cocktail inhibited the effects of FOS and TC on cortical bone, but induced unexpected improvements in the trabecular bone. Conclusions: These findings demonstrate differential effects of simple and complex prebiotics on the gut-bone axis in young adult female mice and support a role for SCFA in the cortical bone response, but not in the trabecular bone response with this model of gut microbiota suppression. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

19 pages, 5012 KB  
Article
Beneficial Effects of Different Types of Exercise on Diabetic Cardiomyopathy
by Xiaotong Ma, Haoyang Gao, Ze Wang, Danlin Zhu, Wei Dai, Mingyu Wu, Yifan Guo, Linlin Zhao and Weihua Xiao
Biomolecules 2025, 15(9), 1223; https://doi.org/10.3390/biom15091223 - 25 Aug 2025
Viewed by 752
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM), characterized by cardiac dysfunction, inflammation, and fibrosis. In this study, a T2DM mouse model was established by administering a high-fat diet (60% fat) in combination with streptozotocin injection in male [...] Read more.
Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM), characterized by cardiac dysfunction, inflammation, and fibrosis. In this study, a T2DM mouse model was established by administering a high-fat diet (60% fat) in combination with streptozotocin injection in male C57BL/6J mice. The mice subsequently underwent an eight-week exercise intervention consisting of swimming training, resistance training, or high-intensity interval training (HIIT). The results showed that all three forms of exercise improved cardiac function and attenuated myocardial hypertrophy in DCM mice. Exercise training further downregulated the expression of pro-inflammatory cytokines, including interleukin-6, tumor necrosis factor-α, nuclear factor κB, and monocyte chemoattractant protein-1, and mitigated myocardial fibrosis by suppressing fibronectin, α-SMA, collagen type I alpha 1 chain, collagen type III alpha 1 chain, and the TGF-β1/Smad signaling pathway. Moreover, exercise inhibited the expression of PANoptosis-related genes and proteins in cardiomyocytes of DCM mice. Notably, HIIT produced the most pronounced improvements across these pathological markers. In addition, all three exercise modalities effectively suppressed the aberrant activation of the cGAS–STING signaling pathway in the myocardium. In conclusion, exercise training exerts beneficial effects against DCM by improving cardiac function and reducing inflammation, PANoptosis, and fibrosis, and HIIT emerged as the most effective strategy. Full article
Show Figures

Graphical abstract

23 pages, 4597 KB  
Article
High-Throughput UAV Hyperspectral Remote Sensing Pinpoints Bacterial Leaf Streak Resistance in Wheat
by Alireza Sanaeifar, Ruth Dill-Macky, Rebecca D. Curland, Susan Reynolds, Matthew N. Rouse, Shahryar Kianian and Ce Yang
Remote Sens. 2025, 17(16), 2799; https://doi.org/10.3390/rs17162799 - 13 Aug 2025
Viewed by 899
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become an intermittent yet economically significant disease of wheat in the Upper Midwest during the last decade. Because chemical and cultural controls remain ineffective, breeders rely on developing resistant varieties, yet [...] Read more.
Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become an intermittent yet economically significant disease of wheat in the Upper Midwest during the last decade. Because chemical and cultural controls remain ineffective, breeders rely on developing resistant varieties, yet visual ratings in inoculated nurseries are labor-intensive, subjective, and time-consuming. To accelerate this process, we combined unmanned-aerial-vehicle hyperspectral imaging (UAV-HSI) with a carefully tuned chemometric workflow that delivers rapid, objective estimates of disease severity. Principal component analysis cleanly separated BLS, leaf rust, and Fusarium head blight, with the first component explaining 97.76% of the spectral variance, demonstrating in-field pathogen discrimination. Pre-processing of the hyperspectral cubes, followed by robust Partial Least Squares (RPLS) regression, improved model reliability by managing outliers and heteroscedastic noise. Four variable-selection strategies—Variable Importance in Projection (VIP), Interval PLS (iPLS), Recursive Weighted PLS (rPLS), and Genetic Algorithm (GA)—were evaluated; rPLS provided the best balance between parsimony and accuracy, trimming the predictor set from 244 to 29 bands. Informative wavelengths clustered in the near-infrared and red-edge regions, which are linked to chlorophyll loss and canopy water stress. The best model, RPLS with optimal preprocessing and variable selection based on the rPLS method, showed high predictive accuracy, achieving a cross-validated R2 of 0.823 and cross-validated RMSE of 7.452, demonstrating its effectiveness for detecting and quantifying BLS. We also explored the spectral overlap with Sentinel-2 bands, showing how UAV-derived maps can nest within satellite mosaics to link plot-level scouting to landscape-scale surveillance. Together, these results lay a practical foundation for breeders to speed the selection of resistant lines and for agronomists to monitor BLS dynamics across multiple spatial scales. Full article
Show Figures

Figure 1

23 pages, 5986 KB  
Article
Research on the Response Regularity of Smoke Fire Detectors Under Typical Interference Conditions in Ancient Buildings
by Yunfei Xia, Lei Lei, Siyuan Zeng, Da Li, Wei Cai, Yupeng Hou, Chen Li and Yujie Yin
Fire 2025, 8(8), 315; https://doi.org/10.3390/fire8080315 - 7 Aug 2025
Viewed by 722
Abstract
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental [...] Read more.
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental scene of an ancient building with a typical flush gable roof structure was taken as the research object, and the differential influence laws of three typical interference sources, namely wind speed, water vapor, and incense burning, on the response times of point-type smoke detectors were quantified. Moreover, the prediction models of the alarm time of the detectors under the three interference conditions were established. The results indicate the following: (1) Within the range of experimental conditions, there is a quantitative relationship between the detector response delay and the type of interference source: the delay time shows a nonlinear positive correlation with the wind speed/water vapor interference gradient, while it exhibits a threshold unimodal change characteristic with the burning incense interference gradient; (2) under interference conditions, the detector response delay varies depending on the type of fire source: the detector has the best detection stability for smoldering smoke from a smoke cake, while it has the lowest detection sensitivity for smoldering smoke from a cotton rope. Moreover, the influence of wind speed interference is weaker than that of water vapor or smoke from burning incense, and the difference is the greatest in the wood block smoldering condition. (3) Construct a detector alarm time prediction model under three types of interference conditions, where the wind speed, water vapor, and burning incense interference conditions conform to third-order polynomial functions, Sigmoid functions, and fourth-order polynomial functions, respectively. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

27 pages, 11202 KB  
Article
Durability Analysis of Brick-Faced Clay-Core Walls in Traditional Residential Architecture in Quanzhou, China
by Yuhong Ding, Ruiming Guan, Li Chen, Jinxuan Wang, Yangming Zhang, Yili Fu and Canjin Zhang
Coatings 2025, 15(8), 909; https://doi.org/10.3390/coatings15080909 - 3 Aug 2025
Viewed by 664
Abstract
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, [...] Read more.
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, oxides and minerals of the red bricks and clay-cores were analyzed using finite element mechanics analysis (FEM), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and X-ray diffraction (XRD). The results indicate a triple mechanism: (1) The collaborative protection and reinforcement mechanism of “brick-wrapped-clay”. (2) The infiltration and destruction mechanism of external pollutants. (3) The material stability mechanism of silicate minerals. Therefore, the key to maintaining the durability of BCWs lies in the synergistic effect of brick and clay materials and the stability of silicate mineral materials, providing theoretical and methodological support for sustainable research into brick and clay constructions. Full article
Show Figures

Graphical abstract

44 pages, 15871 KB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 857
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

16 pages, 2478 KB  
Article
On the Influence of PV Cell and Diode Configurations on the Performance of a CPVT Collector: A Comparative Analysis
by João Gomes, Juan Pablo Santana, Damu Murali, George Pius and Iván P. Acosta-Pazmiño
Energies 2025, 18(13), 3479; https://doi.org/10.3390/en18133479 - 1 Jul 2025
Viewed by 440
Abstract
Concentrating photovoltaic-thermal (CPVT) collectors use reflective surfaces to focus sunlight onto a smaller receiver area, increasing thermal energy output while maintaining annual energy efficiency. Ray-tracing simulations are employed in this study using Tonatiuh to optimise the characteristics of the Double MaReCo (DM) collector, [...] Read more.
Concentrating photovoltaic-thermal (CPVT) collectors use reflective surfaces to focus sunlight onto a smaller receiver area, increasing thermal energy output while maintaining annual energy efficiency. Ray-tracing simulations are employed in this study using Tonatiuh to optimise the characteristics of the Double MaReCo (DM) collector, which is an improved version of the commercially available Solarus Power Collector (PC). Focused on enhancing electrical performance, the photovoltaic (PV) cell configurations are varied on the bottom side of the receiver, while the top-side PV cells remain constant. The study also analyses the influence of diodes and transparent gables on the annual solar irradiance received by the PV cells. From the analysis, it is observed that the specific annual irradiance received by the PV cells in the DM collector with transparent gables is nearly 64% more compared to that of the PC counterpart. It is also observed that the transparency of gables becomes significant only when the whole area of the receiver is covered by PV cells. With the goal of improving performance while lowering the cost and complexity of the DM collector, the study investigates various collector design characteristics that may shed more light on optimising the current model. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 5669 KB  
Article
Preventive Effects of Medium-Chain Fatty Acid Intake on Muscle Atrophy
by Madoka Sumi, Takuro Okamura, Tomoyuki Matsuyama, Tomoki Miyoshi, Hanako Nakajima, Naoko Nakanishi, Ryoichi Sasano, Masahide Hamaguchi and Michiaki Fukui
Nutrients 2025, 17(13), 2154; https://doi.org/10.3390/nu17132154 - 28 Jun 2025
Viewed by 1276
Abstract
Background/Objectives: Medium-chain fatty acids (MCFAs), abundant in coconut oil, have attracted considerable attention in recent years owing to their potential impact on muscle atrophy. However, the mechanisms underlying their effects remain inadequately understood. This study aimed to examine the impact of coconut-oil-derived [...] Read more.
Background/Objectives: Medium-chain fatty acids (MCFAs), abundant in coconut oil, have attracted considerable attention in recent years owing to their potential impact on muscle atrophy. However, the mechanisms underlying their effects remain inadequately understood. This study aimed to examine the impact of coconut-oil-derived MCFAs on skeletal muscle in a mouse model administered a high-fat diet. Methods: C57BL/6J mice were assigned to a normal diet, lard diet, or coconut oil diet and maintained for a duration of 12 weeks. A glucose tolerance test was conducted, and biochemical parameters, muscle histological analysis, and gene expression in muscle tissue were assessed. MCFA concentrations in serum and muscle were quantified utilizing gas chromatography–mass spectrometry. An in vitro experiment was conducted by treating mouse C2C12 myotube cells with lauric acid and palmitic acid, followed by a gene expression evaluation. Results: Mice fed a coconut-oil-based diet exhibited reduced body weight gain and lower blood glucose and total cholesterol levels compared to those fed a lard-based diet. The coconut-oil-fed group showed increased concentrations of MCFAs in both serum and muscle tissue, along with an improvement in relative grip strength. The expression levels of proteins and genes associated with muscle atrophy were reduced in muscle tissue. These findings were corroborated in vitro using C2C12 myotube cells. Conclusions: Coconut oil may preserve muscle strength by increasing MCFA concentrations in serum and muscle tissue, while suppressing the expression of muscle-atrophy-related proteins and genes. These findings suggest that coconut oil may be beneficial in preventing muscle atrophy induced by long-chain fatty acids. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

9 pages, 731 KB  
Communication
Protective Effects of Pasireotide in LPS-Induced Acute Lung Injury
by Saikat Fakir, Md Matiur Rahman Sarker, Madan Sigdel and Nektarios Barabutis
Pharmaceuticals 2025, 18(7), 942; https://doi.org/10.3390/ph18070942 - 22 Jun 2025
Cited by 2 | Viewed by 1004
Abstract
Background/Objectives: Acute lung injury (ALI) is an inflammatory condition characterized by tissue barrier damage, which leads to vascular leakage, pulmonary edema, and compromised gas exchange. Lipopolysaccharides (LPS) are a component of Gram-negative bacteria, which trigger inflammation by Toll-like receptor 4 (TLR4) activation. Herein, [...] Read more.
Background/Objectives: Acute lung injury (ALI) is an inflammatory condition characterized by tissue barrier damage, which leads to vascular leakage, pulmonary edema, and compromised gas exchange. Lipopolysaccharides (LPS) are a component of Gram-negative bacteria, which trigger inflammation by Toll-like receptor 4 (TLR4) activation. Herein, we investigated the possibility that Pasireotide (PAS) exerts protective effects in an experimental model of ALI. Methods: C57BL/6 male mice received an intratracheal injection of saline or LPS, followed by PAS or vehicle treatment. Bronchoalveolar lavage fluid (BALF) was collected via tracheal catheterization, and Western blot analysis was used to detect protein expression variations. Results: Our results suggest that PAS treatment alleviates LPS-induced mouse lung injury and inflammation. JAK/STAT and MAPK activation levels in the inflamed lungs were suppressed due to PAS treatment, as well as BALF protein concentration. Additionally, PAS counteracted LPS-induced Grp94 protein reduction, suggesting the involvement of ATF6 in PAS-triggered barrier-protective effects. Grp94 is a downstream ATF6 target. Conclusions: Our data demonstrate that PAS protects mouse lungs against LPS in an experimental model of ALI. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

13 pages, 361 KB  
Article
Profiles of Aggressiveness and Stress in Spanish Adolescents
by Cecilia Ruiz-Esteban, Inmaculada Méndez, Juan Pedro Martínez-Ramón, Nuria Antón-Ros and Nelly Gromiria Lagos San Martín
Eur. J. Investig. Health Psychol. Educ. 2025, 15(6), 112; https://doi.org/10.3390/ejihpe15060112 - 13 Jun 2025
Viewed by 815
Abstract
Aggressiveness among schoolchildren can be shaped by specific school-related situations that elicit stress. Accordingly, this study aimed to identify differentiated profiles of secondary school students based on the levels of aggressive behavior they exhibit. A further objective was to examine whether various stress-related [...] Read more.
Aggressiveness among schoolchildren can be shaped by specific school-related situations that elicit stress. Accordingly, this study aimed to identify differentiated profiles of secondary school students based on the levels of aggressive behavior they exhibit. A further objective was to examine whether various stress-related factors differ significantly across these behavioral profiles. The sample consisted of 386 secondary school students (M = 13.73; SD = 1.14), of whom 52.6% were female. Data were collected using the Aggression Questionnaire (AQ) by Buss and Perry and the School Situation Survey (SSS) developed by Helms and Gable. Latent profile analysis revealed three distinct profiles: (a) students exhibiting high levels of aggressive behavior (Cluster 1), (b) students showing moderate levels of aggressive behavior (Cluster 2), and (c) students displaying low levels of aggressive behavior (Cluster 3). Students in the high-aggression profile reported significantly higher scores on most sources of stress compared to their peers in the moderate and low aggression profiles. From an educational standpoint, these findings underscore the importance of addressing school-related stressors, as they appear to play a critical role in influencing student behavior. Full article
Show Figures

Figure 1

29 pages, 8225 KB  
Article
Evaluation of Peptide-Based Vaccines Against Group A Streptococcus in Staphylococcus aureus-Infected Mice
by Ahmed O. Shalash, Haolan Sun, Yiru Cui, Jingwen Wang, Barb Arnts, Jannah Bauer, Waleed M. Hussein, Zeinab G. Khalil, Mariusz Skwarczynski and Istvan Toth
Vaccines 2025, 13(6), 632; https://doi.org/10.3390/vaccines13060632 - 12 Jun 2025
Viewed by 1608
Abstract
Background: Group A Streptococcus (GAS) is a major human pathogen associated with serious diseases. Evaluating immune responses against GAS vaccines—immunogenicity, quality, and efficacy—is complicated by interference from co-infections, like Staphylococcus aureus (S. aureus). We aimed to evaluate peptide-based GAS vaccines in [...] Read more.
Background: Group A Streptococcus (GAS) is a major human pathogen associated with serious diseases. Evaluating immune responses against GAS vaccines—immunogenicity, quality, and efficacy—is complicated by interference from co-infections, like Staphylococcus aureus (S. aureus). We aimed to evaluate peptide-based GAS vaccines in mice for antisera efficacy against standard and mutant GAS strains and to assess immunological methods under co-infection conditions. Methods: Female C57BL/6 mice were infected with S. aureus and immunized with various M-protein-derived peptide antigens: J8, J8i, J8i-J8i, and the native p145 sequence. Two novel, conserved M-protein-derived antigens (NTD and CTD2) were also evaluated. Enzyme-linked immunosorbent assays (ELISAs) were used to assess immunogenicity and GAS-specific antibody responses. Peptide antigens were either conjugated to or physically mixed with the PADRE T-helper epitope and tested for enhanced antisera immunogenicity and opsonic efficacy. Result: ELISA against the immunizing peptides as coating antigens reflected the immunogenicity, while p145-based ELISA correlated with GAS-specific antibody titres without S. aureus interference for J8-based vaccines. Immunogenicity ranked J8 > J8i ≈ J8i-J8i > p145. NTD and CTD2 antisera demonstrated opsonic activity, indicating protective potential. PADRE–J8 conjugates significantly enhanced antibody magnitude and quality, producing strong opsonic bactericidal responses against both standard and p145-mutant GAS strains. PADRE–J8i was effective only against standard strains. This is the first report to suggest at least two B-cell epitopes within the J8i peptide. Conclusion: These findings support the diagnostic utility of p145, NTD, and CTD2 under co-infection settings, and the vaccine potential of J8, NTD, and CTD2, particularly when conjugated to a T helper for enhanced antigen presentation. Full article
(This article belongs to the Collection Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Figure 1

30 pages, 6072 KB  
Article
Investigation on the Effect of Opening Size and Position on Wind-Driven Cross-Ventilation in an Isolated Gable Roof Building
by Hacımurat Demir and Burak Aktepe
Appl. Sci. 2025, 15(11), 6190; https://doi.org/10.3390/app15116190 - 30 May 2025
Viewed by 1071
Abstract
In this study, the influence of window opening sizes and positions on wind-induced cross ventilation performance in an isolated gable roof building was numerically investigated using the k-ω SST turbulence model. The results obtained from numerical analyses to evaluate the ventilation efficiency of [...] Read more.
In this study, the influence of window opening sizes and positions on wind-induced cross ventilation performance in an isolated gable roof building was numerically investigated using the k-ω SST turbulence model. The results obtained from numerical analyses to evaluate the ventilation efficiency of different configurations show that larger inlet openings significantly increase the ventilation rates and the WO5 model reaches the highest ventilation rate of 0.004089 m3/s with an improvement of 37.27% compared to the reference model. As with the WO1 model, smaller inlet openings limited the air intake, reducing ventilation efficiency and indoor air quality. In terms of outlet window opening sizes, the LO5 model showed the highest ventilation efficiency, improving ventilation by 28% compared to reference model, while smaller outlet openings, as in the LO1 model, were associated with significantly lower performance. Additionally, when evaluating window opening locations, configurations with higher exit openings generally exhibited superior ventilation rates. The best overall ventilation performance was achieved in the Upper-Lower configuration at 0.003129 m3/s. The findings emphasized the critical role of window design in natural ventilation performance. Larger and strategically located window openings optimize airflow, increase ventilation efficiency and improve indoor air quality, providing valuable information for energy-efficient building design. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 2023 KB  
Article
Experimental Investigation of Wind Effect on Roof Configurations with Photovoltaic Panel Systems for Sustainable Building Design
by Răzvan-Andrei Polcovnicu, Sebastian-Valeriu Hudișteanu, Nicolae Ţăranu, Dragoș Ungureanu, Marius Alexa, Iuliana Hudișteanu, Cătălin Onuțu and Alexandru-Florin Mustiață
Sustainability 2025, 17(10), 4739; https://doi.org/10.3390/su17104739 - 21 May 2025
Cited by 1 | Viewed by 1129
Abstract
This study investigates the aerodynamic behavior of roof structures under wind-induced forces, focusing on buildings equipped with photovoltaic panels. Experimental data were obtained through wind tunnel testing of three 1:100 scale models, each representing a distinct roof geometry: gabled, hipped, and multi-pitched. Measurements [...] Read more.
This study investigates the aerodynamic behavior of roof structures under wind-induced forces, focusing on buildings equipped with photovoltaic panels. Experimental data were obtained through wind tunnel testing of three 1:100 scale models, each representing a distinct roof geometry: gabled, hipped, and multi-pitched. Measurements of dynamic pressure and pressure coefficients were conducted for various wind incidence angles, ranging from 0° to ±150°. The results highlight the impact of roof geometry and PV panel placement on the pressure distribution, with notable variations due to flow separation and vortex formation around the panels. Gabled roofs exhibited pronounced pressure gradients, while hipped roofs showed more uniform distributions. Multi-pitched roofs demonstrated the most complex aerodynamic behavior due to their variable slopes. These findings enhance the understanding of wind-structure interactions for buildings with roof photovoltaic panels, contributing to the development of more resilient and energy-efficient structures. The research supports sustainable construction practices by improving wind load predictions and informing design decisions that promote the safe integration of renewable energy systems into the built environment. Full article
(This article belongs to the Special Issue Harnessing Renewable Energy: A Sustainable Path to Carbon Neutrality)
Show Figures

Figure 1

Back to TopTop