Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = G glycoprotein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1016 KiB  
Article
Genetic Associations of ITGB3, FGG, GP1BA, PECAM1, and PEAR1 Polymorphisms and the Platelet Activation Pathway with Recurrent Pregnancy Loss in the Korean Population
by Eun Ju Ko, Eun Hee Ahn, Hyeon Woo Park, Jae Hyun Lee, Da Hwan Kim, Young Ran Kim, Ji Hyang Kim and Nam Keun Kim
Int. J. Mol. Sci. 2025, 26(15), 7505; https://doi.org/10.3390/ijms26157505 (registering DOI) - 3 Aug 2025
Viewed by 61
Abstract
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women [...] Read more.
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women may experience two or more consecutive pregnancy losses. Previous studies have investigated risk factors for RPL, including maternal age, uterine pathology, genetic anomalies, infectious agents, endocrine disorders, thrombophilia, and immune dysfunction. However, RPL is a disease caused by a complex interaction of genetic factors, environmental factors (e.g., diet, lifestyle, and stress), epigenetic factors, and the immune system. In addition, due to the lack of research on genetics research related to RPL, the etiology remains unclear in up to 50% of cases. Platelets play a critical role in pregnancy maintenance. This study examined the associations of platelet receptor and ligand gene variants, including integrin subunit beta 3 (ITGB3) rs2317676 A > G, rs3809865 A > T; fibrinogen gamma chain (FGG) rs1049636 T > C, rs2066865 T > C; glycoprotein 1b subunit alpha (GP1BA) rs2243093 T > C, rs6065 C > T; platelet endothelial cell adhesion molecule 1 (PECAM1) rs2812 C > T; and platelet endothelial aggregation receptor 1 (PEAR1) rs822442 C > A, rs12137505 G > A, with RPL prevalence. In total, 389 RPL patients and 375 healthy controls (all Korean women) were enrolled. Genotyping of each single nucleotide polymorphism was performed using polymerase chain reaction–restriction fragment length polymorphism and the TaqMan genotyping assay. All samples were collected with approval from the Institutional Review Board at Bundang CHA Medical Center. The ITGB3 rs3809865 A > T genotype was strongly associated with RPL prevalence (pregnancy loss [PL] ≥ 2: adjusted odds ratio [AOR] = 2.505, 95% confidence interval [CI] = 1.262–4.969, p = 0.009; PL ≥ 3: AOR = 3.255, 95% CI = 1.551–6.830, p = 0.002; PL ≥ 4: AOR = 3.613, 95% CI = 1.403–9.307, p = 0.008). The FGG rs1049636 T > C polymorphism was associated with a decreased risk in women who had three or more pregnancy losses (PL ≥ 3: AOR = 0.673, 95% CI = 0.460–0.987, p = 0.043; PL ≥ 4: AOR = 0.556, 95% CI = 0.310–0.997, p = 0.049). These findings indicate significant associations of the ITGB3 rs3809865 A > T and FGG rs1049636 T > C polymorphisms with RPL, suggesting that platelet function influences RPL in Korean women. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

21 pages, 439 KiB  
Article
Effects of Rumen-Protected Methionine, Choline, and Betaine Supplementation on Ewes’ Pregnancy and Reproductive Outcomes
by Basiliki Kotsampasi, Eleni Tsiplakou, Maria-Anastasia Karatzia, Stavroula Oikonomou, Christina Mitsiopoulou, Dimitris Kalogiannis, Eleni Dovolou, Aristotelis Lymperopoulos, Kyriaki Sotirakoglou, Maria Anastasiadou, George Zervas and Stella Chadio
Vet. Sci. 2025, 12(8), 723; https://doi.org/10.3390/vetsci12080723 - 31 Jul 2025
Viewed by 247
Abstract
This study evaluated the effects of maternal supplementation with rumen-protected methionine (RPM), alone or combined with rumen-protected choline (RPC) and betaine (RPB), during the periconceptional and prepartum periods on reproductive outcomes and offspring performance in Chios ewes. One hundred synchronized ewes were assigned [...] Read more.
This study evaluated the effects of maternal supplementation with rumen-protected methionine (RPM), alone or combined with rumen-protected choline (RPC) and betaine (RPB), during the periconceptional and prepartum periods on reproductive outcomes and offspring performance in Chios ewes. One hundred synchronized ewes were assigned to three groups—control (no supplementation), M (5.50 g RPM/day), and MCB (3.50 g RPM, 1.60 g RPC, 0.49 g RPB/day)—from day −14 to +14 relative to mating. Blood was collected on days −14, 0, and +14 for ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), ferric-reducing ability (FRAP), and malondialdehyde (MDA), on days 18 and 21 for progesterone, and on day 26 for pregnancy-associated glycoprotein (PAG) detection. Thirty days before and up to lambing, the ewes were further divided into C-C, C-M, C-MCB, M-M, M-C, MCB-MCB, and MCB-C subgroups. Embryonic loss did not differ between groups. FRAP was higher (p < 0.001) in MCB ewes, and ABTS was lower (p < 0.05) in M ewes, in the periconceptional period. Offspring in the C-M, C-MCB, M-M, M-C, and MCB-MCB groups had higher birth weights (p < 0.01), along with increased MDA levels (p < 0.05). The results suggest that maternal methyl donor supplementation during early and/or late gestation enhances antioxidant status, supports embryonic development, and increases birth weight. Full article
Show Figures

Figure 1

19 pages, 8583 KiB  
Article
Development and Immunogenic Evaluation of a Recombinant Vesicular Stomatitis Virus Expressing Nipah Virus F and G Glycoproteins
by Huijuan Guo, Renqiang Liu, Dan Pan, Yijing Dang, Shuhuai Meng, Dan Shan, Xijun Wang, Jinying Ge, Zhigao Bu and Zhiyuan Wen
Viruses 2025, 17(8), 1070; https://doi.org/10.3390/v17081070 - 31 Jul 2025
Viewed by 231
Abstract
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics [...] Read more.
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics available. Various virological tools—such as reverse genetics systems, replicon particles, VSV-based pseudoviruses, and recombinant Cedar virus chimeras—have been widely used to study the molecular mechanisms of NiV and to support vaccine development. Building upon these platforms, we developed a replication-competent recombinant vesicular stomatitis virus (rVSVΔG-eGFP-NiVBD F/G) expressing NiV attachment (G) and fusion (F) glycoproteins. This recombinant virus serves as a valuable tool for investigating NiV entry mechanisms, cellular tropism, and immunogenicity. The virus was generated by replacing the VSV G protein with NiV F/G through reverse genetics, and protein incorporation was confirmed via immunofluorescence and electron microscopy. In vitro, the virus exhibited robust replication, characteristic cell tropism, and high viral titers in multiple cell lines. Neutralization assays showed that monoclonal antibodies HENV-26 and HENV-32 effectively neutralized the recombinant virus. Furthermore, immunization of golden hamsters with inactivated rVSVΔG-eGFP-NiVBD F/G induced potent neutralizing antibody responses, demonstrating its robust immunogenicity. These findings highlight rVSVΔG-eGFP-NiVBD F/G as an effective platform for NiV research and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 4051 KiB  
Article
Chimeric Vesicular Stomatitis Virus Bearing Western Equine Encephalitis Virus Envelope Proteins E2-E1 Is a Suitable Surrogate for Western Equine Encephalitis Virus in a Plaque Reduction Neutralization Test
by Kerri L. Miazgowicz, Bailey E. Maloney, Melinda A. Brindley, Mattie Cassaday, Raegan J. Petch, Paul Bates, Aaron C. Brault and Amanda E. Calvert
Viruses 2025, 17(8), 1067; https://doi.org/10.3390/v17081067 - 31 Jul 2025
Viewed by 222
Abstract
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory [...] Read more.
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory diagnosis and surveillance in affected countries were hindered by a lack of facilities equipped with BSL-3 laboratories, as confirmatory serodiagnosis for WEEV requires live virus in the plaque reduction neutralization test (PRNT). To expand serodiagnosis for WEEV in the Americas, we developed a virus chimera composed of vesicular stomatitis virus (VSV) engineered to display the E2-E1 glycoproteins of WEEV (VSV/WEEV) in place of the VSV glycoprotein (G). PRNT90 and IC90 values of parental WEEV and VSV/WEEV were analogous using sera collected from mice, horses, and chickens. VSV/WEEV rapidly formed plaques with clear borders and reduced the assay readout time by approximately 8 h compared to the parental virus. Overall, we demonstrate that chimeric VSV/WEEV is a suitable surrogate for WEEV in a diagnostic PRNT. Use of chimeric VSV/WEEV in place of authentic WEEV will dramatically expand testing capacity by enabling PRNTs to be performed at BSL-2 containment, while simultaneously decreasing the health risk to testing personnel. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
Show Figures

Figure 1

20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Viewed by 250
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 393
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

15 pages, 770 KiB  
Review
Research Progress on the Gc Proteins of Akabane Virus
by Xiaolin Lan, Fang Liang, Gan Li, Weili Kong, Ruining Wang, Lin Wang, Mengmeng Zhao and Keshan Zhang
Vet. Sci. 2025, 12(8), 701; https://doi.org/10.3390/vetsci12080701 - 27 Jul 2025
Viewed by 252
Abstract
The Akabane virus (AKAV) is a significant member of the Orthobunyavirus genus, with its envelope glycoprotein Gc, focusing on its molecular structural features, immunoregulatory mechanisms, and application value in pathogen diagnosis and vaccine design. As a key structural protein of AKAV, Gc mediates [...] Read more.
The Akabane virus (AKAV) is a significant member of the Orthobunyavirus genus, with its envelope glycoprotein Gc, focusing on its molecular structural features, immunoregulatory mechanisms, and application value in pathogen diagnosis and vaccine design. As a key structural protein of AKAV, Gc mediates virus adsorption and neutralizing antibody recognition through the N-terminal highly variable region (HVR), while the C-terminal conserved region (CR) dominates the membrane fusion process, and its glycosylation modification has a significant regulatory effect on protein function. In clinical diagnostics, serological assays based on Gc proteins (e.g., ELISA, immunochromatographic test strips) have been standardized; in vaccine development, the neutralizing epitope of Gc proteins has become a core target for subunit vaccine design. Follow-up studies were deeply needed to analyze the structure-function interaction mechanism of Gc proteins to provide theoretical support for the construction of a new type of AKAV prevention and control system. Full article
Show Figures

Figure 1

16 pages, 2021 KiB  
Article
The Cytoplasmic Tail of Ovine Herpesvirus 2 Glycoprotein B Affects Cell Surface Expression and Is Required for Membrane Fusion
by Colleen M. Lynch, Maria K. Herndon, McKenna A. Hull, Daniela D. Moré, Katherine N. Baker, Cristina W. Cunha and Anthony V. Nicola
Viruses 2025, 17(7), 994; https://doi.org/10.3390/v17070994 - 16 Jul 2025
Viewed by 362
Abstract
Ovine herpesvirus 2 (OvHV-2) causes the fatal veterinary disease malignant catarrhal fever (MCF). Fusion is an essential step in the host cell entry of enveloped viruses and is an important target for vaccine development. OvHV-2 cannot be propagated in vitro, so a robust [...] Read more.
Ovine herpesvirus 2 (OvHV-2) causes the fatal veterinary disease malignant catarrhal fever (MCF). Fusion is an essential step in the host cell entry of enveloped viruses and is an important target for vaccine development. OvHV-2 cannot be propagated in vitro, so a robust virus-free cell–cell membrane fusion assay is necessary to elucidate its entry mechanism. OvHV-2 cell–cell fusion requires three conserved herpesviral envelope glycoproteins: gB, gH, and gL. OvHV-2 fusion activity is detectable but low. We hypothesize that enhancing the cell surface expression of gB, which is the core herpesviral fusogen, will increase cell–cell fusion. We generated C-terminal truncation mutants of gB and determined their cell surface expression, subcellular distribution, and fusion activity. Two mutants, including one that lacked the entire cytoplasmic tail domain, failed to function in the cell–cell fusion assay, despite wild-type levels of surface expression. This suggests that the OvHV-2 gB cytoplasmic tail is critical for fusion. A gB mutant truncated at amino acid 847 showed increased surface expression and fusion relative to the wild type. This suggests that the robust fusion activity of gB847 is the result of increased surface expression. gB847 may be used in place of wild-type gB in an improved, more robust OvHV-2 fusion assay. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 1063 KiB  
Review
ANGPTL4: A Comprehensive Review of 25 Years of Research
by Pedro Ramos, Qiongyu Shi, Jeremy Kleberg, Chandra K. Maharjan, Weizhou Zhang and Ryan Kolb
Cancers 2025, 17(14), 2364; https://doi.org/10.3390/cancers17142364 - 16 Jul 2025
Viewed by 625
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that was discovered in 2000 by three independent laboratories. In the ensuing two and a half decades, extensive work has been conducted to determine its physiological and pathological functions. ANGPTL4 has been shown to be involved [...] Read more.
Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that was discovered in 2000 by three independent laboratories. In the ensuing two and a half decades, extensive work has been conducted to determine its physiological and pathological functions. ANGPTL4 has been shown to be involved in many biological processes, including glucose and lipid metabolism, angiogenesis, and wound healing, with implications in diseases such as type 2 diabetes, cardiovascular (e.g., atherosclerosis) and renal diseases, and cancer. For instance, ANGPTL4 is upregulated in several cancers, including renal cell carcinoma, breast cancer, and colorectal cancer. Interestingly, ANGPTL4 has been shown to exhibit both pro-tumor—promoting tumor growth, cell survival, angiogenesis and metastasis—as well as anti-tumor activities, underscoring its complex roles in cancer biology. This review examines the comprehensive biological functions of ANGPTL4 and its contributions to disease mechanisms with a specific emphasis on cancer, as well as its potential as a therapeutic target across different types of human cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

16 pages, 1391 KiB  
Article
Lyssavirus Antibody Detection in Cave-Dwelling Bats on Cat Ba Island, Vietnam: Implications for Zoonotic Surveillance
by Heliana Dundarova, Tsenka Chassovnikarova, Nadezhda Todorova, Michaela Beltcheva, Iliana Aleksieva, Nguyen Thanh Luong and Vu Dinh Thong
Vet. Sci. 2025, 12(7), 654; https://doi.org/10.3390/vetsci12070654 - 11 Jul 2025
Viewed by 1217
Abstract
Southeast Asia is a biodiversity hotspot for bats that can carry lyssaviruses, causing zoonotic diseases. This study detects and quantifies IgG antibodies against Lyssavirus glycoproteins in cave-dwelling bat populations on Cat Ba Island, northern Vietnam, to determine their past exposure history and the [...] Read more.
Southeast Asia is a biodiversity hotspot for bats that can carry lyssaviruses, causing zoonotic diseases. This study detects and quantifies IgG antibodies against Lyssavirus glycoproteins in cave-dwelling bat populations on Cat Ba Island, northern Vietnam, to determine their past exposure history and the prevalence of immune responses. Samples were collected from five caves, encompassing three families and five key species (Hipposideros armiger, H. alongensis, H. poutensis, Taphozous melanopogon, and Myotis pilosus). Using ELISA with the Platelia™ Rabies II kit,(Bio-Rad Laboratories, Marnes-la-Coquette, France) 29.0% (18/62) of the bats tested positive, indicating prior exposure. The detection rate was slightly higher in females (35.7%) than in males (30.4%). Lyssavirus-specific antibodies were detected in four species, with the highest levels found in M. pilosus, followed by H. alongensis, H. armiger, and H. poutensis; no positives were found in T. melanopogon samples. One bat exhibited high seroconversion value (>4 EU/mL). The findings provide serological evidence of widespread lyssaviruses exposure in asymptomatic bats on Cat Ba Island, confirming their role as reservoirs that elicit an immune response without exhibiting rabies symptoms. This highlights the role of caves in facilitating close contact among bats, which may increase viral transmission, highlighting the need for continued surveillance in these unique roosting environments. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

14 pages, 2006 KiB  
Perspective
Lupus Anticoagulant Testing for Diagnosis of Antiphospholipid Syndrome: A Perspective Informed by Local Practice
by Emmanuel J. Favaloro and Leonardo Pasalic
J. Clin. Med. 2025, 14(14), 4812; https://doi.org/10.3390/jcm14144812 - 8 Jul 2025
Viewed by 805
Abstract
Assessment for the presence or absence of lupus anticoagulant (LA) represents a common investigation in hemostasis laboratories. In particular, LA represents one of the laboratory criteria for the diagnosis of definite antiphospholipid syndrome (APS). The other laboratory criteria are the solid phase assays [...] Read more.
Assessment for the presence or absence of lupus anticoagulant (LA) represents a common investigation in hemostasis laboratories. In particular, LA represents one of the laboratory criteria for the diagnosis of definite antiphospholipid syndrome (APS). The other laboratory criteria are the solid phase assays (anticardiolipin (aCL) and anti-β2Glycoprotein I (aβ2GPI) antibodies of IgG and IgM isotypes). Current International Society on Thrombosis and Haemostasis (ISTH) guidance recommends testing LA by at least two tests based on different principles, with the activated partial thromboplastin time (aPTT) and dilute Russell viper venom time (dRVVT) being preferred. Additional assays may be used in addition, or instead of these assays in particular situations. For example, aPTT and dRVVT assays are very sensitive to the presence of various anticoagulants, and this may lead to false-positive identification of LA. This is particularly problematic in the age of the DOACs (direct oral anticoagulants), which are now the leading anticoagulants in use worldwide. We review recent literature on LA testing as well as our local practice to provide an update on this common test procedure. Our experience should be useful for laboratories struggling with LA interpretation for diagnosis or exclusion of APS. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

21 pages, 492 KiB  
Review
Research Progress on Varicella-Zoster Virus Vaccines
by Hongjing Liu, Lingyan Cui, Sibo Zhang, Hong Wang, Wenhui Xue, Hai Li, Yuyun Zhang, Lin Chen, Ying Gu, Tingting Li, Ningshao Xia and Shaowei Li
Vaccines 2025, 13(7), 730; https://doi.org/10.3390/vaccines13070730 - 4 Jul 2025
Viewed by 990
Abstract
Varicella-zoster virus (VZV) poses significant public health challenges as the etiological agent of varicella (chickenpox) and herpes zoster (HZ), given its high transmissibility and potential for severe complications. The introduction of VZV vaccines—particularly the vOka-based live attenuated and glycoprotein gE-based recombinant subunit vaccines—has [...] Read more.
Varicella-zoster virus (VZV) poses significant public health challenges as the etiological agent of varicella (chickenpox) and herpes zoster (HZ), given its high transmissibility and potential for severe complications. The introduction of VZV vaccines—particularly the vOka-based live attenuated and glycoprotein gE-based recombinant subunit vaccines—has substantially reduced the global incidence of these diseases. However, live attenuated vaccines raise concerns regarding safety and immunogenicity, especially in immunocompromised populations, while recombinant subunit vaccines, such as Shingrix, exhibit high efficacy but are associated with side effects and adjuvant limitations. Recent advancements in vaccine technology, including mRNA vaccines, viral vector vaccines, and virus-like particle (VLP) vaccines, offer promising alternatives with improved safety profiles and durable immunity. This review synthesizes current knowledge on VZV vaccine mechanisms, clinical applications, and immunization strategies, while also examining future directions in vaccine development. The findings underscore the pivotal role of VZV vaccines in disease prevention and highlight the need for continued research to enhance their public health impact. Full article
(This article belongs to the Special Issue Varicella and Zoster Vaccination)
Show Figures

Figure 1

20 pages, 3846 KiB  
Article
Early to Late VSV-G Expression in AcMNPV BV Enhances Transduction in Mammalian Cells but Does Not Affect Virion Yield in Insect Cells
by Jorge Alejandro Simonin, Franco Uriel Cuccovia Warlet, María del Rosario Bauzá, María del Pilar Plastine, Victoria Alfonso, Fernanda Daniela Olea, Carolina Susana Cerrudo and Mariano Nicolás Belaich
Vaccines 2025, 13(7), 693; https://doi.org/10.3390/vaccines13070693 - 26 Jun 2025
Viewed by 435
Abstract
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. [...] Read more.
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. This study investigates how VSV-G expression timing affects pseudotype incorporation into budded virions (BVs) and subsequent transduction efficacy. Methods: Three recombinant AcMNPV constructs were generated, each expressing VSV-G under distinct baculoviral promoters (ie1, gp64, and p10) and GFP via a CMV promoter. VSV-G incorporation was verified by Western blot, while transduction efficiency was quantified in mammalian cell lines (fluorescence microscopy/flow cytometry) and rat hind limbs. Viral productivity was assessed through production kinetics and plaque assays. Results: All the pseudotyped viruses showed significantly enhanced transduction capacity versus controls, strongly correlating with VSV-G incorporation levels. The p10 promoter drove the highest VSV-G expression and transduction efficiency. Crucially, BV production yields and infectivity remained unaffected by VSV-G expression timing. The in vivo results mirrored the cell culture findings, with p10-driven constructs showing greater GFP expression at low doses (104 virions). Conclusions: Strategic VSV-G expression via very late promoters (particularly p10) maximizes baculoviral transduction without compromising production yields. This study establishes a framework for optimizing pseudotyped BV systems, demonstrating that late-phase glycoprotein expression balances high mammalian transduction with preserved insect-cell productivity—a critical advancement for vaccine vector development. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Graphical abstract

17 pages, 1874 KiB  
Article
A Novel Trivalent BVDV mRNA Vaccine Displayed by Virus-like Particles Eliciting Potent and Broad-Spectrum Antibody Responses
by Shi Xu, Jing Li, Mengwei Xu, Yafei Cai, Yingjuan Qian, Rui Liu, Qing He, Caiyi Fei, Aili Wang, Keyue Ruan, Shang Liu, Wei Geng, Xu Gao, Huiling Chen and Tiyun Han
Vaccines 2025, 13(7), 691; https://doi.org/10.3390/vaccines13070691 - 26 Jun 2025
Viewed by 482
Abstract
Background/Objectives: Bovine viral diarrhea virus (BVDV) causes significant economic losses in the cattle industry worldwide. The current vaccines have limited efficacy against diverse BVDV genotypes. Currently, multi-antigen target design and nanocarrier display technologies can provide ideas for broad-spectrum and efficient BVDV vaccine [...] Read more.
Background/Objectives: Bovine viral diarrhea virus (BVDV) causes significant economic losses in the cattle industry worldwide. The current vaccines have limited efficacy against diverse BVDV genotypes. Currently, multi-antigen target design and nanocarrier display technologies can provide ideas for broad-spectrum and efficient BVDV vaccine design. Methods: Here we developed a trivalent mRNA vaccine encoding the domains I-II of envelope glycoprotein E2 from three BVDV genotypes (3E2), introduced with bovine IgG1 Fc (bFc), STABILON (hStab), and artificial virus-like particle (ARVLP) containing CD80 transmembrane (TM) domain, FcγRII cytoplasmic domain, and WW domain of ITCH. Then, in vitro expression, in vivo immunogenicity and neutralizing antibody analysis were performed to evaluate the vaccines. Results: The in vitro expression results showed that bFc and hStab dramatically enhanced antigen expression and immunogenicity. In addition, the ARVLP further enhanced the secretion and potency of neutralizing antibodies. Finally, the immunogenicity of the bFc_BVDV_3E2_ARVLP_hStab mRNA vaccine was evaluated in mice, guinea pigs, and lactating goats and high levels of neutralizing antibodies against all three BVDV genotypes were detected. Conclusions: Our trivalent design strategy with bFc, hStab, and ARVLP shows highly efficient expression as well as strong immunogenicity and provides a promising approach for next-generation BVDV vaccines with broader and stronger protection. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

23 pages, 1127 KiB  
Review
The Genus Cordyceps Sensu Lato: Their Chemical Constituents, Biological Activities, and Therapeutic Effects on Air Pollutants Related to Lung and Vascular Diseases
by Hye-Jin Park
Life 2025, 15(6), 935; https://doi.org/10.3390/life15060935 - 10 Jun 2025
Viewed by 1521
Abstract
Air pollutants are significant environmental factors that contribute to the exacerbation of respiratory, cardiopulmonary, and skin diseases in East Asia, and their impact is based on particle size. Natural products represent a promising and sustainable strategy for reducing the adverse effects of air [...] Read more.
Air pollutants are significant environmental factors that contribute to the exacerbation of respiratory, cardiopulmonary, and skin diseases in East Asia, and their impact is based on particle size. Natural products represent a promising and sustainable strategy for reducing the adverse effects of air pollutants on health. Cordyceps spp. have been integral to traditional Chinese medicine. Recently, their fruiting bodies and related supplements have gained popularity. The physiological effects of Cordyceps species are well documented and attributed to their chemical constituents, such as cordycepin, polysaccharides, cordymin, glycoprotein, ergosterol, and other bioactive extracts. Cordyceps supplementation may support lung health and enhance respiratory function. Although further clinical data are necessary, many preclinical studies have found a connection between Cordyceps and improved lung health. In addition, preclinical and clinical studies have indicated that Cordyceps and its derivatives (e.g., Ningxinbao, Corbrin, and Jinshuibao capsules) protect against vascular diseases by modulating key molecular pathways. This review provides insights into the potential of Cordyceps for clinical application in the management of air pollutant-related respiratory and vascular diseases. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

Back to TopTop