The Genus Cordyceps Sensu Lato: Their Chemical Constituents, Biological Activities, and Therapeutic Effects on Air Pollutants Related to Lung and Vascular Diseases
Abstract
:1. Introduction
2. Genus Cordyceps: Promising Health Benefits for Managing Various Disease Conditions
2.1. Cordyceps sinensis
2.2. Cordyceps militaris
2.3. Other Cordyceps Species
2.4. Bioactive Constituents of Cordyceps Species
3. Fermented Cordyceps and Its Role in Immune Regulation: Evidence from Recent Studies
4. Cordyceps Species and Their Bioactive Substances Effective for Air Pollutant-Induced Respiratory Diseases
4.1. COPD Treatment
4.2. Anti-Asthma
4.3. Antiviral Activity
4.4. Lung Cancer Treatment
4.5. Acute Lung Injury Treatment
4.6. Idiopathic Pulmonary Fibrosis (IPF) Treatment
4.7. Silicosis Treatment
5. Cordyceps Undergoing Clinical Trials
6. Cordyceps Species and Their Bioactive Substances Effective for Air Pollutant-Induced Vascular Diseases
6.1. Antithrombosis
6.2. Anti-Atherosclerosis
6.3. Anticerebral Ischemic/Reperfusion Injury
6.4. Arrhythmia
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Krishna, K.V.; Ulhas, R.S.; Malaviya, A. Bioactive compounds from Cordyceps and their therapeutic potential. Crit. Rev. Biotechnol. 2024, 44, 753–773. [Google Scholar] [CrossRef]
- Dhong, K.R.; Kwon, H.K.; Park, H.J. Immunostimulatory Activity of Cordyceps militaris Fermented with Pediococcus pentosaceus SC11 Isolated from a Salted Small Octopus in Cyclophosphamide-Induced Immunocompromised Mice and Its Inhibitory Activity against SARS-CoV 3CL Protease. Microorganisms 2022, 10, 2321. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, O.J.; Tang, J.; Tola, A.; Auberon, F.; Oluwaniyi, O.; Ouyang, Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2018, 129, 293–316. [Google Scholar] [CrossRef]
- Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-Ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef]
- Shrestha, B.; Sung, G.H.; Sung, J.M. Current nomenclatural changes in Cordyceps sensu lato and its multidisciplinary impacts. Mycology 2017, 8, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Li, S. Cordyceps as an Herbal Drug; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- Tuli, H.S.; Sandhu, S.S.; Sharma, A.K. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 2014, 4, 1–12. [Google Scholar] [CrossRef]
- Kanhere, M. Cordyceps Militaris Market Report 2025 (Global Edition), 8th ed.; Pharma & Healthcare, 2025; Available online: https://www.globenewswire.com/news-release/2025/03/26/3049439/28124/en/Cordyceps-Militaris-Ferment-Filtrate-Market-Report-2025-Clean-Beauty-and-Wellness-Trends-Driving-Industry-Growth-at-8-75-CAGR.html?pdf=1 (accessed on 2 June 2025).
- Park, D.K.; Hayashi, T.; Park, H.-J. Arabinogalactan-type polysaccharides (APS) from Cordyceps militaris grown on germinated soybeans (GSC) induces innate immune activity of THP-1 monocytes through promoting their macrophage differentiation and macrophage activity. Food Sci. Biotechnol. 2012, 21, 1501–1506. [Google Scholar] [CrossRef]
- Mollah, M.L.; Park, D.K.; Park, H.-J. Cordyceps militaris Grown on Germinated Soybean Induces G2/M Cell Cycle Arrest through Downregulation of Cyclin B1 and Cdc25c in Human Colon Cancer HT-29 Cells. Evid.-Based Complement. Altern. Med. 2012, 2012, 249217. [Google Scholar] [CrossRef]
- Park, D.K.; Choi, W.S.; Park, H.-J. Antiallergic Activity of Novel Isoflavone Methyl-glycosides from Cordyceps militaris Grown on Germinated Soybeans in Antigen-Stimulated Mast Cells. J. Agric. Food Chem. 2012, 60, 2309–2315. [Google Scholar] [CrossRef]
- Vivek-Ananth, R.P.; Sahoo, A.K.; Kumaravel, K.; Mohanraj, K.; Samal, A. MeFSAT: A curated natural product database specific to secondary metabolites of medicinal fungi. RSC Adv. 2021, 11, 2596–2607. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Xu, D.; Qu, Y.; Shang, X.; Qiao, K.; Feng, C.; Cui, H.; Zhao, X.; Li, Y.; Peng, Y.; et al. Efficacy and safety of Cordyceps sinensis (Hirsutella sinensis, Cs-C-Q80) in chronic bronchitis. Front. Pharmacol. 2024, 15, 1428216. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Qi, Y. Adjuvant treatment with Cordyceps sinensis for lung cancer: A systematic review and meta-analysis of randomized controlled trials. J. Ethnopharmacol. 2024, 327, 118044. [Google Scholar] [CrossRef]
- Qian, G.M.; Pan, G.F.; Guo, J.Y. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat. Prod. Res. 2012, 26, 2358–2362. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Shin, H.-S.; Leyva-Gómez, G.; Prado-Audelo, M.L.D.; Cortes, H.; Singh, Y.D.; Panda, M.K.; Mishra, A.P.; Nigam, M.; Saklani, S.; et al. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front. Pharmacol. 2021, 11, 602364. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Krochmal, R.; Abrazado, M.; Kim, W.; Cooper, C.B. Effect of Cs-4® (Cordyceps sinensis) on Exercise Performance in Healthy Older Subjects: A Double-Blind, Placebo-Controlled Trial. J. Altern. Complement. Med. 2010, 16, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Shweta; Abdullah, S.; Komal; Kumar, A. A brief review on the medicinal uses of Cordyceps militaris. Pharmacol. Res.—Mod. Chin. Med. 2023, 7, 100228. [Google Scholar] [CrossRef]
- Yin, F.; Lin, P.; Yu, W.Q.; Shen, N.; Li, Y.; Guo, S.D. The Cordyceps militaris-Derived Polysaccharide CM1 Alleviates Atherosclerosis in LDLR((-/-)) Mice by Improving Hyperlipidemia. Front. Mol. Biosci. 2021, 8, 783807. [Google Scholar] [CrossRef]
- Piao, Z.; Yoo, J.-K.; Park, B.-W.; Seo, S.B.; Park, S.-J.; Jeon, H.-Y.; Rahman, M.M.; Kim, N.; Kim, S. Therapeutic effects of shibashin misena® against fine-dust-induced pulmonary disorders in mice. Biomed. Pharmacother. 2020, 125, 110018. [Google Scholar] [CrossRef]
- Seong, H.K.; Kim, M.J.; Fauziah, A.N.; Jeong, H.S.; Kim, H.J.; Yang, C.Y.; Park, S.J.; Bae, S.Y.; Jung, S.K. The Inhibitory Effects of Cordyceps militaris ARA301 Extract on Lipopolysaccharide-Induced Lung Injury in vivo. J. Microbiol. Biotechnol. 2025, 35, e2412043. [Google Scholar] [CrossRef]
- Ontawong, A.; Pengnet, S.; Thim-Uam, A.; Munkong, N.; Narkprasom, N.; Narkprasom, K.; Kuntakhut, K.; Kamkeaw, N.; Amornlerdpison, D. A randomized controlled clinical trial examining the effects of Cordyceps militaris beverage on the immune response in healthy adults. Sci. Rep. 2024, 14, 7994. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhou, X.; Dong, M.; Yang, L.; Zhao, C.; Lu, R.; Bao, G.; Hu, F. Metabolites and novel compounds with anti-microbial or antiaging activities from Cordyceps fumosorosea. AMB Express 2022, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Zhou, J.; Guo, Y.; Hou, D.; Pi, N.; Yang, Y.; Yu, H. Mechanism of Alleviating Acute Lung Injury in Mice from Serum Metabolomics Analysis of Cordyceps fumosorosea. Separations 2024, 11, 74. [Google Scholar] [CrossRef]
- Zha, L.-S.; Huang, S.-K.; Xiao, Y.-P.; Boonmee, S.; Eungwanichayapant, P.D.; McKenzie, E.; Kryukov, V.; Wu, X.-L.; Hyde, K.; Wen, T.-C. An Evaluation of Common Cordyceps (Ascomycetes) Species Found in Chinese Markets. Int. J. Med. Mushrooms 2018, 20, 1149–1162. [Google Scholar] [CrossRef]
- Liu, R.-M.; Zhang, X.-J.; Liang, G.-Y.; Yang, Y.-F.; Zhong, J.-J.; Xiao, J.-H. Antitumor and antimetastatic activities of chloroform extract of medicinal mushroom Cordyceps taii in mouse models. BMC Complement. Altern. Med. 2015, 15, 216. [Google Scholar] [CrossRef]
- Xiao, J.H.; Xiao, D.M.; Chen, D.X.; Xiao, Y.; Liang, Z.Q.; Zhong, J.J. Polysaccharides from the Medicinal Mushroom Cordyceps taii Show Antioxidant and Immunoenhancing Activities in a D-Galactose-Induced Aging Mouse Model. Evid. Based Complement. Altern. Med. 2012, 2012, 273435. [Google Scholar] [CrossRef]
- Xiao, J.H.; Sun, Z.H.; Pan, W.D.; Lü, Y.H.; Chen, D.X.; Zhong, J.J. Jiangxienone, a new compound with potent cytotoxicity against tumor cells from traditional Chinese medicinal mushroom Cordyceps jiangxiensis. Chem. Biodivers. 2012, 9, 1349–1355. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Y.P.; Deng, Y.Y.; Zheng, R.; Zhong, Y.F.; Wang, L.; Du, L.P. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model. J. Zhejiang Univ. Sci. B 2011, 12, 1024–1033. [Google Scholar] [CrossRef]
- Shao, L.; Jiang, S.; Li, Y.; Yu, L.; Liu, H.; Ma, L.; Yang, S. Aqueous extract of Cordyceps cicadae (Miq.) promotes hyaluronan synthesis in human skin fibroblasts: A potential moisturizing and anti-aging ingredient. PLoS ONE 2023, 18, e0274479. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Chang, W.-J.; Fu, H.-I.; Chang, H.-H.; Chen, C.-C. Clinical evaluation of the short-term effects of Cordyceps cicadae mycelium in lowering intraocular pressure. J. Funct. Foods 2022, 95, 105177. [Google Scholar] [CrossRef]
- Yamada, H.; Kawaguchi, N.; Ohmori, T.; Takeshita, Y.; Taneya, S.-i.; Miyazaki, T. Structure and antitumor activity of an alkali-soluble polysaccharide from Cordyceps ophioglossoides. Carbohydr. Res. 1984, 125, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kneifel, H.; Konig, W.A.; Loeffler, W.; Müller, R. Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides. Arch. Microbiol. 1977, 113, 121–130. [Google Scholar] [CrossRef]
- Kwon, H.K.; Jo, W.R.; Park, H.J. Immune-enhancing activity of C. militaris fermented with Pediococcus pentosaceus (GRC-ON89A) in CY-induced immunosuppressed model. BMC Complement. Altern. Med. 2018, 18, 75. [Google Scholar] [CrossRef]
- Phull, A.R.; Dhong, K.R.; Park, H.J. Lactic Acid Bacteria Fermented Cordyceps militaris (GRC-SC11) Suppresses IgE Mediated Mast Cell Activation and Type I Hypersensitive Allergic Murine Model. Nutrients 2021, 13, 3849. [Google Scholar] [CrossRef]
- Park, H.J. Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int. J. Mol. Sci. 2022, 23, 10502. [Google Scholar] [CrossRef]
- Lao, Y.; Zhang, M.; Li, Z.; Bhandari, B. A novel combination of enzymatic hydrolysis and fermentation: Effects on the flavor and nutritional quality of fermented Cordyceps militaris beverage. LWT 2020, 120, 108934. [Google Scholar] [CrossRef]
- Air pollution: A major threat to lung health. Lancet 2019, 393, 1774. [CrossRef] [PubMed]
- Kuehn, B.M. WHO: More than 7 million air pollution deaths each year. JAMA 2014, 311, 1486. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd. Air pollution and health—Good news and bad. N. Engl. J. Med. 2004, 351, 1132–1134. [Google Scholar] [CrossRef]
- Davila Cordova, J.E.; Tapia Aguirre, V.; Vasquez Apestegui, V.; Ordoñez Ibarguen, L.; Vu, B.N.; Steenland, K.; Gonzales, G.F. Association of PM(2.5) concentration with health center outpatient visits for respiratory diseases of children under 5 years old in Lima, Peru. Environ. Health 2020, 19, 7. [Google Scholar] [CrossRef]
- Olivieri, D.; Scoditti, E. Impact of environmental factors on lung defences. Eur. Respir. Rev. 2005, 14, 51. [Google Scholar] [CrossRef]
- Yan, W.; Li, T.; Zhong, Z. Anti-inflammatory effect of a novel food Cordyceps guangdongensis on experimental rats with chronic bronchitis induced by tobacco smoking. Food Funct. 2014, 5, 2552–2557. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K. Cordycepin: A bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J. Biomol. Struct. Dyn. 2022, 40, 3745–3752. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Verma, H.; Gera, N.; Baddipadige, R.; Choudhary, S.; Bhandu, P.; Silakari, O. Evaluation of Cordyceps militaris steroids as anti-inflammatory agents to combat the Covid-19 cytokine storm: A bioinformatics and structure-based drug designing approach. J. Biomol. Struct. Dyn. 2024, 42, 5159–5177. [Google Scholar] [CrossRef]
- Ohta, Y.; Lee, J.B.; Hayashi, K.; Fujita, A.; Park, D.K.; Hayashi, T. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J. Agric. Food Chem. 2007, 55, 10194–10199. [Google Scholar] [CrossRef]
- Lei, J.; Wei, Y.; Song, P.; Li, Y.; Zhang, T.; Feng, Q.; Xu, G. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. Eur. J. Pharmacol. 2018, 818, 110–114. [Google Scholar] [CrossRef]
- Pu, S.; Yang, Z.; Zhang, X.; Li, M.; Han, N.; Yang, X.; He, J.; Yu, G.; Meng, X.; Jia, Q.; et al. Fermented cordyceps powder alleviates silica-induced pulmonary inflammation and fibrosis in rats by regulating the Th immune response. Chin. Med. 2023, 18, 131. [Google Scholar] [CrossRef]
- Hwang, J.H.; Park, S.J.; Ko, W.G.; Kang, S.M.; Lee, D.B.; Bang, J.; Park, B.J.; Wee, C.B.; Kim, D.J.; Jang, I.S.; et al. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway. Am. J. Cancer Res. 2017, 7, 417–432. [Google Scholar]
- Joo, J.C.; Hwang, J.H.; Jo, E.; Kim, Y.R.; Kim, D.J.; Lee, K.B.; Park, S.J.; Jang, I.S. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget 2017, 8, 12211–12224. [Google Scholar] [CrossRef]
- Liu, S.; Tang, J.; Huang, L.; Xu, Q.; Ling, X.; Liu, J. Cordyceps militaris Alleviates Severity of Murine Acute Lung Injury Through miRNAs-Mediated CXCR2 Inhibition. Cell Physiol. Biochem. 2015, 36, 2003–2011. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Feng, Q.; Xu, Q.; Lü, L.; Liu, J.-K.; Zhang, L.; Wu, B.; Li, Y.-Q. Unusual Spirodecane Sesquiterpenes and a Fumagillol Analogue from Cordyceps ophioglossoides. Helv. Chim. Acta 2013, 96, 76–84. [Google Scholar] [CrossRef]
- Chen, M.; Cheung, F.W.; Chan, M.H.; Hui, P.K.; Ip, S.P.; Ling, Y.H.; Che, C.T.; Liu, W.K. Protective roles of Cordyceps on lung fibrosis in cellular and rat models. J. Ethnopharmacol. 2012, 143, 448–454. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Qiu, S.; Chen, J.; Zheng, Y. Effects of the exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis on immunocytes of H22 tumor bearing mice. Fitoterapia 2008, 79, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Feng, X.; Zheng, D.; Li, A.; Li, C.; Li, S.; Zhao, Z. Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo. Clin. Sci. 2019, 133, 1523–1536. [Google Scholar] [CrossRef]
- Liu, A.; Wu, J.; Li, A.; Bi, W.; Liu, T.; Cao, L.; Liu, Y.; Dong, L. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells. Int. J. Chron. Obs. Pulmon Dis. 2016, 11, 1721–1731. [Google Scholar] [CrossRef]
- Nakamura, K.; Yoshikawa, N.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Antitumor effect of cordycepin (3′-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticance. Res. 2006, 26, 43–47. [Google Scholar]
- Bok, J.W.; Lermer, L.; Chilton, J.; Klingeman, H.G.; Towers, G.H.N. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 1999, 51, 891–898. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Li, W.; Shan, L. Cordyceps acid alleviates lung cancer in nude mice. J. Biochem. Mol. Toxicol. 2021, 35, e22670. [Google Scholar] [CrossRef]
- Fu, S.; Lu, W.; Yu, W.; Hu, J. Protective effect of Cordyceps sinensis extract on lipopolysaccharide-induced acute lung injury in mice. Biosci. Rep. 2019, 39, BSR20190789. [Google Scholar] [CrossRef]
- Heo, J.C.; Nam, S.H.; Nam, D.Y.; Kim, J.G.; Lee, K.G.; Yeo, J.H.; Yoon, C.S.; Park, C.H.; Lee, S.H. Anti-asthmatic activities in mycelial extract and culture filtrate of Cordyceps sphecocephala J201. Int. J. Mol. Med. 2010, 26, 351–356. [Google Scholar]
- Duan, R.R.; Hao, K.; Yang, T. Air pollution and chronic obstructive pulmonary disease. Chronic Dis. Transl. Med. 2020, 6, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Mao, Y.; Shergis, J.; Coyle, M.; Wu, L.; Chen, Y.; Zhang, T.; Lin, L.; Xue, C.; Xu, Y. Effectiveness and Safety of Oral Cordyceps sinensis on Stable COPD of GOLD Stages 2–3: Systematic Review and Meta-Analysis. Evid.-Based Complement. Altern. Med. 2019, 2019, 4903671. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiao, X.; Wu, J.; Zhao, J.; Liu, T.; Xu, J.; Ma, X.; Cao, L.; Liu, L.; Liu, Y.; et al. Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease. Exp. Ther. Med. 2018, 15, 2731–2738. [Google Scholar] [CrossRef]
- Sun, X.; Dong, Z.; Li, N.; Feng, X.; Liu, Y.; Li, A.; Zhu, X.; Li, C.; Zhao, Z. Nucleosides isolated from Ophiocordyceps sinensis inhibit cigarette smoke extract-induced inflammation via the SIRT1-nuclear factor-kappaB/p65 pathway in RAW264.7 macrophages and in COPD mice. Int. J. Chron. Obstr. Pulmon. Dis. 2018, 13, 2821–2832. [Google Scholar] [CrossRef]
- Park, B.J.; Dhong, K.R.; Park, H.J. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int. J. Mol. Sci. 2024, 25, 10642. [Google Scholar] [CrossRef]
- Mong, L.S.; Ho, J.Y.; Dae, S.H.; Rae, J.B. Genomic Structure of the Cu,Zn Superoxide Dismutase (SOD1) Gene of Paecillomyces tenuipes and Paecilomyces sp. Int. J. Ind. Entomol. Biomater. 2005, 10, 35–43. [Google Scholar]
- Wang, X.; Xi, D.; Mo, J.; Wang, K.; Luo, Y.; Xia, E.; Huang, R.; Luo, S.; Wei, J.; Ren, Z.; et al. Cordycepin exhibits a suppressive effect on T cells through inhibiting TCR signaling cascade in CFA-induced inflammation mice model. Immunopharmacol. Immunotoxicol. 2020, 42, 119–127. [Google Scholar] [CrossRef]
- Yue, G.G.-L.; Lau, C.B.-S.; Fung, K.-P.; Leung, P.-C.; Ko, W.-H. Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J. Ethnopharmacol. 2008, 117, 92–101. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; He, Y.; Li, T.; Wang, W.; Zhang, J.; Wei, J.; Deng, Y.; Lin, R. Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. Int. Immunopharmacol. 2015, 26, 401–408. [Google Scholar] [CrossRef]
- Kuo, M.C.; Chang, C.Y.; Cheng, T.L.; Wu, M.J. Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: Enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl. Microbiol. Biotechnol. 2007, 75, 769–775. [Google Scholar] [CrossRef]
- Song, L.; Yang, J.; Kong, W.; Liu, Y.; Liu, S.; Su, L. Cordyceps militaris polysaccharide alleviates ovalbumin-induced allergic asthma through the Nrf2/HO-1 and NF-κB signaling pathways and regulates the gut microbiota. Int. J. Biol. Macromol. 2023, 238, 124333. [Google Scholar] [CrossRef]
- Rebuli, M.E.; Brocke, S.A.; Jaspers, I. Impact of inhaled pollutants on response to viral infection in controlled exposures. J. Allergy Clin. Immunol. 2021, 148, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- Dubhashi, S.; Sinha, S.; Dwivedi, S.; Ghanekar, J.; Kadam, S.; Samant, P.; Datta, V.; Singh, S.; Chaudry, I.H.; Gurmet, P.; et al. Early Trends to Show the Efficacy of Cordyceps militaris in Mild to Moderate COVID Inflammation. Cureus 2023, 15, e43731. [Google Scholar] [CrossRef]
- Jung, S.J.; Hwang, J.H.; Oh, M.R.; Chae, S.W. Evaluation of the Efficacy of Ethanolic Extract of Cordyceps in Enhancing Immunity and Preventing Upper Respiratory Tract Infections in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. J. Nutr. Health 2019, 52, 258–267. [Google Scholar] [CrossRef]
- Xu, Y.-J.; Liu, X.-H.; Li, Y.; Yin, L.-J.; Cao, P.; Hou, Y.-Y. Cordyceps militaris capsules inhibit pulmonary inflammation and relieve pulmonary fibrosis. Mycosystema 2021, 40, 1820–1832. [Google Scholar] [CrossRef]
- Berg, C.D.; Schiller, J.H.; Boffetta, P.; Cai, J.; Connolly, C.; Kerpel-Fronius, A.; Kitts, A.B.; Lam, D.C.L.; Mohan, A.; Myers, R.; et al. Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee. J. Thorac. Oncol. 2023, 18, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Huang, Z.; Tan, X.; Chen, G. Proteomic detection of changes in protein expression induced by cordycepin in human hepatocellular carcinoma BEL-7402 cells. Methods Find Exp. Clin. Pharmacol. 2008, 30, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhou, L.; Chu, Z.; Song, Y.; Wang, Q.; Zhao, M.; Dai, C.; Chen, L.; Cheng, G.; Wang, J.; et al. Cordyceps sinensis relieves non-small cell lung cancer by inhibiting the MAPK pathway. Chin. Med. 2024, 19, 54. [Google Scholar] [CrossRef]
- Huo, X.; Liu, C.; Bai, X.; Li, W.; Li, J.; Hu, X.; Cao, L. Correction: Aqueous extract of Cordyceps sinensis potentiates the antitumor effect of DDP and attenuates therapy-associated toxicity in non-small cell lung cancer via IκBα/NFκB and AKT/MMP2/MMP9 pathways. RSC Adv. 2017, 7, 41796–41798. [Google Scholar] [CrossRef]
- Cai, H.; Li, J.; Gu, B.; Xiao, Y.; Chen, R.; Liu, X.; Xie, X.; Cao, L. Extracts of Cordyceps sinensis inhibit breast cancer cell metastasis via down-regulation of metastasis-related cytokines expression. J. Ethnopharmacol. 2018, 214, 106–112. [Google Scholar] [CrossRef]
- Ji, N.F.; Yao, L.S.; Li, Y.; He, W.; Yi, K.S.; Huang, M. Polysaccharide of Cordyceps sinensis enhances cisplatin cytotoxicity in non-small cell lung cancer H157 cell line. Integr. Cancer Ther. 2011, 10, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Kobayashi, M.; Tamesada, M. Effect of the hot-water extract of Cordyceps sinensis on lung metastasis of B16 melanoma cells. J. Tradit. Med. 2006, 23, 83–87. [Google Scholar] [CrossRef]
- Reilly, J.P.; Zhao, Z.; Shashaty, M.G.S.; Koyama, T.; Christie, J.D.; Lanken, P.N.; Wang, C.; Balmes, J.R.; Matthay, M.A.; Calfee, C.S.; et al. Low to Moderate Air Pollutant Exposure and Acute Respiratory Distress Syndrome after Severe Trauma. Am. J. Respir. Crit. Care Med. 2019, 199, 62–70. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-Q.; Zhou, C.-C.; Yu, L.-Y.; Wang, L.; Deng, J.-l.; Tao, Y.-L.; Zhang, F.; Chen, W.-S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res. 2021, 163, 105224. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, K.; Zhang, J.; Xu, G.; Guo, Z.; Lu, X.; Liang, C.; Gu, X.; Huang, L.; Liu, S.; et al. Cordyceps militaris solid medium extract alleviates lipopolysaccharide-induced acute lung injury via regulating gut microbiota and metabolism. Front. Immunol. 2024, 15, 1528222. [Google Scholar] [CrossRef]
- Kim, H.-M.; Kim, J.-H.; Park, B.-J.; Park, H.-J. Chitosan Nanoparticle-Encapsulated Cordyceps militaris Grown on Germinated Rhynchosia nulubilis Reduces Type II Alveolar Epithelial Cell Apoptosis in PM2.5-Induced Lung Injury. Int. J. Mol. Sci. 2025, 26, 1105. [Google Scholar] [CrossRef]
- Majewski, S.; Piotrowski, W.J. Air Pollution—An Overlooked Risk Factor for Idiopathic Pulmonary Fibrosis. J. Clin. Med. 2020, 10, 77. [Google Scholar] [CrossRef]
- Huang, T.-T.; Lai, H.-C.; Ko, Y.-F.; Ojcius, D.M.; Lan, Y.-W.; Martel, J.; Young, J.D.; Chong, K.-Y. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo. Sci. Rep. 2015, 5, 15282. [Google Scholar] [CrossRef]
- Singh, M.; Tulsawani, R.; Koganti, P.; Chauhan, A.; Manickam, M.; Misra, K. Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells. Biomed. Res. Int. 2013, 2013, 569206. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Cheng, G.; Zhou, Y.; Guo, Q.; Wu, J.; Wong, Y.; Zhang, J.; Tang, H.; Wang, J. Cordyceps sinensis ameliorates idiopathic pulmonary fibrosis in mice via inhibiting mitochondrion-mediated oxidative stress. MedComm—Future Med. 2024, 3, e91. [Google Scholar] [CrossRef]
- Daviskas, E.; Anderson, S.D.; Jaques, A.; Charlton, B. Inhaled mannitol improves the hydration and surface properties of sputum in patients with cystic fibrosis. Chest 2010, 137, 861–868. [Google Scholar] [CrossRef]
- Chen, J.; Chan, W.M.; Leung, H.Y.; Leong, P.K.; Yan, C.T.M.; Ko, K.M. Anti-Inflammatory Effects of a Cordyceps sinensis Mycelium Culture Extract (Cs-4) on Rodent Models of Allergic Rhinitis and Asthma. Molecules 2020, 25, 4051. [Google Scholar] [CrossRef]
- Hsieh, S.-A.; Lin, T.-H.; Wang, J.-S.; Chen, J.-J.; Hsu, W.-K.; Ying, L.-C.; Liang, Z.-C. The effects of Cordyceps militaris fruiting bodies in micturition and prostate size in benign prostatic hyperplasia patients: A pilot study. Pharmacol. Res.—Mod. Chin. Med. 2022, 4, 100143. [Google Scholar] [CrossRef]
- Heo, J.Y.; Baik, H.W.; Kim, H.J.; Lee, J.M.; Kim, H.W.; Choi, Y.S. The Efficacy and Safety of Cordyceps militaris in Korean Adults Who Have Mild Liver Dysfunction. J. Clin. Nutr. 2015, 7, 81–86. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, G.; Zhang, C.; Tang, G.; Chan, Y.; Wang, N.; Feng, Y. Randomized, waitlist-controlled trial of Cordyceps sinensis mycelium culture extract (Cs4) for long COVID patients in Hong Kong. Acta Mater. Medica 2025, 4, 250–261. [Google Scholar] [CrossRef]
- Yi, X.; Xi-zhen, H.; Jia-shi, Z. Randomized double-blind placebo-controlled clinical trial and assessment of fermentation product of Cordyceps sinensis (Cs-4) in enhancing aerobic capacity and respiratory function of the healthy elderly volunteers. Chin. J. Integr. Med. 2004, 10, 187–192. [Google Scholar] [CrossRef]
- Wang, N.-q.; Jiang, L.-d.; Zhang, X.; Li, Z.-x. Effect of Dongchong Xiacao capsule on airway inflammation of asthmatic patients. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Medica 2007, 32, 1566–1568. [Google Scholar]
- Ma, Y.; Chen, Y.; Zhang, N.; Xu, G.; Wang, Y.; Sun, Y.; Bai, C.; Zuo, Z. Efficacy and safety of pulmonary rehabilitation training on lung function, quality of life, and T cell immune function in patients with stable chronic obstructive pulmonary disease: A randomized controlled trial. Ann. Palliat. Med. 2022, 11, 1774–1785. [Google Scholar] [CrossRef]
- Jung, S.-J.; Jung, E.-S.; Choi, E.-K.; Sin, H.-S.; Ha, K.-C.; Chae, S.-W. Immunomodulatory effects of a mycelium extract of Cordyceps (Paecilomyces hepiali; CBG-CS-2): A randomized and double-blind clinical trial. BMC Complement. Altern. Med. 2019, 19, 77. [Google Scholar] [CrossRef]
- Hong, Y.-C.; Lee, J.-T.; Kim, H.; Ha, E.-H.; Schwartz, J.; Christiani, D.C. Effects of air pollutants on acute stroke mortality. Environ. Health Perspect. 2002, 110, 187–191. [Google Scholar] [CrossRef]
- Ostro, B.; Malig, B.; Broadwin, R.; Basu, R.; Gold, E.B.; Bromberger, J.T.; Derby, C.; Feinstein, S.; Greendale, G.A.; Jackson, E.A. Chronic PM2.5 exposure and inflammation: Determining sensitive subgroups in mid-life women. Environ. Res. 2014, 132, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, K.; Li, D.; Zhang, Y.; Liu, X.; Wu, K. Effects of fine particulate matter on the ocular surface: An in vitro and in vivo study. Biomed. Pharmacother. 2019, 117, 109177. [Google Scholar] [CrossRef] [PubMed]
- Tecer, L.H.; Alagha, O.; Karaca, F.; Tuncel, G.; Eldes, N. Particulate matter (PM2.5, PM10-2.5, and PM10) and children’s hospital admissions for asthma and respiratory diseases: A bidirectional case-crossover study. J. Toxicol. Environ. Health Part A 2008, 71, 512–520. [Google Scholar] [CrossRef]
- Son, J.-Y.; Lee, H.J.; Koutrakis, P.; Bell, M.L. Pregnancy and lifetime exposure to fine particulate matter and infant mortality in Massachusetts, 2001–2007. Am. J. Epidemiol. 2017, 186, 1268–1276. [Google Scholar] [CrossRef]
- Valdez-Solana, M.A.; Corral-Guerrero, I.A.; Téllez-Valencia, A.; Avitia-Domínguez, C.; Meza-Velázquez, J.A.; de Casa, A.G.; Sierra-Campos, E. Cordyceps militaris Inhibited Angiotensin-Converting Enzyme through Molecular Interaction between Cordycepin and ACE C-Domain. Life 2022, 12, 1450. [Google Scholar] [CrossRef]
- Li, H.P.; Hu, Z.; Yuan, J.L.; Fan, H.D.; Chen, W.; Wang, S.J.; Zheng, S.S.; Zheng, Z.L.; Zou, G.L. A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: Purification and characterization. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 1234–1241. [Google Scholar] [CrossRef]
- Choi, E.; Oh, J.; Sung, G.H. Antithrombotic and Antiplatelet Effects of Cordyceps militaris. Mycobiology 2020, 48, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Ok, W.; Nam, G.; Kim, M.; Kwon, H.-W.; Kim, H.-H.; Shin, J.-H.; Lim, D.; Kwon, H.-K.; Lee, C.-H.; Chung, S.-H.; et al. Antiplatelet Effects of Cordycepin-Enriched WIB-801CE from Cordyceps militaris: Involvement of Thromboxane A 2, Serotonin, Cyclooxygenase-1, Thromboxane A 2 Synthase, Cytosolic Phospholipase A 2. Biomed. Sci. Lett. 2016, 22, 127–139. [Google Scholar] [CrossRef]
- Araujo, J.A.; Nel, A.E. Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Part. Fibre Toxicol. 2009, 6, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.J. Cordyceps as potential therapeutic agents for atherosclerosis. J. Integr. Med. 2024, 22, 102–114. [Google Scholar] [CrossRef]
- Gao, L.; Qin, J.X.; Shi, J.Q.; Jiang, T.; Wang, F.; Xie, C.; Gao, Q.; Zhi, N.; Dong, Q.; Guan, Y.T. Fine particulate matter exposure aggravates ischemic injury via NLRP3 inflammasome activation and pyroptosis. CNS Neurosci. Ther. 2022, 28, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; He, W.; Zhou, X.; Lv, Q.; Xu, X.; Yang, S.; Zhao, C.; Guo, L. Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur. J. Pharmacol. 2011, 664, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, P.; Zhao, D.; Tang, H.; Guo, J. Anti-inflammation effects of Cordyceps sinensis mycelium in focal cerebral ischemic injury rats. Inflammation 2011, 34, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kang, J.; Hong, Y.S.; Chang, Y.; Ryu, S.; Park, J.; Cho, J.; Guallar, E.; Shin, H.C.; Zhao, D. Long-Term Particulate Matter Exposure and Incidence of Arrhythmias: A Cohort Study. J. Am. Heart Assoc. 2020, 9, e016885. [Google Scholar] [CrossRef]
- Zhu, J.-S.; Halpern, G.M.; Jones, K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis Part II. J. Altern. Complement. Med. 1998, 4, 429–457. [Google Scholar] [CrossRef]
- Tao, Y.; Zhao, X.; Liu, J.; Ren, S.; Zhou, W. Clinical application of Ningxinbao capsule combined with amiodarone in unstable angina pectoris with ventricular arrhythmias. Hainan Med. 2014, 25, 2266–2268. [Google Scholar]
- Wang, L.; Sun, H.; Yang, M.; Xu, Y.; Hou, L.; Yu, H.; Wang, X.; Zhang, Z.; Han, J. Bidirectional regulatory effects of Cordyceps on arrhythmia: Clinical evaluations and network pharmacology. Front. Pharmacol. 2022, 13, 948173. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Song, H.; Bao, X.; Niu, S.; Bai, J.; Ma, J.; Yuan, R.; Liu, S.; Guo, J. Cordyceps: Alleviating ischemic cardiovascular and cerebrovascular injury—A comprehensive review. J. Ethnopharmacol. 2024, 332, 118321. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, J. Treatment of Bradyarrhythmia with Ningxinbao Capsules. Mod. Distance Educ. Tradit. Chin. Med. China 2009, 7, 108. [Google Scholar] [CrossRef]
- Jia, J.-d.; Li, Y.-F.; Xiao, M.; Jiang, X.; Xiu, S.-Y.; Wang, J. Systematic review and Meta-analysis of efficacy and safety of Ningxinbao Capsules in treatment of arrhythmia. Zhongguo Zhong Yao Za Zhi 2021, 46, 1260–1267. [Google Scholar] [CrossRef]
Species | Compounds | Factor | Mode of Action | Reference |
---|---|---|---|---|
C. jiangxiensis | Jiangxienone | Anti-lung cancer | [29] | |
C. guangdongensis | Polysaccharide | Tobacco smoking | Anti-inflammatory activity on chronic bronchitis | [44] |
C. guangdongensis | Influenza virus H9N2 | Antivirus activity | [44] | |
C. militaris | Cordycepin | COVID-19 | Polyadenylation inhibitor with therapeutic potential against COVID-19 | [45] |
C. militaris | Beta-sitosterol, cholest-5-en-3β-ol, 3β, and 7α-Dihydroxycholest-5-ene | COVID-19 | Controlling the cytokine storm in COVID-19 | [46] |
C. militaris | Acidic polysaccharide (APS) | Influenza A virus | Anti-influenza effect | [47] |
C. militaris | Cordycepin | Lipopolysaccharide (LPS) | Reduces LPS-induced acute lung injury through the reduction in oxidative stress and inflammation | [48] |
C. militaris | Silica | Inhibits silica-induced pulmonary inflammation | [49] | |
C. militaris | Cordycepin | Induces apoptosis in human lung cancer cells | [50] | |
C. militaris | Cordycepin | Triggers apoptosis by Caveolin-1-mediated regulation of JNK and Foxo3a in human lung adenocarcinoma | [51] | |
C. militaris | miR-1321 and miR-3188 | Cigarette smoke extract | Alleviates the severity of murine acute lung injury | [52] |
C. ophioglossoides | Cordycepol A | Cigarette smoke extract | Anticancer activities | [53] |
C. ophioglossoides | Alkali-soluble polysaccharide | Antitumor | [33] | |
C. sinensis | Cordycepin, adenosine | Bleomycin | Antifibrogenic properties | [54] |
C. sinensis | Exopolysaccharide | Immunocyte activity of tumor-bearing mice | [55] | |
C. sinensis | Ergosterol | Cigarette smoke extract | Inhibits cigarette smoke extract-induced COPD | [56] |
C. sinensis | Cigarette smoke extract | Inhibits cigarette smoke extract-induced senescence in bronchial epithelial cells | [57] | |
C. sinensis | Cordycepin | Antitumor effect of cordycepin (3′-Deoxyadenosine) on murine lung carcinoma cells through adenosine A3 receptor stimulation | [58] | |
C. sinensis | Cordymin | Anti-inflammatory | [16] | |
C. sinensis | 5,6-Epoxy-24(r)-methylcholesta-7,22-dien-3β-ol | Antitumor sterols from the mycelia of C. sinensis | [59] | |
C. sinensis | Cordyceps acid | Alleviates lung cancer in nude mice | [60] | |
C. sinensis | A protective effect against LPS-induced ALI in mice | [61] | ||
C. ciacadae | Ergosterol peroxide | Inhibits phytohemagglutinin-induced T-cell proliferation | ||
C. sphecocephala | Ovalbumin | Anti-asthmatic activities | [62] |
Cordyceps Species | Identifier | Study Design | Effect | Clinical Improvement | Dose | Reference |
---|---|---|---|---|---|---|
C. militaris | NCT06138444 | Randomized, double-blind, placebo-controlled clinical trial (20 healthy adults (10 males and 10 females), aged 20–60 years) | Natural immunostimulatory supplement | Significant increase in NK cell activity in males at 4 weeks (p = 0.049); significant increase in females at 8 weeks compared to placebo (p = 0.023); significant reduction in IL-1β levels in males at 8 weeks (p = 0.049); significant reduction in IL-6 levels in females at 8 weeks (p = 0.047) | 75 mL of FCM containing 2.85 mg of cordycepin or placebo/day for 60 days | [23] |
C. militaris | IRB No. 2013-02-009 | Randomized, double-blind, placebo-controlled clinical trial (100 healthy adults aged 20–70 years with a history of at least two colds in the previous year) | Enhanced innate immune function; improved mucosal immunity relevant to respiratory defense; no adverse effects or abnormalities in liver, kidney, or hematological markers | A statistically significant increase in NK cell cytotoxicity was observed in the Cordyceps group compared to placebo (p = 0.047); a significant elevation in serum IgA levels (p = 0.035); safe and well-tolerated over 12 weeks of use | 375 mg of CM ethanolic extract of 2 tablets/twice/day for 12 weeks | [76] |
C. militaris | Open-label clinical trial (62 male patients diagnosed with benign prostatic hyperplasia (BPH)) | Increasing urinary flow, decreasing the size of the prostatic gland, and alleviating micturition symptoms | Significant increase in urinary flow (p = 0.025); significant decrease in prostate volume (p = 0.016) | 250 mg of 2 Cordyceps militaris fruiting bodies capsules, twice daily after meals for 12 weeks | [95] | |
C. militaris | Single-center, randomized, double-blind, placebo-controlled clinical trial (57 Korean adults aged 20–65 years with mild liver dysfunction (ALT 1.5–3× upper limit of normal)) | Protect against the progression of fatty liver or cirrhosis in patients with mild liver dysfunction | Liver computed tomography (CT) Hounsfield units (HU): Mean increase of 21.43% ± 45.11% in the Cordyceps group vs. 9.64% ± 11.41% in the placebo group after 8 weeks; not statistically significant (p = 0.0987); no adverse effects or abnormal laboratory findings reported | 1.5 g/day of C. militaris (2 capsules/doses, twice per day) for 4 weeks | [96] | |
C. sinensis | NCT06054438 | Randomized, waitlist-controlled clinical trial (110 long COVID patients (55 per group) | Cordyceps sinensis mycelium extract (Cs4) significantly improved fatigue, sleep quality, respiratory symptoms, and overall quality of life in long COVID patients over 12 weeks | Significant improvement in the Cs4 group compared to control (MD: −10.1; 95% CI: −14.1 to −6.1; p < 0.001); significant reduction in fatigue (MD: −8.1; 95% CI: −14.2 to −2.0; p = 0.011); significant improvement in sleep quality (MD: −2.9; 95% CI: −4.6 to −1.2; p = 0.001); significant improvement in respiratory symptoms (MD: −6.3; 95% CI: −11.4 to −1.2; p = 0.018) | One Cs4 capsule (each 400 mg) 4 times/day for 12 weeks | [97] |
C. sinensis | Randomized, double-blind, placebo-controlled clinical trial (37 healthy elderly Chinese volunteers) | Cs-4 could improve oxygen uptake or aerobic capacity and ventilation function and resistance to fatigue among elderly people in exercise. | Increased maximum oxygen uptake (VO2max) from 1.88 ± 0.13 to 2.00 ± 0.14 L/min in the Cs-4 group (p = 0.050); no significant change in the placebo group and anaerobic threshold | Cs-4 (3 g/day) for 6 weeks | [98] | |
C. sinensis | Randomized controlled trial (58 patients with ventricular arrhythmia) | Cs-4 (Cordyceps sinensis) improves exercise performance and might contribute to wellness in healthy older subjects; improvement in the treatment of ventricular arrhythmia, as evidenced by higher total effective rates and better electrocardiogram (ECG) outcomes | Observation group showed a higher total effective rate compared to the control group (p < 0.05); post-treatment ECG results in the observation group significantly improved compared to those in the control group (p < 0.05); no significant difference in the incidence of adverse reactions between the two groups (p > 0.05) | Cs-4 333 mg or placebo capsules 3 times a day for 12 weeks | [18] | |
C. sinensis | Systematic review and meta-analysis of randomized controlled trials (1238 patients with stable COPD (GOLD stages 2–3) | Meta-analysis showed that both CS preparations and CS formulae had potential benefits for lung function, exercise endurance, life quality, and improvement of symptoms for chronic obstructive pulmonary disease (COPD) of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages 2–3. | Quality of life: CS preparations led to a reduction in SGRQ scores by 4.57 points (95% CI: −7.53 to −1.61), indicating improved health-related quality of life. Symptom improvement: Patients receiving CS reported better symptom relief, with an odds ratio (OR) of 2.62 (95% CI: 1.71 to 4.03) for effective treatment compared to controls | [64] | ||
C. sinensis | ChiCTR1900025707 | Randomized, double-blind, placebo-controlled, multicenter clinical trial (240 patients diagnosed with chronic bronchitis [CB]) | Reduced the frequency of acute exacerbations and improved key respiratory symptoms such as expectoration and wheezing | Patients receiving Bailing capsules reported significant improvements in expectoration (p = 0.012) and wheezing (p = 0.003) compared to the placebo group | Bailing capsule (Cs-C-Q80) 2.0 g, three times daily for 48 weeks | [14] |
C. sinensis | Randomized controlled trial (60 patients with moderate persistent asthma) | The effect of the Dongchong Xiacao capsule on the airway inflammation in asthmatic patients | The treatment group exhibited a more significant reduction in serum levels of IL-4, sICAM-1, MMP-9, and IgE compared to the control group (p < 0.05 or p < 0.01) | Received standard therapy plus Dongchong Xiacao capsules for 2 months | [99] | |
C. sinensis | Randomized, double-blind, placebo-controlled, prospective trial (20 healthy elderly subjects aged 50–75 years) | Improves exercise performance among healthy older adults by improving metabolic and ventilatory thresholds | The Cs-4® group exhibited a significant increase in metabolic threshold (above which lactate accumulates) by 10.5%, from 0.83 ± 0.06 to 0.93 ± 0.08 L/min (p < 0.02). An 8.5% increase in ventilatory threshold (above which unbuffered H+ stimulates ventilation) was observed, from 1.25 ± 0.11 to 1.36 ± 0.15 L/min (p < 0.05) | Cs-4 333 mg or placebo capsules 3 times a day for 12 weeks | [18] | |
C. sinensis | ChiCTR2100048419 | Randomized controlled trial (72 patients with stable COPD) | Pulmonary rehabilitation training can enhance lung function, quality of life, and T cell immune function in stable-phase COPD patients. Perhaps the recovery of T-cell immune function is the root of the patient’s improvement | The experimental group showed significant improvements in FEV1% and FEV1/FVC% compared to the control group after 12 weeks (p = 0.002 and p = 0.009, respectively). Increases in CD3+% and CD4+% were significant in the experimental group compared to the control group (p = 0.037 and p = 0.046, respectively). The CD4+/CD8+ ratio improved significantly in the experimental group (p < 0.001) | [100] | |
C. sinensis | CRD42022333681 | Systematic review and meta-analysis of randomized controlled trials (RCTs) (928 patients across 12 RCTs) | Adjuvant treatment with CS of lung cancer not only improves the tumor response rate, quality of life, and immune function but also reduces the incidence of ADRs and radiation pneumonitis | Tumor response rate increased (RR: 1.17; 95% CI: 1.05–1.29; p = 0.00); significant improvements in CD4 (MD: 4.98; 95% CI: 1.49–8.47; p = 0.01), CD8 (MD: 1.60; 95% CI: 0.40–2.81; p = 0.01), NK cells (MD: 4.17; 95% CI: 2.26–6.08; p = 0.00), IgA (MD: 1.29; 95% CI: 0.35–2.24; p = 0.01), IgG (MD: 3.95; 95% CI: 0.98–6.92; p = 0.01), and IgM (MD: 6.44; 95% CI: 0.63–12.26; p = 0.03) | 6 g/day and 21 days/3–4 cycles | [15] |
Paecilomyces hepiali | NCT 02814617 | Randomized, double-blind, placebo-controlled clinical trial (79 healthy adults (39 in the CBG-CS-2 group, 40 in the placebo group)) | Enhancing cell-mediated immunity in healthy adults | Significant increase of 38.8 ± 17.6% in NK cell activity from baseline in the CBG-CS-2 group compared to the placebo group after 8 weeks (p < 0.019) | Two CBG-CS-2 capsules (twice per day) or two placebo capsules (twice per day) per day (1.68 g/day) after breakfast and dinner for 8 weeks | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-J. The Genus Cordyceps Sensu Lato: Their Chemical Constituents, Biological Activities, and Therapeutic Effects on Air Pollutants Related to Lung and Vascular Diseases. Life 2025, 15, 935. https://doi.org/10.3390/life15060935
Park H-J. The Genus Cordyceps Sensu Lato: Their Chemical Constituents, Biological Activities, and Therapeutic Effects on Air Pollutants Related to Lung and Vascular Diseases. Life. 2025; 15(6):935. https://doi.org/10.3390/life15060935
Chicago/Turabian StylePark, Hye-Jin. 2025. "The Genus Cordyceps Sensu Lato: Their Chemical Constituents, Biological Activities, and Therapeutic Effects on Air Pollutants Related to Lung and Vascular Diseases" Life 15, no. 6: 935. https://doi.org/10.3390/life15060935
APA StylePark, H.-J. (2025). The Genus Cordyceps Sensu Lato: Their Chemical Constituents, Biological Activities, and Therapeutic Effects on Air Pollutants Related to Lung and Vascular Diseases. Life, 15(6), 935. https://doi.org/10.3390/life15060935