Research Progress on Varicella-Zoster Virus Vaccines
Abstract
1. Introduction
2. Varicella Vaccines
2.1. Monovalent Varicella Vaccines
2.2. Varicella Combination Vaccines
3. HZ Vaccines
3.1. Approved HZ Vaccines
3.1.1. Live Attenuated HZ Vaccine (ZVL)
3.1.2. Recombinant Subunit HZ Vaccine (RZV)
3.2. Clinical HZ Vaccines
3.2.1. Recombinant Subunit HZ Vaccine (RZV)
3.2.2. mRNA Vaccines for Herpes Zoster
3.2.3. Inactivated HZ Vaccines
3.2.4. Herpes Zoster Viral Vector Vaccine
3.3. Technical Approaches to Novel HZ Vaccines
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACIP | Advisory Committee on Immunization Practices |
AEFI | Adverse events following immunization |
bp | Base pair |
CDE | Center for Drug Evaluation |
CHO | Chinese hamster ovary (cells) |
CMI | Cell-mediated immunity |
CpG | Cytosine-phosphate-Guanine |
dLOS | de-O-acylated lipooligosaccharide |
DOTAP | 1,2-dioleoyl-3-trimethylammonium-propane |
E. coli | Escherichia coli |
EBV | Epstein–Barr virus |
FDA | Food and Drug Administration |
gE | Glycoprotein E |
gEgI | Glycoprotein E and I |
GPE | Guinea pig embryo |
HBc | Hepatitis B virus core |
HEL | Human embryonic lung |
HHV-3 | Human herpesvirus 3 |
HIV | Human immunodeficiency virus |
HZ | Herpes zoster |
ID | Intradermal |
IL-10 | Interleukin-10 |
IND | Investigational New Drug |
ITP | Immune thrombocytopenia |
KMFDS | Korean Ministry of Food and Drug Safety |
LNP | Lipid nanoparticle |
LNP-CpG-ODN | Lipid nanoparticle encapsulating CpG-ODN |
MMR | Measles–mumps–rubella |
MMR + V | Measles–mumps–rubella and varicella |
MMRV | Measles–mumps–rubella–varicella |
MPL | Monophosphoryl lipid A |
NMPA | National Medical Products Administration |
NPRA | National Pharmaceutical Regulatory Agency |
ODN | Oligodeoxynucleotide |
ORF | Open reading frame |
PFU | Plaque-forming units |
PHN | Postherpetic neuralgia |
pOka | Parental Oka strain |
PQ | Prequalification |
QS-21 | A saponin derived from Quillaja saponaria |
rvOka-BAC | Recombinant vOka bacterial artificial chromosome |
RZV | Recombinant zoster vaccine |
SC | Subcutaneous |
SIV | Simian immunodeficiency virus |
srRNA | Self-replicating RNA |
tgE | Truncated gE protein |
Ty-VLPs | Hybrid transposon yeast-VLPs |
UK | United Kingdom |
US | United States |
UTR | Untranslated region |
U-VLP™ | Patronus Biotech’s proprietary nanoparticle platform |
VLP | Virus-like particle |
vOka | Vaccine Oka strain |
VZV | Varicella-zoster virus |
WHO | World Health Organization |
WI-38 | Human diploid cell line |
ZVIN | Inactivated VZV vaccine |
ZVL | Live attenuated HZ vaccine |
References
- Davison, A.J.; Scott, J.E. The complete DNA sequence of varicella-zoster virus. J. Gen. Virol. 1986, 67 Pt 9, 1759–1816. [Google Scholar] [CrossRef]
- Storlie, J.; Maresova, L.; Jackson, W.; Grose, C. Comparative analyses of the 9 glycoprotein genes found in wild-type and vaccine strains of varicella-zoster virus. J. Infect. Dis. 2008, 197 (Suppl. 2), S49–S53. [Google Scholar] [CrossRef]
- de Martino Mota, A.; Carvalho-Costa, F.A. Varicella zoster virus related deaths and hospitalizations before the introduction of universal vaccination with the tetraviral vaccine. J. Pediatr. 2016, 92, 361–366. [Google Scholar] [CrossRef]
- Lachiewicz, A.M.; Srinivas, M.L. Varicella-zoster virus post-exposure management and prophylaxis: A review. Prev. Med. Rep. 2019, 16, 101016. [Google Scholar] [CrossRef]
- Galil, K.; Choo, P.W.; Donahue, J.G.; Platt, R. The sequelae of herpes zoster. Arch. Intern. Med. 1997, 157, 1209–1213. [Google Scholar] [CrossRef]
- Schmidt, M.; Kress, M.; Heinemann, S.; Fickenscher, H. Varicella-zoster virus isolates, but not the vaccine strain OKA, induce sensitivity to alpha-1 and beta-1 adrenergic stimulation of sensory neurones in culture. J. Med. Virol. 2003, 70 (Suppl. 1), S82–S89. [Google Scholar] [CrossRef]
- Sadaoka, T.; Mori, Y. Vaccine Development for Varicella-Zoster Virus. Adv. Exp. Med. Biol. 2018, 1045, 123–142. [Google Scholar] [CrossRef]
- Pepose, J.S. The potential impact of the varicella vaccine and new antivirals on ocular disease related to varicella-zoster virus. Am. J. Ophthalmol. 1997, 123, 243–251. [Google Scholar] [CrossRef]
- Tirat, W.R.; Schibler, M. Varicella-zoster virus (VZV) acute retinal necrosis and recombinant zoster vaccine. Rev. Med. Suisse 2022, 18, 714–717. [Google Scholar] [CrossRef]
- Newman, A.M.; Jhaveri, R. Myths and Misconceptions: Varicella-Zoster Virus Exposure, Infection Risks, Complications, and Treatments. Clin. Ther. 2019, 41, 1816–1822. [Google Scholar] [CrossRef]
- Feigin., R.D.; Cherry., J.D.; Demmler-Harrison., G.J.; Kaplan., S.L. Feigin and Cherry’s Textbook of Pediatric Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 978-141-604-044-6. [Google Scholar]
- Bialek, S.R.; Perella, D.; Zhang, J.; Mascola, L.; Viner, K.; Jackson, C.; Lopez, A.S.; Watson, B.; Civen, R. Impact of a routine two-dose varicella vaccination program on varicella epidemiology. Pediatrics 2013, 132, e1134–e1140. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.D.; Vazquez, M.; Esposito, D.; Holabird, N.; Steinberg, S.P.; Dziura, J.; LaRussa, P.S.; Gershon, A.A. Effectiveness of 2 doses of varicella vaccine in children. J. Infect. Dis. 2011, 203, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Sheel, M.; Beard, F.; Quinn, H.; Dey, A.; Kirk, M.; Koehler, A.; Markey, P.; McIntyre, P.; Macartney, K. Australian vaccine preventable disease epidemiological review series: Varicella-zoster virus infections, 1998-2015. Commun. Dis. Intell. 2018, 2018, 42. [Google Scholar] [CrossRef]
- Bharucha, T.; Ming, D.; Breuer, J. A critical appraisal of ‘Shingrix’, a novel herpes zoster subunit vaccine (HZ/Su or GSK1437173A) for varicella zoster virus. Hum. Vaccin. Immunother. 2017, 13, 1789–1797. [Google Scholar] [CrossRef]
- Laing, K.J.; Ouwendijk, W.J.D.; Koelle, D.M.; Verjans, G. Immunobiology of Varicella-Zoster Virus Infection. J. Infect. Dis. 2018, 218, S68–S74. [Google Scholar] [CrossRef]
- Haberthur, K.; Engelmann, F.; Park, B.; Barron, A.; Legasse, A.; Dewane, J.; Fischer, M.; Kerns, A.; Brown, M.; Messaoudi, I. CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog. 2011, 7, e1002367. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M. 25 years’ experience with the Biken Oka strain varicella vaccine: A clinical overview. Paediatr. Drugs 2001, 3, 285–292. [Google Scholar] [CrossRef]
- Goulleret, N.; Mauvisseau, E.; Essevaz-Roulet, M.; Quinlivan, M.; Breuer, J. Safety profile of live varicella virus vaccine (Oka/Merck): Five-year results of the European Varicella Zoster Virus Identification Program (EU VZVIP). Vaccine 2010, 28, 5878–5882. [Google Scholar] [CrossRef]
- Paradis, E.M.; Tikhonov, O.; Cao, X.; Kharit, S.M.; Fokin, A.; Platt, H.L.; Wittke, F.; Jotterand, V. Phase 3, open-label, Russian, multicenter, single-arm trial to evaluate the immunogenicity of varicella vaccine (VARIVAX™) in healthy infants, children, and adolescents. Hum. Vaccines Immunother. 2021, 17, 4183–4189. [Google Scholar] [CrossRef]
- Sheffer, R.; Segal, D.; Rahamani, S.; Dalal, I.; Linhart, Y.; Stein, M.; Shohat, T.; Somekh, E. Effectiveness of the Oka/GSK attenuated varicella vaccine for the prevention of chickenpox in clinical practice in Israel. Pediatr. Infect. Dis. J. 2005, 24, 434–437. [Google Scholar] [CrossRef]
- BCHT. Live Attenuated Vaccine Against Varicella. Available online: http://www.bchtpharm.com/Home/Article/detail/id/804.html (accessed on 23 August 2021).
- SINOVAC. SINOVAC Varicella Attenuated Live Vaccine Has Been Pre Certified by the World Health Organization. Available online: http://www.sinovac.com.cn/zh-cn/news/id-3194 (accessed on 9 November 2022).
- SINOPHARM. The Vaccination Age for the Varicella Attenuated Live Vaccine of Shanghai Institute of Biological Products Co., Ltd. Has Been Extended to the Entire Population Aged 12 Months and Above. Available online: https://www.sinopharm.com/2024-08/27/c_19710.htm (accessed on 27 August 2024).
- Kim, J.I.; Jung, G.S.; Kim, Y.Y.; Ji, G.Y.; Kim, H.S.; Wang, W.D.; Park, H.S.; Park, S.Y.; Kim, G.H.; Kwon, S.N.; et al. Sequencing and characterization of Varicella-zoster virus vaccine strain SuduVax. Virol. J. 2011, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Shin, Y.; Kim, E.; Nam, H.; Nan, H.; Lee, J. Immunological characteristics of MAV/06 strain of varicella-zoster virus vaccine in an animal model. BMC Immunol. 2022, 23, 27. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.X.; Qiu, L.X.; Liang, Q.; Chen, Z.; Zhang, M.L.; Liu, S.; Zhong, G.H.; Zhu, K.X.; Liao, M.J.; Hu, J.L.; et al. Immunogenicity and safety of an ORF7-deficient skin-attenuated and neuro-attenuated live vaccine for varicella: A randomised, double-blind, controlled, phase 2a trial. Lancet Infect. Dis. 2024, 24, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Center For Drug Evaluation, NMPA. Disclosure of Recipient Variety Information. Available online: https://www.cde.org.cn/main/xxgk/listpage/9f9c74c73e0f8f56a8bfbc646055026d (accessed on 19 January 2024).
- Pharmacy, B. Announcement of Shandong Stepwise Pharmaceutical Co., Ltd. on the Acceptance Notice of Clinical Trials of Its Controlled Subsidiary’s Drugs. Available online: https://www.cnpharm.com/upload/resources/file/2024/12/19/167923.pdf (accessed on 18 December 2024).
- Kowalzik, F.; Faber, J.; Knuf, M. MMR and MMRV vaccines. Vaccine 2018, 36, 5402–5407. [Google Scholar] [CrossRef]
- Newswire, P. SK Bioscience’s Zoster Vaccine Receives Biologics License Application Approval in Malaysia. Available online: https://en.prnasia.com/releases/global/sk-bioscience-s-zoster-vaccine-receives-biologics-license-application-approval-in-malaysia-389846.shtml (accessed on 9 January 2023).
- BCHT. Live Attenuated Herpes Zoster Vaccine: Canvar®. Available online: http://www.bchtpharm.com/Home/Article/detail/id/905.html (accessed on 13 April 2023).
- Biotech, L. Recombinant Herpes Zoster Vaccine (LZ901). Available online: http://www.luzhubiotech.com/techAndProduct/productInResearch (accessed on 7 January 2025).
- Zhang, Z.; Liu, X.; Suo, L.; Zhao, D.; Pan, J.; Lu, L. The incidence of herpes zoster in China: A meta-analysis and evidence quality assessment. Hum. Vaccin. Immunother. 2023, 19, 2228169. [Google Scholar] [CrossRef]
- Maxvax. Milestones|Phase III Clinical Enrollment of Maikokang Recombinant Herpes Zoster Vaccine (CHO Cells). Available online: http://www.maxvax.cn/info.aspx?id=119&t=9 (accessed on 13 July 2024).
- Merck. In First Phase 3 Trial, Merck’s Investigational Inactivated Varicella Zoster Virus Vaccine (V212) Reduced the Incidence of Confirmed Herpes Zoster Cases by an Estimated 64 Percent in Immunocompromised Subjects. Available online: https://www.merck.com/news/in-first-phase-3-trial-mercks-investigational-inactivated-varicella-zoster-virus-vaccine-v212-reduced-the-incidence-of-confirmed-herpes-zoster-cases-by-an-estimated-64-percent-in-immunocom/ (accessed on 24 February 2017).
- Immorna. JCXH-105, the World’s First RNA Shingles Vaccine, Has Been Approved for Phase I Registration Clinical Trials by the US Food and Drug Administration. Available online: https://www.immorna.com/cn/investors-detail-192.html (accessed on 7 January 2023).
- Choi, U.Y.; Huh, D.H.; Kim, J.H.; Kang, J.H. Seropositivity of Varicella zoster virus in vaccinated Korean children and MAV vaccine group. Hum. Vaccin. Immunother. 2016, 12, 2560–2564. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pan, D.; Fu, W.; Ye, X.; Han, J.; Yang, L.; Jia, J.; Liu, J.; Zhu, R.; Zhang, Y.; et al. Development of a skin- and neuro-attenuated live vaccine for varicella. Nat. Commun. 2022, 13, 824. [Google Scholar] [CrossRef]
- Kudesia, G.; Partridge, S.; Farrington, C.P.; Soltanpoor, N. Changes in age related seroprevalence of antibody to varicella zoster virus: Impact on vaccine strategy. J. Clin. Pathol. 2002, 55, 154–155. [Google Scholar] [CrossRef]
- Zhang, Z.J.Z.; Suo, L.D.; Zhao, D.; Pan, J.B.; Lu, L. Systematic reviews and evidence quality assessment on effectiveness of 1 dose varicella attenuated live vaccine for healthy children aged 1-12 years in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 1138–1144. [Google Scholar] [CrossRef]
- Marin, M.; Güris, D.; Chaves, S.S.; Schmid, S.; Seward, J.F. Prevention of varicella: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2007, 56, 1–40. [Google Scholar]
- Prymula, R.; Bergsaker, M.R.; Esposito, S.; Gothefors, L.; Man, S.; Snegova, N.; Štefkovičova, M.; Usonis, V.; Wysocki, J.; Douha, M.; et al. Protection against varicella with two doses of combined measles-mumps-rubella-varicella vaccine versus one dose of monovalent varicella vaccine: A multicentre, observer-blind, randomised, controlled trial. Lancet 2014, 383, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.H.; Hirai, H.W.; Tsoi, K.K. Immunogenicity and reactogenicity of tetravalent vaccine for measles, mumps, rubella and varicella (MMRV) in healthy children: A meta-analysis of randomized controlled trials. Expert Rev. Vaccines 2015, 14, 1149–1157. [Google Scholar] [CrossRef]
- Namazova-Baranova, L.; Habib, M.A.; Povey, M.; Efendieva, K.; Fedorova, O.; Fedoseenko, M.; Ivleva, T.; Kovshirina, Y.; Levina, J.; Lyamin, A.; et al. A randomized trial assessing the efficacy, immunogenicity, and safety of vaccination with live attenuated varicella zoster virus-containing vaccines: Ten-year follow-up in Russian children. Hum. Vaccin. Immunother. 2022, 18, 1959148. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, D.; Shi, F.; Chen, F. Role of regulatory T cells in patients with acute herpes zoster and relationship to postherpetic neuralgia. Arch. Dermatol. Res. 2013, 305, 715–722. [Google Scholar] [CrossRef]
- Steain, M.; Sutherland, J.P.; Rodriguez, M.; Cunningham, A.L.; Slobedman, B.; Abendroth, A. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J. Virol. 2014, 88, 2704–2716. [Google Scholar] [CrossRef] [PubMed]
- Dynavax. Advancing a Broad Pipeline of Vaccines to Prevent Infectious Diseases. Available online: https://www.dynavax.com/pipeline/#trials (accessed on 1 October 2022).
- Moderna. Moderna Advances Multiple Vaccine Programs to Late-Stage Clinical Trials. Available online: https://news.modernatx.com/news/news-details/2024/Moderna-Advances-Multiple-Vaccine-Programs-to-Late-Stage-Clinical-Trials/default.aspx (accessed on 27 March 2024).
- Pfizer. Pfizer and BioNTech Initiate Phase 1/2 Study of First mRNA-Based Shingles Vaccine Program. Available online: https://www.pfizer.com/news/announcements/pfizer-and-biontech-initiate-phase-12-study-first-mrna-based-shingles-vaccine (accessed on 10 February 2023).
- National Library of Medicine. Study Details|A Study to Learn About a Modified RNA Vaccine Against Shingles in Healthy Adults|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05703607 (accessed on 30 December 2024).
- Genevax. Good News: Geneve Recombinant Herpes Zoster Vaccine Has Obtained FDA Clinical Trial Approval! Available online: https://www.genevax.com.cn/newsinfo/6818959.html (accessed on 27 January 2024).
- ClinicalTrials.Gov. Clinical Trial to Evaluate EuHZV in Healthy Adults Aged 50 to 69 Years. Available online: https://clinicaltrials.gov/study/NCT06409494?term=EuHZV&rank=1 (accessed on 16 July 2024).
- Innorna. Innorna Shingles mRNA Vaccine IN001 Has Been Approved for Clinical Trials in China. Available online: https://www.innorna.com/cn/news/314.html (accessed on 23 July 2024).
- CanSinoBio. CanSinoBio Recombinant Herpes Zoster Vaccine Launches Phase I Clinical Trial in Canada and Completes First Subject Enrollment. Available online: https://www.cansinotech.com.cn/detail-4188 (accessed on 9 November 2023).
- Biopharma, G. Recombinant Herpes Zoster Vaccine. Available online: http://www.gentize.com/product/9.html (accessed on 4 September 2024).
- RHEGEN. The Clinical Trial Application for the World’s First Freeze-Dried Herpes Zoster mRNA Vaccine Has Been Approved by CDE. Available online: https://www.rhegen.com/show-8-33-1.html (accessed on 23 October 2024).
- SINOVAC. SINOVAC Freeze-Dried Herpes Zoster Virus mRNA Vaccine Approved for Clinical Use. Available online: https://www.sinovac.com/zh-cn/news/id-3385 (accessed on 26 December 2024).
- Food and Drug Administration. ZOSTAVAX (Zoster Vaccine Live) Frozen Package Insert. Available online: https://www.fda.gov/media/119879/download?attachment (accessed on 29 March 2019).
- Food and Drug Administration. Clinical Review Memo—VARIVAX. Available online: https://www.fda.gov/media/166083/download (accessed on 27 February 2023).
- Levin, M.J.; Oxman, M.N.; Zhang, J.H.; Johnson, G.R.; Stanley, H.; Hayward, A.R.; Caulfield, M.J.; Irwin, M.R.; Smith, J.G.; Clair, J.; et al. Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. J. Infect. Dis. 2008, 197, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Popmihajlov, Z.; Schmader, K.E.; Johnson, M.J.; Caldas, Y.; Salazar, A.T.; Canniff, J.; McCarson, B.J.; Martin, J.; Pang, L.; et al. Persistence of Varicella-Zoster Virus Cell-Mediated Immunity After the Administration of a Second Dose of Live Herpes Zoster Vaccine. J. Infect. Dis. 2019, 219, 335–338. [Google Scholar] [CrossRef]
- RxList. Zostavax. Available online: https://www.rxlist.com/zostavax-drug.htm#side_effects (accessed on 26 September 2024).
- DXY. Canvar Product Manual. Available online: https://drugs.dxy.cn/pc/drug/eu8Irmepepm9Rhzuexg72hUofEA==?ky=%E5%B8%A6%E7%8A%B6%E7%96%B1%E7%96%B9%E7%96%AB%E8%8B%97 (accessed on 17 May 2023).
- Tseng, H.F.; Schmid, D.S.; Harpaz, R.; LaRussa, P.; Jensen, N.J.; Rivailler, P.; Radford, K.; Folster, J.; Jacobsen, S.J. Herpes zoster caused by vaccine-strain varicella zoster virus in an immunocompetent recipient of zoster vaccine. Clin. Infect. Dis. 2014, 58, 1125–1128. [Google Scholar] [CrossRef]
- Dubey, V.; MacFadden, D. Disseminated varicella zoster virus infection after vaccination with a live attenuated vaccine. CMAJ 2019, 191, E1025–E1027. [Google Scholar] [CrossRef]
- Agger, W.A.; Deviley, J.A.; Borgert, A.J.; Rasmussen, C.M. Increased Incidence of Giant Cell Arteritis After Introduction of a Live Varicella Zoster Virus Vaccine. Open Forum. Infect. Dis. 2021, 8, ofaa647. [Google Scholar] [CrossRef]
- Li-Kim-Moy, J.; Phillips, A.; Morgan, A.; Glover, C.; Jayasinghe, S.; Hull, B.P.; Dey, A.; Beard, F.H.; Hickie, M.; Macartney, K. Disseminated varicella zoster virus infection following live attenuated herpes zoster vaccine: Descriptive analysis of reports to Australia’s spontaneous vaccine pharmacovigilance system, 2016–2020. BMJ Open 2023, 13, e067287. [Google Scholar] [CrossRef] [PubMed]
- Cole, N.L.; Grose, C. Membrane fusion mediated by herpesvirus glycoproteins: The paradigm of varicella-zoster virus. Rev. Med. Virol. 2003, 13, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Jackson, W.; Forghani, B.; Grose, C. Varicella-zoster virus glycoprotein gpI/gpIV receptor: Expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system. J. Virol. 1993, 67, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Grose, C. Unusual phosphorylation sequence in the gpIV (gI) component of the varicella-zoster virus gpI-gpIV glycoprotein complex (VZV gE-gI complex). J. Virol. 1994, 68, 4204–4211. [Google Scholar] [CrossRef]
- Dooling, K.L.; Guo, A.; Patel, M.; Lee, G.M.; Moore, K.; Belongia, E.A.; Harpaz, R. Recommendations of the Advisory Committee on Immunization Practices for Use of Herpes Zoster Vaccines. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 103–108. [Google Scholar] [CrossRef]
- Food and Drug Administration. Shingrix [Package Insert]. Available online: https://www.fda.gov/media/108597/download (accessed on 23 May 2025).
- Lal, H.; Zahaf, T.; Heineman, T.C. Safety and immunogenicity of an AS01-adjuvanted varicella zoster virus subunit candidate vaccine (HZ/su): A phase-I, open-label study in Japanese adults. Hum. Vaccin. Immunother. 2013, 9, 1425–1429. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Volpe, S.; Catteau, G.; Chlibek, R.; David, M.P.; Richardus, J.H.; Lal, H.; Oostvogels, L.; Pauksens, K.; Ravault, S.; et al. Persistence of immune response to an adjuvanted varicella-zoster virus subunit vaccine for up to year nine in older adults. Hum. Vaccin. Immunother. 2018, 14, 1370–1377. [Google Scholar] [CrossRef]
- Izurieta, H.S.; Wu, X.; Forshee, R.; Lu, Y.; Sung, H.M.; Agger, P.E.; Chillarige, Y.; Link-Gelles, R.; Lufkin, B.; Wernecke, M.; et al. Recombinant Zoster Vaccine (Shingrix): Real-World Effectiveness in the First 2 Years Post-Licensure. Clin. Infect. Dis. 2021, 73, 941–948. [Google Scholar] [CrossRef]
- Chlibek, R.; Bayas, J.M.; Collins, H.; de la Pinta, M.L.; Ledent, E.; Mols, J.F.; Heineman, T.C. Safety and immunogenicity of an AS01-adjuvanted varicella-zoster virus subunit candidate vaccine against herpes zoster in adults >=50 years of age. J. Infect. Dis. 2013, 208, 1953–1961. [Google Scholar] [CrossRef]
- Hesse, E.M.; Shimabukuro, T.T.; Su, J.R.; Hibbs, B.F.; Dooling, K.L.; Goud, R.; Lewis, P.; Ng, C.S.; Cano, M.V. Postlicensure Safety Surveillance of Recombinant Zoster Vaccine (Shingrix)—United States, October 2017–June 2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 91–94. [Google Scholar] [CrossRef]
- Schmidt, N.; Maitland, H. Acute Immune Thrombocytopenia following administration of Shingrix recombinant zoster vaccine. Am. J. Hematol. 2021, 96, E136–E137. [Google Scholar] [CrossRef]
- Ishihara, R.; Watanabe, R.; Shiomi, M.; Katsushima, M.; Fukumoto, K.; Yamada, S.; Okano, T.; Hashimoto, M. Exploring the Link between Varicella-Zoster Virus, Autoimmune Diseases, and the Role of Recombinant Zoster Vaccine. Biomolecules 2024, 14, 739. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P. Varicella zoster virus vaccine in patients with haematological malignancies. Lancet Infect. Dis. 2019, 19, 921–922. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.I.; Deaner, J.D.; Srivastava, S.K.; Lowder, C.Y. Acute retinal necrosis following recombinant subunit varicella-zoster virus vaccine. Am. J. Ophthalmol. Case Rep. 2020, 20, 100962. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K.C.; Wicke, L.; Perkovic, M.; Beissert, T.; Haas, H.; et al. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol. Ther. 2018, 26, 446–455. [Google Scholar] [CrossRef]
- Welsh, M.D.; Harper, D.R.; Garcia-Valcarcel, M.; Fowler, W.J.; Aitken, C.; Jeffries, D.J.; Layton, G.T. Ability of yeast Ty-VLPs (virus-like particles) containing varicella-zoster virus (VZV)gE and assembly protein fragments to induce in vitro proliferation of human lymphocytes from VZV immune patients. J. Med. Virol. 1999, 59, 78–83. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Phase 2 Study to Evaluate JCXH-105, an srRNA-Based Herpes Zoster Vaccine. Available online: https://clinicaltrials.gov/study/NCT06581575?cond=JCXH-105&rank=1 (accessed on 4 December 2024).
- Eberhardson, M.; Hall, S.; Papp, K.A.; Sterling, T.M.; Stek, J.E.; Pang, L.; Zhao, Y.; Parrino, J.; Popmihajlov, Z. Safety and Immunogenicity of Inactivated Varicella-Zoster Virus Vaccine in Adults With Autoimmune Disease: A Phase 2, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clin. Infect. Dis. 2017, 65, 1174–1182. [Google Scholar] [CrossRef]
- Parrino, J.; McNeil, S.A.; Lawrence, S.J.; Kimby, E.; Pagnoni, M.F.; Stek, J.E.; Zhao, Y.; Chan, I.S.; Kaplan, S.S. Safety and immunogenicity of inactivated varicella-zoster virus vaccine in adults with hematologic malignancies receiving treatment with anti-CD20 monoclonal antibodies. Vaccine 2017, 35, 1764–1769. [Google Scholar] [CrossRef]
- Mullane, K.M.; Morrison, V.A.; Camacho, L.H.; Arvin, A.; McNeil, S.A.; Durrand, J.; Campbell, B.; Su, S.C.; Chan, I.S.F.; Parrino, J.; et al. Safety and efficacy of inactivated varicella zoster virus vaccine in immunocompromised patients with malignancies: A two-arm, randomised, double-blind, phase 3 trial. Lancet Infect. Dis. 2019, 19, 1001–1012. [Google Scholar] [CrossRef]
- Beals, C.R.; Railkar, R.A.; Schaeffer, A.K.; Levin, Y.; Kochba, E.; Meyer, B.K.; Evans, R.K.; Sheldon, E.A.; Lasseter, K.; Lang, N.; et al. Immune response and reactogenicity of intradermal administration versus subcutaneous administration of varicella-zoster virus vaccine: An exploratory, randomised, partly blinded trial. Lancet Infect. Dis. 2016, 16, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Nakamura-Nishimura, Y.; Shinkuma, S.; Miyagawa, F.; Haredy, A.; Gomi, Y.; Yamanishi, K.; Asada, H. Immunogenicity of varicella-zoster virus vaccine by different routes of administration: Comparable vaccination efficacy of one-fifth dose intradermal vaccination to conventional subcutaneous vaccination. J. Dermatol. Sci. 2022, 106, 86–92. [Google Scholar] [CrossRef]
- Yoshii, H.; Somboonthum, P.; Takahashi, M.; Yamanishi, K.; Mori, Y. Cloning of full length genome of varicella-zoster virus vaccine strain into a bacterial artificial chromosome and reconstitution of infectious virus. Vaccine 2007, 25, 5006–5012. [Google Scholar] [CrossRef]
- Gershon, A.A.; Brooks, D.; Stevenson, D.D.; Chin, W.K.; Oldstone, M.B.A.; Gershon, M.D. High Constitutive Interleukin 10 Level Interferes With the Immune Response to Varicella-Zoster Virus in Elderly Recipients of Live Attenuated Zoster Vaccine. J. Infect. Dis. 2019, 219, 1338–1346. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.; Cui, L.; Zhang, Y.; Chen, T.; Xue, W.; Wang, H.; Liu, H.; Zhang, Y.; Chen, L.; et al. Immunogenicity and cellular response of a herpes zoster virus gEgI fusion protein adjuvanted with CpG-emulsion in mice. J. Nanobiotechnol. 2025, 23, 395. [Google Scholar] [CrossRef]
- Luan, N.; Cao, H.; Wang, Y.; Lin, K.; Liu, C. LNP-CpG ODN-adjuvanted varicella-zoster virus glycoprotein E induced comparable levels of immunity with Shingrix™ in VZV-primed mice. Virol. Sin. 2022, 37, 731–739. [Google Scholar] [CrossRef]
- Chen, T.; Sun, J.; Zhang, S.; Li, T.; Liu, L.; Xue, W.; Zhou, L.; Liang, S.; Yu, Z.; Zheng, Q.; et al. Truncated glycoprotein E of varicella-zoster virus is an ideal immunogen for Escherichia coli-based vaccine design. Sci. China Life Sci. 2023, 66, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, H.; Yuan, Y.; Wang, R.; Shi, T.; Li, Z.; Cui, Q.; Fu, S.; Nie, K.; Li, F.; et al. Truncated VZV gE Induces High-Titer Neutralizing Antibodies in Mice. Vaccines 2024, 12, 1139. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Luan, N.; Lin, K.; Liu, C. Effects of Varicella-Zoster Virus Glycoprotein E Carboxyl-Terminal Mutation on mRNA Vaccine Efficacy. Vaccines 2021, 9, 1440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, H.; Lin, K.; Hu, J.; Luan, N.; Liu, C. Evaluation of the Immunological Efficacy of an LNP-mRNA Vaccine Prepared from Varicella Zoster Virus Glycoprotein gE with a Double-Mutated Carboxyl Terminus in Different Untranslated Regions in Mice. Vaccines 2023, 11, 1475. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.; Zhao, T.; Cai, T.; Bu, L.; Di, Z.; Zhang, Y.; Yang, C.; Yang, Y.; Lin, A. Rational optimization of glycoprotein E (gE)-encoding mRNA for improved Varicella-zoster virus mRNA vaccine development. Emerg. Microbes Infect. 2024, 13, 2392661. [Google Scholar] [CrossRef] [PubMed]
- Wui, S.R.; Ko, A.; Ryu, J.I.; Sim, E.; Lim, S.J.; Park, S.A.; Kim, K.S.; Kim, H.; Youn, H.; Lee, N.G. The Effect of a TLR4 Agonist/Cationic Liposome Adjuvant on Varicella-Zoster Virus Glycoprotein E Vaccine Efficacy: Antigen Presentation, Uptake, and Delivery to Lymph Nodes. Pharmaceutics 2021, 13, 390. [Google Scholar] [CrossRef]
- Luan, N.; Cao, H.; Wang, Y.; Lin, K.; Liu, C. Ionizable Lipid Nanoparticles Enhanced the Synergistic Adjuvant Effect of CpG ODNs and QS21 in a Varicella Zoster Virus Glycoprotein E Subunit Vaccine. Pharmaceutics 2022, 14, 973. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, M.; Chun, J.; Kim, S.; Yoon, D.; Lee, H.; Bang, H.; Lee, H.J.; Park, H.; Kim, Y.B. Baculovirus Vector-Based Varicella-Zoster Virus Vaccine as a Promising Alternative with Enhanced Safety and Therapeutic Functions. Vaccines 2024, 12, 333. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Valcarcel, M.; Fowler, W.J.; Harper, D.R.; Jeffries, D.J.; Layton, G.T. Induction of neutralizing antibody and T-cell responses to varicella-zoster virus (VZV) using Ty-virus-like particles carrying fragments of glycoprotein E (gE). Vaccine 1997, 15, 709–719. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, J.; Chen, C.; Ye, X.; Xu, L.; Wang, W.; Zhao, Q.; Zhu, H.; Cheng, T.; Xia, N. A highly conserved epitope-vaccine candidate against varicella-zoster virus induces neutralizing antibodies in mice. Vaccine 2016, 34, 1589–1596. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Xue, W.; Zeng, Y.; Liu, L.; Cui, L.; Liu, H.; Zhang, Y.; Chen, L.; Nie, M.; et al. Glycoprotein E-Displaying Nanoparticles Induce Robust Neutralizing Antibodies and T-Cell Response against Varicella Zoster Virus. Int. J. Mol. Sci. 2024, 25, 9872. [Google Scholar] [CrossRef]
- Levin, M.J.; Dahl, K.M.; Weinberg, A.; Giller, R.; Patel, A.; Krause, P.R. Development of resistance to acyclovir during chronic infection with the Oka vaccine strain of varicella-zoster virus, in an immunosuppressed child. J. Infect. Dis. 2003, 188, 954–959. [Google Scholar] [CrossRef]
- Levy, O.; Orange, J.S.; Hibberd, P.; Steinberg, S.; LaRussa, P.; Weinberg, A.; Wilson, S.B.; Shaulov, A.; Fleisher, G.; Geha, R.S.; et al. Disseminated varicella infection due to the vaccine strain of varicella-zoster virus, in a patient with a novel deficiency in natural killer T cells. J. Infect. Dis. 2003, 188, 948–953. [Google Scholar] [CrossRef]
- Leung, J.; Siegel, S.; Jones, J.F.; Schulte, C.; Blog, D.; Schmid, D.S.; Bialek, S.R.; Marin, M. Fatal varicella due to the vaccine-strain varicella-zoster virus. Hum. Vaccin. Immunother. 2014, 10, 146–149. [Google Scholar] [CrossRef]
- Bhalla, P.; Forrest, G.N.; Gershon, M.; Zhou, Y.; Chen, J.; LaRussa, P.; Steinberg, S.; Gershon, A.A. Disseminated, persistent, and fatal infection due to the vaccine strain of varicella-zoster virus in an adult following stem cell transplantation. Clin. Infect. Dis. 2015, 60, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Stadtmauer, E.A.; Sullivan, K.M.; Marty, F.M.; Dadwal, S.S.; Papanicolaou, G.A.; Shea, T.C.; Mossad, S.B.; Andreadis, C.; Young, J.A.; Buadi, F.K.; et al. A phase 1/2 study of an adjuvanted varicella-zoster virus subunit vaccine in autologous hematopoietic cell transplant recipients. Blood 2014, 124, 2921–2929. [Google Scholar] [CrossRef] [PubMed]
- Atiyat, R.; Elias, S.; Kiwan, C.; Shaaban, H.S.; Slim, J. Varicella-Zoster Virus Reactivation in AIDS Patient After Pfizer-BioNTech COVID-19 Vaccine. Cureus 2021, 13, e20145. [Google Scholar] [CrossRef]
- Santovito, L.S.; Pinna, G. A case of reactivation of varicella-zoster virus after BNT162b2 vaccine second dose? Inflamm. Res. 2021, 70, 935–937. [Google Scholar] [CrossRef]
- Maldonado, M.D.; Romero-Aibar, J. The Pfizer-BNT162b2 mRNA-based vaccine against SARS-CoV-2 may be responsible for awakening the latency of herpes varicella-zoster virus. Brain Behav. Immun. Health 2021, 18, 100381. [Google Scholar] [CrossRef]
- Chong, C.H.; Liu, C.E.; Leong, Y.Y.; Liao, S.Y.; Lai, H.W.; Lee, Y.L. Seroprevalence of varicella-zoster virus antibody and immunogenicity of live attenuated varicella vaccine in healthcare workers in Taiwan. J. Microbiol. Immunol. Infect. 2023, 56, 274–281. [Google Scholar] [CrossRef]
- Irwin, M.R.; Levin, M.J.; Laudenslager, M.L.; Olmstead, R.; Lucko, A.; Lang, N.; Carrillo, C.; Stanley, H.A.; Caulfield, M.J.; Weinberg, A.; et al. Varicella zoster virus-specific immune responses to a herpes zoster vaccine in elderly recipients with major depression and the impact of antidepressant medications. Clin. Infect. Dis. 2013, 56, 1085–1093. [Google Scholar] [CrossRef]
- Perciani, C.T.; Sekhon, M.; Hundal, S.; Farah, B.; Ostrowski, M.A.; Anzala, A.O.; McKinnon, L.R.; Jaoko, W.; MacDonald, K.S. Live Attenuated Zoster Vaccine Boosts Varicella Zoster Virus (VZV)-Specific Humoral Responses Systemically and at the Cervicovaginal Mucosa of Kenyan VZV-Seropositive Women. J. Infect. Dis. 2018, 218, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Pahar, B.; Gray, W.; Fahlberg, M.; Grasperge, B.; Hunter, M.; Das, A.; Mabee, C.; Aye, P.P.; Schiro, F.; Hensley, K.; et al. Recombinant Simian Varicella Virus-Simian Immunodeficiency Virus Vaccine Induces T and B Cell Functions and Provides Partial Protection against Repeated Mucosal SIV Challenges in Rhesus Macaques. Viruses 2022, 14, 2819. [Google Scholar] [CrossRef]
- Lowe, R.S.; Keller, P.M.; Keech, B.J.; Davison, A.J.; Whang, Y.; Morgan, A.J.; Kieff, E.; Ellis, R.W. Varicella-zoster virus as a live vector for the expression of foreign genes. Proc. Natl. Acad. Sci. USA 1987, 84, 3896–3900. [Google Scholar] [CrossRef]
Vaccine Type | Development Progress | Manufacturer/Country | Vaccine Name | Main Vaccine Components |
---|---|---|---|---|
Monovalent vaccine | Approved | Biken/Japan [18] | OkaVax | Oka strain |
Merck/Germany [19,20] | Varivax | Oka strain | ||
GlaxoSmithKline (GSK)/UK [21] | Varilrix | Oka strain | ||
BCHT/China [22] | \ | Oka strain | ||
SINOVAC/China [23] | \ | Oka strain | ||
Shanghai Institute of Biological Products Co., Ltd./China [24] | \ | Oka strain | ||
GC Biopharma/Republic of Korea [25] | Suduvax | MAV/06 strain | ||
GC Biopharma/Republic of Korea [26] | BARYCELA | MAV/06 strain | ||
Phase II | Xiamen University (China)/Rutgers New Jersey Medical School (US) [27] | VZV-7D | Oka strain | |
IND | BOAOVAX/China [28] | \ | Oka strain | |
Monovalent vaccine | IND | Zhejiang Toyouvax Biopharming/China [29] | \ | Oka strain |
Combination vaccine | Approved | Merck/Germany [30] | ProQuad | Edmonston strain (measles) Jeryl Lynn™ strain (mumps) Wistar RA 27/3 strain (rubella) Oka/Merck strain (varicella) |
GlaxoSmithKline (GSK)/UK [30] | Priorix-Tetra | Schwarz strain (measles) RIT 4385 strain (a Jeryl Lynn™ derivative for mumps) Wistar RA 27/3 strain (rubella) Oka/RIT strain (varicella) |
Development Progress | Manufacturer/Country | Vaccine Name | Technical Approach | Main Vaccine Components | Adjuvant |
---|---|---|---|---|---|
Approved | Merck/Germany | Zostavax | ZVL | Oka strain | \ |
SK Bioscience/Republic of Korea [31] | SkyZoster | ZVL | Oka strain | \ | |
BCHT/China [32] | Canvar | ZVL | Oka strain | \ | |
GlaxoSmithKline (GSK) /UK | Shingrix | RZV | gE/CHO | AS01B | |
Phase III | Beijing Luzhu Biotechnology Co., Ltd./China [33] | LZ901 | RZV | gE-Fc fusion protein/CHO | Alum |
Recbio/China [34] | REC610 | RZV | gE/CHO | BFA01 | |
Maxvax/China [35] | \ | RZV | gE/CHO | combined adjuvant MA105 | |
Phase III | Merck/Germany [36] | V212 | inactivated vaccine | Inactivated VZV | |
Phase II | Immorna/China [37] | JCXH-105 | mRNA vaccine | srRNA | the adjuvant effect of srRNA itself |
Phase I/II | Dynavax/US [48] | z-1018 | RZV | gE/CHO | CpG 1018 |
Moderna/US [49] | mRNA-1468 | mRNA vaccine | gE mRNA-LNP | LNP | |
Pfizer (US)/BioNTech (Germany) [50,51] | VZV modRNA | mRNA vaccine | gE mRNA-LNP | LNP | |
Phase I | Genevax/China [52] | GNW002 | RZV | gE-Fc fusion protein/CHO | Alum+CpG |
Patronus Biotech/China [28] | LYB004 | RZV | gE-VLP/CHO | A01 | |
Grand Theravac Life Science Nanjing Co. Ltd./China [28] | \ | RZV | gE/CHO | TVA01 | |
EuBiologics/Republic of Korea [53] | EuHZV | RZV | gE | EcML+CoPoP | |
Innorna/China [54] | IN001 | mRNA vaccine | gE mRNA-LNP | LNP | |
CanSinoBIO (China)/Vaccitech (UK) [55] | CS-2032 | adenovirus vector vaccine | ChOx1 replication-deficient chimpanzee adenovirus vector encoding VZV-gE | ||
IND | Gentize Biopharma (Nanjing)/China [28,56] | \ | RZV | gE/CHO | |
Rhegen/China [57] | Freeze-dried shingles mRNA vaccine | mRNA vaccine | gE mRNA-LNP | LNP | |
CSPC Pharmaceutical Group Limited/China [28] | SYS6017 | mRNA vaccine | gE mRNA-LNP | LNP | |
SINOVAC/China [58] | Freeze-dried shingles mRNA vaccine | mRNA vaccine | gE mRNA-LNP | LNP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Cui, L.; Zhang, S.; Wang, H.; Xue, W.; Li, H.; Zhang, Y.; Chen, L.; Gu, Y.; Li, T.; et al. Research Progress on Varicella-Zoster Virus Vaccines. Vaccines 2025, 13, 730. https://doi.org/10.3390/vaccines13070730
Liu H, Cui L, Zhang S, Wang H, Xue W, Li H, Zhang Y, Chen L, Gu Y, Li T, et al. Research Progress on Varicella-Zoster Virus Vaccines. Vaccines. 2025; 13(7):730. https://doi.org/10.3390/vaccines13070730
Chicago/Turabian StyleLiu, Hongjing, Lingyan Cui, Sibo Zhang, Hong Wang, Wenhui Xue, Hai Li, Yuyun Zhang, Lin Chen, Ying Gu, Tingting Li, and et al. 2025. "Research Progress on Varicella-Zoster Virus Vaccines" Vaccines 13, no. 7: 730. https://doi.org/10.3390/vaccines13070730
APA StyleLiu, H., Cui, L., Zhang, S., Wang, H., Xue, W., Li, H., Zhang, Y., Chen, L., Gu, Y., Li, T., Xia, N., & Li, S. (2025). Research Progress on Varicella-Zoster Virus Vaccines. Vaccines, 13(7), 730. https://doi.org/10.3390/vaccines13070730