Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (580)

Search Parameters:
Keywords = Fucoidan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4967 KiB  
Article
Therapeutic Potential of Kelp Fucoidan in Rebiosis of Gut Microflora and Immune Homeostasis in Cyclophosphamide-Induced Immunosuppressed Mice
by Yaqing Liu, Ruining Kang, Yanfei Zhao, Heng Zhang, Qingfeng Rong, Shaoxuan Yu, Yaoguang Chang, Zhengpeng Wei and Lanlan Zhu
Foods 2025, 14(15), 2662; https://doi.org/10.3390/foods14152662 - 29 Jul 2025
Viewed by 211
Abstract
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse [...] Read more.
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse model was established using cyclophosphamide, followed by administration of various kelp fucoidan doses (low-dose fucoidan: 50 mg/(kg·bw)/d, medium-dose fucoidan: 100 mg/(kg·bw)/d, and high-dose fucoidan: 150 mg/(kg·bw)/d) to the experimental groups. Changes in the gut microbiota structure were analyzed using 16S rRNA high-throughput sequencing, alongside simultaneous measurement of serum immune indicators and levels of short-chain fatty acids (SCFAs). Results indicate that kelp fucoidan significantly improved the thymus and spleen indices in immunosuppressed mice (p < 0.05) and elevated serum levels of IgM, IgG and IL-4. Post-kelp fucoidan intervention, there was significant alteration in microbiota ecosystem restructuring, such as proliferation in probiotics, including Lactobacillus and Bifidobacterium, while opportunistic pathogens, such as Enterococcus and Escherichia coli, decreased. Furthermore, the levels of acetic, propionic, and butyric acids in the colonic contents of the kelp fucoidan group significantly improved (p < 0.01). This research demonstrates that kelp fucoidan enhances immune function in immunosuppressed mice by modulating gut microbiota balance and promoting short-chain fatty acid production. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

24 pages, 2082 KiB  
Review
Exploring the Pharmacological Landscape of Undaria pinnatifida: Insights into Neuroprotective Actions and Bioactive Constituents
by Helena Machado, Jorge Pereira Machado, Christian Alves, Cristina Soares, Clara Grosso, Jorge Magalhães Rodrigues and Maria Begoña Criado
Nutraceuticals 2025, 5(3), 20; https://doi.org/10.3390/nutraceuticals5030020 - 24 Jul 2025
Viewed by 301
Abstract
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional [...] Read more.
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional diet and is generally regarded as a “healthy longevity food.” Consequently, it represents one of the most promising natural sources of biomedicinal and bioactive products. This review aims to synthesize current scientific evidence on the pharmacologically active compounds of U. pinnatifida, emphasizing their mechanisms of action and therapeutic potential in neurodegenerative and chronic diseases. This narrative review is based on a comprehensive literature search of peer-reviewed articles from scientific databases, focusing on studies addressing the pharmacological properties of U. pinnatifida and its major bioactive constituents. Recent research highlights that compounds such as fucoxanthin (a carotenoid), fucosterol (a sterol), fucoidan (a polysaccharide), alginate, and dietary fiber found in U. pinnatifida possess significant potential for developing treatments for conditions including goitre, urinary diseases, scrofula, dropsy, stomach ailments, and hemorrhoids. Moreover, these compounds exhibit remarkable pharmacological properties, including immunomodulation, antitumor, antiviral, antioxidant, antidiabetic, anti-inflammatory, anticoagulant, antithrombotic, and antibacterial activities, all with low toxicity and minimal side effects. Additionally, U. pinnatifida shows promise in the treatment or prevention of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, as well as neuropsychiatric conditions like depression, supported by its antioxidant effects against oxidative stress and neuroprotective activities. Numerous in vitro and in vivo studies have confirmed that U. pinnatifida polysaccharides (UPPs), particularly fucoidans, exhibit significant biological activities. Thus, accumulating evidence positions UPPs as promising therapeutic agents for a variety of diseases. Full article
Show Figures

Figure 1

17 pages, 1701 KiB  
Article
Novel Synbiotic Yogurt Formulation Supplemented with Fucoidan from Phaeophyceae Algae to Promote Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG
by Neus Ricós-Muñoz, Sergi Maicas, Miguel Tortajada-Girbés and Maria Consuelo Pina-Pérez
Foods 2025, 14(15), 2589; https://doi.org/10.3390/foods14152589 - 24 Jul 2025
Viewed by 308
Abstract
Allergy is recognized as a public health problem with pandemic consequences and is estimated to affect more than 50% of Europeans in 2025. Prebiotic and probiotic food implementation has recently emerged as an alternative strategy to promote immunomodulatory beneficial effects in allergic patients. [...] Read more.
Allergy is recognized as a public health problem with pandemic consequences and is estimated to affect more than 50% of Europeans in 2025. Prebiotic and probiotic food implementation has recently emerged as an alternative strategy to promote immunomodulatory beneficial effects in allergic patients. Among prebiotics, Phaeophyceae algae represent a niche of research with enormous possibilities. The present study aims to evaluate the in vitro prebiotic potential of fucoidan from Fucus vesiculosus, Macrocystis pyrifera, and Undaria pinnatifida algae, to promote the growth of Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG as probiotic bacteria added to the formulation of a novel yogurt. Concentrations of fucoidan of 100 and 2000 µg/mL were added to reference growth media and kinetic growth curves for both microorganisms were fitted to the Gompertz equation. Optimized prebiotic conditions for fucoidan were selected to validate in vitro results by means of the formulation of a novel fermented prebiotic yogurt. Conventional yogurts (including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus) were formulated with the different fucoidans, and production batches were prepared for L. rhamnosus and L. reuteri. Increased L. reuteri and L. rhamnosus populations in 1.7–2.2 log10 cycles just after 48 h of in vitro exposure were detected in fucoidan supplemented yogurt. M. pyrifera and U. pinnatifida fucoidans were the most effective ones (500 µg/mL) promoting probiotic growth in new formulated yogurts (during the complete shelf life of products, 28 days). Diet supplementation with fucoidan can be proposed as a strategy to modulate beneficial microbiota against allergy. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

21 pages, 835 KiB  
Review
Nutritional Modulation of Impaired Blood-Brain Barrier Integrity and Function in Major Depression
by Miroslav Adzic, Iva Lukic, Milos Mitic, Ester Francija Zerajic, Emilija Glavonic, Milan Jovanovic and Sanja Ivkovic
Int. J. Mol. Sci. 2025, 26(14), 6917; https://doi.org/10.3390/ijms26146917 - 18 Jul 2025
Viewed by 285
Abstract
Major Depressive Disorder (MDD) is increasingly linked to disruptions in blood-brain barrier (BBB) integrity, contributing to neuroinflammation and impaired brain homeostasis. While traditional antidepressant therapies often fail to achieve full remission, growing evidence suggests that specific dietary compounds may offer novel avenues for [...] Read more.
Major Depressive Disorder (MDD) is increasingly linked to disruptions in blood-brain barrier (BBB) integrity, contributing to neuroinflammation and impaired brain homeostasis. While traditional antidepressant therapies often fail to achieve full remission, growing evidence suggests that specific dietary compounds may offer novel avenues for restoring BBB function and improving mental health outcomes. This review explores the potential of selected nutrients—omega-3 fatty acids, vitamin D, sulforaphane, fucoidan, and urolithins—to modulate BBB integrity through anti-inflammatory, antioxidant, and transporter-regulatory mechanisms. These compounds act by reinforcing tight junctions, reducing matrix metalloproteinase activity, and modulating efflux transporters such as P-glycoprotein. Although current evidence is largely preclinical, the mechanistic insights provided in this review support the rationale for integrating nutritional strategies into the management of MDD. Future clinical studies are needed to validate these findings and develop biomarker-driven approaches for targeting the BBB in nutritional interventions for psychiatric disorders. Full article
(This article belongs to the Special Issue The Blood–Brain Barrier and Neuroprotection)
Show Figures

Figure 1

14 pages, 2043 KiB  
Article
Synergistic Efficacy of WST11-VTP and P-Selectin-Targeted Nanotherapy in a Preclinical Prostate Cancer Model
by Lucas Nogueira, Ricardo Alvim, Hanan Baker, Karan Nagar, Jasmine Thomas, Laura Alvim, Kwanghee Kim, Daniel A. Heller, Augusto Reis, Avigdor Scherz and Jonathan Coleman
Cancers 2025, 17(14), 2361; https://doi.org/10.3390/cancers17142361 - 16 Jul 2025
Viewed by 273
Abstract
Objective: Radical therapies are associated with significant morbidity in patients with localized prostate cancer (PCa). While advances in nuclear magnetic resonance techniques have enabled the development of focal ablation procedures that can selectively destroy tumors, preserve the gland and surrounding structures, and minimize [...] Read more.
Objective: Radical therapies are associated with significant morbidity in patients with localized prostate cancer (PCa). While advances in nuclear magnetic resonance techniques have enabled the development of focal ablation procedures that can selectively destroy tumors, preserve the gland and surrounding structures, and minimize side effects, existing vascular-targeted photodynamic therapy (VTP) and nanodrug therapies often face limitations, such as recurrence and insufficient drug concentration at the tumor site. This study investigated a novel approach that combines VTP with systemic treatment using drug-loaded nanoparticles in a murine model, demonstrating substantial advancements beyond current monotherapies. Methods: SCID (severe combined immunodeficiency) mice were engrafted with androgen-sensitive prostate tumor cells (LNCaP-AR) and treated with a combination of VTP and two different drugs linked to fucoidan nanoparticles (Enzalutamide and Paclitaxel). Experiments were performed using different cohorts: the evaluation of oncological effect, the administration time and concentration of systemic therapy, a comparison of efficacy between VTP and radiotherapy, and the induction of the abscopal effect in untreated synchronous tumors. Results: The groups that received combination therapy showed better tumor control. After eight weeks, the recurrence-free survival rates were 87.5%, 62.5%, and 50% in the VTP + N-PAC, VTP + N-ENZ, and VTP monotherapy groups, respectively (p < 0.05). There was a significant difference in the intra-tumoral concentration of nanodrugs between the groups with combined treatment and monotherapy. After two weeks, the monotherapy groups showed almost total elimination of the drugs, whereas in the combined therapy groups, this concentration remained high, starting to decrease after three weeks (p < 0.05). Treatment with nanodrugs associated with VTP showed superior oncological benefits compared to radiotherapy alone or in combination with other therapies. The abscopal effect on synchronous tumors was not demonstrated with VTP alone or in combination with nanodrugs. Conclusions: Combining vascular photodynamic therapy with nanodrugs was highly effective in treating a prostate tumor model, leading to increased survival and a reduced risk of tumor recurrence. This approach significantly advances beyond existing VTP and nanodrug therapies by improving tumor control, ensuring sustained intra-tumoral drug concentration, and yielding superior oncological outcomes. Our results suggest that this therapy is a potential treatment option for prostate tumors treated with VTP in future clinical trials. Full article
(This article belongs to the Special Issue Advancements in Molecular Research of Prostate Cancer)
Show Figures

Figure 1

15 pages, 2061 KiB  
Article
Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage
by Ashley Harratt, Wenyuan Wu, Peyton Strube, Joseph Ceravolo, David Beattie, Tara Pukala, Marta Krasowska and Anton Blencowe
Foods 2025, 14(14), 2438; https://doi.org/10.3390/foods14142438 - 10 Jul 2025
Viewed by 376
Abstract
Apple pomace, a by-product from the production of concentrated juice, is a major contributor to global food waste. Despite its beneficial nutritional profile, apple pomace is predominantly disposed of in landfills. Rapid fermentation and spoilage caused by microorganisms are compounding factors in this [...] Read more.
Apple pomace, a by-product from the production of concentrated juice, is a major contributor to global food waste. Despite its beneficial nutritional profile, apple pomace is predominantly disposed of in landfills. Rapid fermentation and spoilage caused by microorganisms are compounding factors in this demise, despite significant research into upcycling strategies. Thus, there is an unmet need for economical approaches that allow for the preservation of pomace during storage and transportation to centralized processing facilities from regional hubs. To address this challenge, we investigated the potential of different preservatives for preventing microbial growth and the spoilage of apple pomace, including antimicrobials (natamycin and iodine), polysaccharides (chitosan and fucoidan), and acetic acid. Spread plates for total microbial and fungal counts were employed to assess the effectiveness of the treatments. High concentrations (10,000 ppm) of chitosan were effective at reducing the microbial load and inhibiting growth, and in combination with antimicrobials, eliminated all microbes below detectable levels. Nevertheless, acetic acid at an equivalent concentration to commercial vinegar displayed the highest economic potential. Apple pomace submerged in 0.8 M acetic acid (3 kg pomace per liter) resulted in a five-log reduction in the microbial colony-forming units (CFUs) out to 14 days and prevented fermentation and ethanol production. These results provide a foundation for the short-term storage and preservation of apple pomace that could contribute to its upcycling. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

46 pages, 3719 KiB  
Article
Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial
by Gissel Garcia, Josanne Soto, Carmen Valenzuela, Mirka Bernal, Jesús Barreto, María de la C. Luzardo, Raminta Kazlauskaite, Neil Waslidge, Charles Bavington and Raúl de Jesús Cano
Microorganisms 2025, 13(7), 1545; https://doi.org/10.3390/microorganisms13071545 - 30 Jun 2025
Viewed by 633
Abstract
This randomized, double-blind, placebo-controlled, three-arm clinical trial evaluated the effects of a proprietary bioactive fucoidan-rich extract derived from Saccharina latissima (SLE-F) on gut microbial composition and function in healthy adults. The objective of the study was to assess the potential of SLE-F to [...] Read more.
This randomized, double-blind, placebo-controlled, three-arm clinical trial evaluated the effects of a proprietary bioactive fucoidan-rich extract derived from Saccharina latissima (SLE-F) on gut microbial composition and function in healthy adults. The objective of the study was to assess the potential of SLE-F to beneficially modulate the gut microbiome, with this paper specifically reporting on microbial diversity, taxonomic shifts, and functional pathway outcomes. Ninety-one participants received either a low dose (125 mg), high dose (500 mg), or placebo twice daily for four weeks. The primary endpoint was the microbiome composition assessed via 16S rRNA sequencing (V3–V4 region), with secondary outcomes including surveys, adverse event monitoring, and clinical evaluations. High-dose supplementation resulted in dose-dependent improvements in the microbial diversity; increased abundance of beneficial taxa, including Bifidobacterium, Faecalibacterium, and Lachnospiraceae; and reductions in inflammation-associated taxa, such as Enterobacteriaceae and Pseudomonadota. A functional pathway analysis showed enhancement in short-chain fatty acid biosynthesis and carbohydrate metabolism. The low-dose group showed modest benefits, primarily increasing Bifidobacterium, with limited functional changes. In vitro colonic simulations further demonstrated a dose-dependent increase in short-chain fatty acids and postbiotic metabolite production following SLE-F exposure. SLE-F was well tolerated, with only mild, nonspecific adverse events reported. These findings support the potential of SLE-F as a safe and effective microbiome-modulating agent, warranting further study of the long-term use and synergy with dietary interventions. Full article
Show Figures

Figure 1

16 pages, 905 KiB  
Review
From Sea to Relief: The Therapeutic Potential of Marine Algal Antioxidants in Pain Alleviation
by Mariola Belda-Antolí, Francisco A. Ros Bernal and Juan Vicente-Mampel
Mar. Drugs 2025, 23(7), 270; https://doi.org/10.3390/md23070270 - 27 Jun 2025
Viewed by 390
Abstract
Chronic pain affects approximately 20% of the global adult population, posing significant healthcare and economic challenges. Effective management requires addressing both biological and psychosocial factors, with emerging therapies such as antioxidants and marine algae offering promising new treatment avenues. Marine algae synthesize bioactive [...] Read more.
Chronic pain affects approximately 20% of the global adult population, posing significant healthcare and economic challenges. Effective management requires addressing both biological and psychosocial factors, with emerging therapies such as antioxidants and marine algae offering promising new treatment avenues. Marine algae synthesize bioactive compounds, including polyphenols, carotenoids, and sulfated polysaccharides, which modulate oxidative stress, inflammation, and neuroimmune signaling pathways implicated in pain. Both preclinical and clinical studies support their potential application in treating inflammatory, neuropathic, muscular, and chronic pain conditions. Notable constituents include polyphenols, carotenoids (such as fucoxanthin), vitamins, minerals, and sulfated polysaccharides. These compounds modulate oxidative stress and inflammatory pathways, particularly by reducing reactive oxygen species (ROS) and downregulating cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Brown and red algae produce phlorotannins and fucoidans that alleviate pain and inflammation in preclinical models. Carotenoids like fucoxanthin demonstrate neuroprotective effects by influencing autophagy and inflammatory gene expression. Algal-derived vitamins (C and E) and minerals (magnesium, selenium, and zinc) contribute to immune regulation and pain modulation. Additionally, sulfated polysaccharides suppress microglial activation in the central nervous system (CNS). Marine algae represent a promising natural source of bioactive compounds with potential applications in pain management. Although current evidence, primarily derived from preclinical studies, indicates beneficial effects in various pain models, further research is necessary to confirm their efficacy, safety, and mechanisms in human populations. These findings advocate for the continued exploration of marine algae as complementary agents in future therapeutic strategies. Full article
Show Figures

Figure 1

29 pages, 2166 KiB  
Article
Characterizing Gene-Level Adaptations in the Gut Microbiome During Viral Infections: The Role of a Fucoidan-Rich Extract
by Gissel García, Josanne Soto, Carmen Valenzuela and Raul De Jesús Cano
Genes 2025, 16(7), 740; https://doi.org/10.3390/genes16070740 - 26 Jun 2025
Viewed by 522
Abstract
Background/Objectives: This study aimed to examine the effects of a Fucoidan-rich extract from Saccharina latissima (SLE-F) on differential gut microbiota composition, intestinal inflammation status, and microbial functional gene expression in participants infected with Dengue or Oropouche virus at the Hermanos Ameijeiras Hospital in [...] Read more.
Background/Objectives: This study aimed to examine the effects of a Fucoidan-rich extract from Saccharina latissima (SLE-F) on differential gut microbiota composition, intestinal inflammation status, and microbial functional gene expression in participants infected with Dengue or Oropouche virus at the Hermanos Ameijeiras Hospital in Havana, Cuba. Methods: Fecal samples were collected at baseline, day 28, and day 90 from 90 healthy adults, some of whom contracted the virus during the study period. Functional gene analysis was conducted using two approaches—the Kruskal–Wallis H test and linear discriminant analysis effect size—applied to ortholog-level data normalized by read count and gene copy number. Results: Infected participants exhibited significantly lower Lachnospiraceae-to-Enterobacteriaceae (LE) ratios, indicating increased intestinal inflammation. High-dose SLE-F treatment led to a significant reduction in the LE ratio (p = 0.006), suggesting a strong anti-inflammatory effect. Microbiome analysis revealed a shift from dysbiosis to a more balanced composition by the end of the study, characterized by increased abundances of Akkermansia muciniphila, Bifidobacterium adolescentis, and B. longum, along with decreased pro-inflammatory taxa such as Fusobacterium. Conclusions: Genetic analysis provided distinct yet complementary insights into the microbiome’s functional responses to infection and therapeutic modulation by Fucoidan. These findings highlight the therapeutic potential of high-dose Fucoidan in reducing gut inflammation and promoting microbiome recovery following viral infections. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

30 pages, 7536 KiB  
Article
Fucoidan-Based Gold Nanoparticles: Antioxidant and Anticancer Potential from Turbinaria decurrens and Sargassum cinereum
by Ahmed S. El Newehy, Saly F. Gheda, Mona M. Ismail, Dara Aldisi, Mahmoud M. A. Abulmeaty and Mostafa E. Elshobary
Pharmaceutics 2025, 17(7), 826; https://doi.org/10.3390/pharmaceutics17070826 - 25 Jun 2025
Viewed by 580
Abstract
Background/Objectives: Cancer remains one of the leading causes of mortality worldwide, while natural antioxidants have emerged as promising therapeutic agents in cancer treatment. Although fucoidan from brown algae shows anticancer potential, its efficacy is limited by bioavailability challenges, and the synergistic effects of [...] Read more.
Background/Objectives: Cancer remains one of the leading causes of mortality worldwide, while natural antioxidants have emerged as promising therapeutic agents in cancer treatment. Although fucoidan from brown algae shows anticancer potential, its efficacy is limited by bioavailability challenges, and the synergistic effects of combining it with gold nanoparticles remain unexplored. Methods: Fucoidan was extracted from Sargassum cinereum and Turbinaria decurrens. F-AuNPs were produced utilizing fucoidan as both a reducing and stabilizing agent. The nanoparticles were analyzed by UV-Vis spectroscopy, FTIR, TEM, XRD, DLS, TAG, and zeta potential evaluation. The antioxidant activity was evaluated by DPPH and FRAP tests. Cytotoxicity was determined against HepG2, THP-1, and BNL cells, utilizing MTT and SRB tests. Flow cytometry was utilized to assess the cell cycle, while molecular docking was carried out to examine binding to oncogenic proteins. Results: T. decurrens produced higher polysaccharides rich in fucoidan content (235.9 mg/g dry weight) and stated higher antioxidant activity (FRAP: 9.21 μg TE mg−1; DPPH: 4.48 μg TE mg−1) in comparison to S. cinereum. F-AuNPs showed potent cytotoxicity toward HepG2 cells, with IC50 values and cytotoxicity toward HepG2 cells, with IC50 values of 377.6 μg/mL for S. cinereum and 449.5 μg mL−1 for T. decurrens. Molecular docking revealed robust binding of fucoidan to COX-2 (−7.1 kcal mol−1) and TERT (−5.4 kcal mol−1). Conclusions: Fucoidan and F-AuNPs reveal remarkable antioxidant and anticancer properties. Nanoparticle formulation greatly improves bioactivity, underscoring its promise as a synergistic approach for cancer treatment by influencing oxidative stress and cancer-associated pathways. Full article
Show Figures

Figure 1

15 pages, 2310 KiB  
Article
Fucoidan and Hyaluronic Acid Modified ZE21B Magnesium Alloy for Better Hemocompatibility and Vascular Cell Response
by Haoran Wang, Yunwei Gu, Qi Wang, Lingchuang Bai and Shaokang Guan
Coatings 2025, 15(6), 732; https://doi.org/10.3390/coatings15060732 - 19 Jun 2025
Viewed by 414
Abstract
Magnesium alloy stents exhibit significant potential in the treatment of cardiovascular and cerebrovascular diseases due to their remarkable mechanical support and biodegradability. However, bare magnesium alloy stents often degrade too quickly and exhibit inadequate biocompatibility, which severely restricts their clinical applicability. Herein, a [...] Read more.
Magnesium alloy stents exhibit significant potential in the treatment of cardiovascular and cerebrovascular diseases due to their remarkable mechanical support and biodegradability. However, bare magnesium alloy stents often degrade too quickly and exhibit inadequate biocompatibility, which severely restricts their clinical applicability. Herein, a composite coating consisting of an MgF2 conversion layer, a polydopamine (PDA) layer, fucoidan, and hyaluronic acid was prepared to enhance the corrosion resistance and biocompatibility of ZE21B alloy for a vascular stent application. The modified ZE21B alloy exhibited relatively high surface roughness, moderate wettability, and better corrosion resistance. Moreover, the modified ZE21B alloy with a low hemolysis rate and fibrinogen adsorption level confirmed improved hemocompatibility for medical requirements. Furthermore, the ZE21B alloy modified with fucoidan and hyaluronic acid enhanced the adhesion, proliferation, and NO release of endothelial cells (ECs). Simultaneously, it inhibits the adhesion and proliferation of smooth muscle cells (SMCs), promoting a competitive advantage for ECs over SMCs due to the synergistic effects of fucoidan and hyaluronic acid. The incorporation of fucoidan and hyaluronic acid markedly improved the corrosion resistance and biocompatibility of the ZE21B magnesium alloy. This development presents a straightforward and effective strategy for the advancement of biodegradable vascular stents. Full article
Show Figures

Figure 1

3 pages, 2243 KiB  
Correction
Correction: Wang et al. Anti-Metabolic Syndrome Effects of Fucoidan from Fucus vesiculosus via Reactive Oxygen Species-Mediated Regulation of JNK, Akt, and AMPK Signaling. Molecules 2019, 24, 3319
by Xueliang Wang, Xindi Shan, Yunlou Dun, Chao Cai, Jiejie Hao, Guoyun Li, Kaiyun Cui and Guangli Yu
Molecules 2025, 30(12), 2574; https://doi.org/10.3390/molecules30122574 - 13 Jun 2025
Viewed by 256
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

10 pages, 1787 KiB  
Article
Functionalized Polymeric Microneedles for Transdermal Delivery of Ovalbumin Protein Antigen
by Yi Liu, Feng Tan, Decheng Zhao, Liwen Zhang, Nianni Zhang, Chengwei Bai, Ziyang Guo, Xiongjian Guan and Guanyu Chen
Pharmaceutics 2025, 17(6), 737; https://doi.org/10.3390/pharmaceutics17060737 - 4 Jun 2025
Viewed by 523
Abstract
Background/Objectives: Microneedles represent an innovative transdermal drug delivery approach, especially for protein antigens. This study aimed to develop a dual-functional, dissolvable microneedle system loaded with β-glucan and fucoidan in a hyaluronic acid matrix to achieve transdermal immunomodulation and reactive oxygen species (ROS) regulation, [...] Read more.
Background/Objectives: Microneedles represent an innovative transdermal drug delivery approach, especially for protein antigens. This study aimed to develop a dual-functional, dissolvable microneedle system loaded with β-glucan and fucoidan in a hyaluronic acid matrix to achieve transdermal immunomodulation and reactive oxygen species (ROS) regulation, exploring its potential in inflammatory disease management and antigen delivery. Methods: The microneedles were fabricated using a two-step casting method. Their morphology, mechanical strength, and dissolution kinetics were characterized. In vitro experiments evaluated the ROS-modulating effects on human dermal fibroblasts, while in vivo studies on C57 mice investigated immune activation and lymph node accumulation of ovalbumin antigen. Results: The microneedles exhibited a mechanical strength exceeding 7.45 N/needle and dissolved within 50 s. β-glucan transiently reduced ROS levels at 6 h followed by a rebound, whereas fucoidan sustained ROS suppression after 12 h. In mice, β-glucan-loaded microneedles triggered local immune activation, and fucoidan-incorporated microneedles enhanced ovalbumin accumulation in lymph nodes by 2.1-fold compared to controls. Conclusions: Integrating β-glucan’s immunostimulatory and fucoidan’s ROS-scavenging/lymphatic-targeting properties within a single microneedle platform offers a promising multifunctional strategy for treating inflammatory diseases and delivering protein antigens. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Figure 1

21 pages, 2879 KiB  
Article
Undaria pinnatifida Fucoidan Enhances Gut Microbiome, Butyrate Production, and Exerts Anti-Inflammatory Effects in an In Vitro Short-Term SHIME® Coupled to a Caco-2/THP-1 Co-Culture Model
by Barbara C. Wimmer, Corinna Dwan, Jelle De Medts, Cindy Duysburgh, Chloë Rotsaert and Massimo Marzorati
Mar. Drugs 2025, 23(6), 242; https://doi.org/10.3390/md23060242 - 4 Jun 2025
Cited by 1 | Viewed by 1079
Abstract
Fucoidans have demonstrated a wide range of bioactivities including immune modulation and benefits in gut health. To gain a deeper understanding on the effects of fucoidan from Undaria pinnatifida (UPF) on the colonic microbiome, the short-term Simulator of the Human Intestinal Microbial Ecosystem [...] Read more.
Fucoidans have demonstrated a wide range of bioactivities including immune modulation and benefits in gut health. To gain a deeper understanding on the effects of fucoidan from Undaria pinnatifida (UPF) on the colonic microbiome, the short-term Simulator of the Human Intestinal Microbial Ecosystem®, a validated in vitro gut model, was applied. Following a three-week intervention period on adult faecal samples from three healthy donors, microbial community activity of the colonic microbiota was assessed by quantifying short-chain fatty acids while composition was analysed utilising 16S-targeted Illumina sequencing. Metagenomic data were used to describe changes in community structure. To assess the secretion of cytokines, co-culture experiments using Caco-2 and THP1-Blue™ cells were performed. UPF supplementation over a three-week period had a profound butyrogenic effect while also enriching colonic microbial diversity, consistently stimulating saccharolytic genera, and reducing genera linked with potentially negative health effects in both regions of the colon. Mild immune modulatory effects of UPF were also observed. Colonic fermentation of UPF showed anti-inflammatory properties by inducing the secretion of the anti-inflammatory cytokines IL-6 and IL-10 in two out of three donors in the proximal and distal colon. In conclusion, UPF supplementation may provide significant gut health benefits. Full article
(This article belongs to the Special Issue Research on Marine Compounds and Inflammation)
Show Figures

Graphical abstract

18 pages, 1732 KiB  
Article
Andrographolide and Fucoidan Induce a Synergistic Antiviral Response In Vitro Against Infectious Pancreatic Necrosis Virus
by Mateus Frazao, Daniela Espinoza, Sergio Canales-Muñoz, Catalina Millán-Hidalgo, Benjamín Ulloa-Sarmiento, Ivana Orellana, J. Andrés Rivas-Pardo, Mónica Imarai, Eva Vallejos-Vidal, Felipe E. Reyes-López, Daniela Toro-Ascuy and Sebastián Reyes-Cerpa
Molecules 2025, 30(11), 2443; https://doi.org/10.3390/molecules30112443 - 3 Jun 2025
Viewed by 789
Abstract
Andrographolide, fucoidan, or a combination of both compounds were evaluated to determine their effects on the antiviral response in the Atlantic salmon macrophage-like cell line (SHK-1) infected with infectious pancreatic necrosis virus (IPNV). We assessed the transcript expression levels of key molecules involved [...] Read more.
Andrographolide, fucoidan, or a combination of both compounds were evaluated to determine their effects on the antiviral response in the Atlantic salmon macrophage-like cell line (SHK-1) infected with infectious pancreatic necrosis virus (IPNV). We assessed the transcript expression levels of key molecules involved in the interferon (IFN)-dependent antiviral response, as well as the viral load in cells treated with these compounds. In non-infected cells, incubation with either fucoidan, andrographolide, or a mixture of both resulted in an increase in the transcript expression of IFNα1 and various interferon-stimulated genes (ISGs). In IPNV-infected cells, treatment with either fucoidan or andrographolide separately did not significantly enhance the antiviral response compared to that of infected cells that had not previously been treated with these compounds. In contrast, the combination of andrographolide and fucoidan led to a marked increase in the transcript expression of viperin and a significant reduction in viral load. Overall, combining andrographolide and fucoidan resulted in a greater reduction in IPNV viral load in infected cells than that noted when the compounds were administered individually. Our findings suggest that pre-incubation with this mixture promotes the establishment of a protective antiviral state against IPNV, likely mediated by an IFN-dependent response. Full article
Show Figures

Figure 1

Back to TopTop